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                          INTRODUCTffON

   When a thread is wound ttp on a bobbin in factories, a mechanism of
traverse' metion is usually used in order to wind up regularly, to int,errupt

adhering the threads each other, to unwind smoothly etc. In the case o'f
traverse wincling, as we treated in the previous paper2), the configuration of

the thread wound ttp is expressed by a function of winding velocity, traverse

velocity, distance between the bobbin and the traverse bar etc. But in the
winding mechanism of the lifting machjnes such as crane or hoist it is
possible to wind up a wire regularly without traverse, and also in the case of

rereeling of a thread in home sewing machine, the traverse motion is not
usually used. When the thread is wound on the bobbin, the thread shows a
tendency to take the most stable place and this property is used eMciently
in these maehines.

   The condition of the "Non-traverse motion winding" and the most suitable
type of bobbin for it NNrere investigated.

       FUNDAMENTAL EQUATION OF THE TRAVIERSE MOTION
   A cylindrical bobbin is used for simple analysis. In Fig, 1, take coordi-
nate x in the direction of the traverse bar 1 and coordinate 4 in parallel

to the axis (5) of the bobbin including point P, where the thread passed
through a thread guide (2) on the traverse bar comes in contact with the
bobbin 3. And the relation between the traverse motion x=x(t) and the
configulation of the thread wound up on the cylind;ical bobbin 4 =e(t) js

            ddgi = (sc-e -7;････････････････`･･･････････+･･････････････････････--･･･････････a)

where l: distance between the bobbin and the traverse bar ancl

      v : winding velocity ( =ruao).

For convenience, let l/v=:l/r :c be a constant which has a dimension of time.

Then equation (1) becomes



2 N, YANAGisAwA.S. Uc;em)A.A. SmNoi･iARA.E, Ocn-T. IF'uJiTANt No, 4

             d4
            C dt +6 ---･ X. ･････b-･･･ny････････････････････････････････`･-･･････････-･･････････(2)

It is called "Fundamental eqttation of traverse motion".

   When the motion of the traverse bar x :ur' x(t) i$ given analytically, this

equation can be solved. For example, in the case of simple harmonic motion ;

            :c = asin tot ･････････-･i････,･････,,+･,･･,,,･,,,,,･･,･･-,･,,-･･,,･･･`･,･,,･,･+･･･(3)

we get in steady state;

            g=:b sin (e)t -I- g) ･････････････････････････････････････････t･･････e･･-･･････-･(3')

where 2a : traverse (double amplitude)

       b : amplitude of responsed motion.
Frorn equation (3) and (3'), it becomes

                   a            e == :'l]}-fi::i/v-; ifsi::yti sin{tot - tan'"t(ctu)} ･･････････}t･,.,,,,,.,,.,,.,,.,,,,,,(4)

Therefore, the frequency responses are;
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Fig. 2 Relation between the gain and ca1caQ with l!r as parameter
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amplitude ratio (gain) b/a :=-1/A,/1 + (ca))21

phase lag g= pmtan--t(c,,) i.""'''''''`''''''''"''(5)

From equation (5) it is easily to see that bot,h amplitude ratio and pha$e lag

are functions of the winding constant l/r and angular velocity ratio (t)/tun,

and that amplitude of thread wound up on the bobbin is always smaller than
that of traverse motion. The relatiQn between the gain and (t)1(tio is shown in

Fig. 2with l/r as parameter. We carried out this experiment, u$ing the
Scotch Yoke mechanisrn as the traverse, and found that the observed results

almost coincide with the theoretical analysis.

             MECMIANISM OF NON-TRAVERSE VVINDING
   Mechanism of non-traverse winding is shown in Fig. 3. If the thread is
assumed to have not any friction, fiexual and torsional rigidity, the position

and the configulation of thread wound up on the flanged bobbin without
traverse, depend upon the diameters of bobbin and thread and the position
of thread gtiide. Consider that the thread of d in diameter is wouncl through

the fixed thread guide (G), which is at the distance of lfrom the bobbin and
f from a production of fiange of the bobbin as shown in Fig.3, and that the

flanged bobbin has a diameter of D and a width Qf w.

                                           To wind up the thread on
                                        the bobbin regularly as closed

              tt' coil, the angle ea between          B
                 , ,--- '-× flange and thread of the initial
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Fig, 3 Illustration of non-traverse winding '

        `- --!' ( - state of winding must not be
                   NxxX larger than a helical angle of
       is the closed coil ip determined by '
di T etE the diameters of the thread and
.. the bobbin, When the angle Oo
                i is larger than this helical angle

 O[ ¢, it is impossible to wind up
                              the thread on the bobbin as
                              closed coil, and the thread does

rc : not contact with each other.
A Therefore, the critical condition
                              to wind up just as closecl coil

                              IS

        df
tan 0e =" .D : 7'････････････t-･･i･･････････････････t･･･-･･････････-･･･････････(6)

where d: diameter of the tlaread

     D: diameter of the bobbin
      f: distance between a production of the fiange and the thread guide
      l: tangential length from the thread guide to the bobbin
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   As the thread is wound, winding angle e in Fig. 3 decreases and becomes
negative. But the helical angle on the bobbin is always kept at constant

angle ¢ if the compressive deformation of thread is neglected. The absolute
value of e increases gradually until the thread cannot lie on the bobbin and

climbs on the thread previously wound. And the subsequent thread is wound
up on the first layer to the inverse direction as in Fig. 4. We call this phe-

nomenon "Crossing over" and denote this critica! winding angle by 0L.

sc ,i "

g,.

. !S'Si 'gi '.e. '.･

Fig. 4 Phenomenon of "crossing over" A : crossing over

   In order to wind up the thread to the other side of the bobbin, the angle
0t, which is the absolute value of the winding angle at the other side of the

bobbin as Fig. 3, must not be larger than 0L. In making the second layer,
though the diameter of the coil increases and the winding angle 0 becomes
larger than ", it is possible to wind up the thread regularly. as closed coil in

a certain range of 0,. Because it is effected by the under layer with regular

furrows produced by closely contact threads. The relation between 0o and 0,

is usually ; 0o 〈 0t

   SYITABLE SHAPE OF THE BOBBIN FOR NON-TRAVERSE WINDING

   The curve of the thread wound up on the cylindrical bobbin is the helix
which has the helical angle ip and is independent of winding angle O. In the

case of the conical bobbin, the helical angle at any point is not constant to

wind up closely since the distance of centers of adjacent threads is constant

at any point. The projection of this curve on the plane perpendicular to the

bobbin axis is a spira! of ARcmMEDEs as;

A :=: ke
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where A : distance from the origin

     e: polar angle
      fe: proportional constant
The value of 0 on each point is not always coincided with the helical angle
ip. To wind u'p closely, O must not be larger than the he!ical angle ip, As the

thread wound previously is pushed by the subsequent threads, the thread
assembly mounted on the bobbin is apt to fall down. This pushing force or
"Side pressure" of the neighbouring threads causes cross,ing over and the
pressure on the flange. To wincl without the side pressure, the wincling angle

O should be always equal to the helical angle ip and the geoclesic curvature
of the thread on the bobbin should be zero. But generaUy it is i!npossible

that both the two conditions are satisfied at the same time. Tal〈e caordinates
as in Fig. 5, where x: bobbin axis, r: radius of the bobbin, tan E: gradient
of the bobbin curve at x and d: diameter of the thread. The shape of
bobbin, where the winding angle 0 is always equal to the helical angle ip,
is expressed as a solution of differential equation.

(f-x)Vr (-S- kwu)2="' 8k, ''"'' '''''''-''''''''''''''''''''''''"''(7)

Integrating this differential equation ttnder the condition; r:･=-rQ at x::-= O, we

can obtain the shape of the bobbin r Cx). It was calc"lated nupaerically by

means of the RuNGE-KuTTA method (details in appenclix 1) and the results
were shown in Fig. 6. This curve is hyperbolic and has the asymptote x==f
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Fig. 5 Coordinates system of tlie iO
    bobbin anct the thread

                                   o

                l
                t
                t

               i
              I

             !
            t
            1
          1
         l        t        '       -
     t

. aot,"rs d mu,hL-"..
   2',r･r ''2rrr 1.'1 +(ltl:.)"

a :･･ 4 ntm

'

#

            10 20 30 35
Fig, 6 One of the theoretical bobbin shape
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at the middle o'f bobbin. The available region o'f this icleal shape is limited

in the region of srnall x.

          MECHANISM OF CROSSING OVEI{ OF TNE THREAD

   As the thread is wound until the winding angle 0 becoiries OL, the
phenomenon "Crossing over" of thread will occur, and the thread forms the
second layer of open coil before arriving at the other flange, Since the helical

angle of thread is very small in pra¢tical winding, it is assumed, in order
to simplify the theoretical anal･ysis, that a wound threacl on the bobbin forms

a tOrus. Equation of the torus is given in Cartes,ian ¢oordinates as :follows,

           x =(Rt -- R2 sin pa) cos, e

           y ::-L (Ri + .l?2 sin g) sin O

           x :=･ R2 cos ep

x

Rl         x

-. X

Fig, 7 Geodesic line (AB) on the torus of the 'thread

                                 where the origin (O) ofthe coordi-
                                 nates is at thecenterof the torus,

               , an axiszis in the direction of the
        ..〈7 " tOrUF aXiS (boPbin axis) through the
...;3)).･,,,･$' ., ･'" :,rig,i,".･ .a.a.,a,X,iS,X,g'S,8,e,',R.:edi8."k9g

       .× around the axis 2 and g is the        y 'rotating angle around the center line
        Ax .e of the torus ring (Fig. 7and s).
                                    When the subsequent thread is
                                 wound up to the surface of the torus
                                 of the previously wound thread, tlte
                                 contact point of the winding thread
                            2        y on the torus lies on the curve de-
Fig･ 8 Geodesic line (AB〉 on the torus terrXiined bY the statical condition.
   of the thread If there is no inter-thread-friction,
                            , the curve of the contact point will
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be a geodesic line, because in which state, the tensioned thread on the
torus surface is in the most stable state, When we take the curvilinear
coordinates u, v as u =T- R2g v= 0, the first lcind of fundamental quantities

of the differential geometry E, F and G are; E=1, ,Ii' :O, G=(Ri+R2 sin g)2,

where Ri; radius of the center line of the torus ring,

      RL,: radius of a cross section of the torus ring,

The equation of geodesic line on a torus surface is generally given as :

             Or Otvtlii'
             ev t="EiiV-.' 'H"H"''H''H'H-H"'"-""m"'""m'''･---t-(9)

where r is the angle between geodesic line and the curvilinear coordinate 2{,

By substituting equation (8) to equation (9) and assuming r!itan r, we have

            @i-"z$- =:[eLRR-l cos paa +£-2, sin pa) ･･･-･-･････････････-･･･････････-･･････････(io)

Integrating equation (IO) with the initial condition;

            g=o and -S/9--=･oato :o

            o .. 1-mu.,ip -T. 4rmPopve-.r.mmu -. -.

                VlllllliA?" tso 'Vsin g(i+TEIi2, sin g) "`''''''"''"''`'"''''"''"'''(ii)

This equation is solved with the graphical integration and the result is

                                               R2
plotted against so with the full line for the case of                                                  ==- O. 074 in Fig. 9 and
                                               Rl

               R,
for the case of                  ==O.5 in Fig. 10 respectively,
               R,

         R,
   Since            sin g is negligibly small compared with unity in practical appli-
         R,

                                                 R,
cations, equation (11) is simplified by neglecting of                                                    sin g and by putting
                                                 R,

sin ep= cos2 ¢ (details in appendix 2);

                             d¢                  1
             0=: "ei
                'V'iii:boVi--l;-sin2gb 'm'-"m""'''''"'"'''""m"(n')

The solution of this equation ls plotted against p with the dotted !ine for the

case of iii =O.074 in Fig, 8and for the case of -i-ii-i･-- :O.5 in Fig. 9. It is

seen that the solution of the equation (11') agrees very good with the solution
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of
 the equation (n) in the case of -.Rl?i'-::=- o. o74, btit in the case of --RR-i'-- -- o.s

the differnce between the two solutions is comparatively large. Since in

practical application, the ratio of IR
?-
1--' is usually less than the value of O,074,

         Ro
the term -･ki--sin p may be neglected.

:IO
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                               tl
                .....,..." i:1)i ./-

                                                    x

                                          -
                             40 --
                                     -                             30- /!
                                  !                             20 Z
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                                z                             !o

ti 10 2e :lo 40 c5" 80 em V' O 10 L)O :lo ose fio Ho (･m 'P

      . Fig,9 Fig, lo  .Rfel,ahttOe,?:t,W,eie."g lh,9 .r.O`,ahtLO"g,a,iag,t,S.,Oli.t,lle torus (e) and the rotatimg angle

,,,Bgr2e.,g"/,.i2,g,b,et.wes.".:,hg,tgr,?･fiS,A.B,a,n,d,t,h,e.,pi:･.ne,,p,grp,e,?di,c,uig,r,g?,ggs

against g usmg the geometrical relations as follows ;

           sin P : sin r" sin g

           tanr=tii?7:+itllllltsr;ER2,,i.ipg:

                                .
l･e.lg3iiie,//n,/lsii3,i/Faii,:kii,iii,/jF/rc;.:･fiei/s.h{/fc,t,,s,,e,t:lkle/%,l,Pol,ii,,gE,lihee,i:W:a#,i,£iiEkbg,ee･,iiei'g/l･ipii/iiij'/hii.i'

PL is 20e inthe case of RR i =O.074 (Fig. 12).
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                                     ti :-st) 60 fjt)
                                                       '
Fig.11 Geometrical relation between the crossing Fig,12 Relation between pa and

   over angle P and the geodesic line en the torus P in the case of no friction

   AB:geoclesic line, CP:!ine on a constant 〈calculated)
   BE : dlrection of parallel to the torus' axis

   FG : direction of perpendicular to the torus' axis

But practically the frictiona! force acts on the contact region, so the cuTve

of contact on the torus is given by the equilibrium condition (Fig, 13);

                         ds
            7;, == 2T.sin
                         2R

    . ds ds
as sin 2R ki 2R

                     ds
             T,, rt= T-.R-

             p= 7;, cosb =T dRS coso

                            ds
             F== T. sin o" '--- T R sinS

substituting P, F to the equation ptP :F

               ds' ds.
             T R ¢os o".y=:T R sin6

              cos6 sin o"               R --r--1/pn"] and R =--:-"1/pb

so, we have 11pn.tt :1/pb
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where T,: normal force to oseulating plane
            T: tention of the thread
             s: length along the threacl

             1
            Ixi: CUrvature of the thread

             1
            -: geodesic curvature of the thread
            Pb
             1
            -: normal curvature of the thread
            Pn
            P: normal force to {:angent plane
            F: frictional force acting perpendicular to the 'threacl in

               tangent plane
            ft: frictional coefiicient

            6: angle between T and P
So, the curve of thread on the torus does not completely coincide with the

geodesic line. It is considerably diMcult to analyze this curve, but as -1- is

                                                            K)n
nearly zero in the case of small region of g, the effeet of friction is negligi-

ble, and it is expected that the crossing over angle PL inust decrease as
frictional coeMcient lt increases,

                    EXPERIMENTS AND RESULTS

   Four kinds of bobbins were used in this experiment (Fig. 14). Babbin A

was made of polystyrene being covered with a thin sheet Qf emery. Bobbin
Bi, B2 and C were made of mild steel and their shapes and sizes are seen in

Fig. 14. The threads used for this experiment were nylon braids of 4mm
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Fig, 13 Mechanical equilibrium of the thread on Fig. 14 Bobbins usecl in this
   the torus with effect of friction AB : thread studies
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and 4.5mm and cotton strings of 4mm and 4.5mm in diameter. Winding
velocities were kept about 10cm/sec in every case and two kinds of winding
ways i.e. Z and S were used.
a) Initial angles of the first and the second layers (Oo and 0,)

   During this experiment, load of 150g in tention was applied to the thread

constantly. The experimental results, obtained by using nylon braid of 4.5
mm in diameter, show that the variations of observed values of eo and 0, to

wind the thread closely were very small and these values were sufliciently

reproducible. They are shown in Table (1). There is some discrepancy be-
tween Z winding and S winding, although the other conditions are quite

. .i,.'.-･･･':ww, ,ew, ewSi;'

t . t.t.-t tff .t.) .. t t

･ ･･g

", m i,

    Fig. 15 Effect of the liveliness

(a}:S winding {b/:Z winding
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Table 1 Diffrence in 0o and et between S wincling ancl Z winding

Bobbins e. Windings 0o 0t
A lo3st Z 1015t 2osot                           S 2"301 2U14t

Bi 2e2ot Z 1"18t 3o2ot                            S d"30t 1,042t

B2 lo371 Z ---OU201 soool
                            S 2000t 4VOSI

C zosst Z Z"06t 5"tt8t                           S 2assi sooo,
-.mnTH-Htt----t--muly--t"t    Critical angle, of which the-llli/li"Eicl can Ee w'o'bma-d'''"llTs"'wwe'ib'g'e-dmu'G6'I"i"""M'T"wwnvH-"""'""""'"''''"''''""

      Oo:in the first layer 〈experimental)
      0t:in the second layer (expeumental)
      0, : calculated from the condition of the helical angle

equal. It seems that this phenomenon is caused by the liveliness (Z or S twist)

of the thread (Fig. 15),

b) Angle o'fi crossing over;P

   We examined the effect of frictional coethcient of thread$ for the angle
gf cyossing over; P, In this experiment, we used a cylindrical bobbin, 50mm

in diarneter, and three kinds of threads, one of which was coated with MoSo
powder to moclify the frictional coeMcient of threads, These details are"

denoted in Table (2), Observed values of P were within about lt5% from
average value of them and they are in Fig. 16 and Fig. IZ It is found that
P decreses with increment of the frictional eoeMcient of the thread a$ theo-

B

20',

IO

st :=--a.24 L)o/

10

p

o

e

e

                              T'o  O 1{)O 3oo soog {}.1 CLU O. ;i o. Jl e.s A
                             '            '                        'Fig, 16 Experimegtal result between the Fig. 17 Experimental result between the
   angle of crossmg ovre P and tension angle of cressing over P and frietional

                                      coeMcient "
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Table 2 Diameter and frictional coefiicient (t.t) of used thread

threads diameter frictional coethcient (/2)

      cotton 4,O mm O. 56
cotton coatecl with MoSu powder 4,Onim O.41

      nylon 4.0 mm O. 24
retical result expected. It seems that P is independent of tension applied,

Regarding the unwinding of the thread, the condition of the crossing over

is also useful.

                          CONCLUSIONS

a) In non-traverse winding, the relative position of thread guide to the
bobbin is determined by eo and 0,. The angle Oa is determined by the helical

angle of closed coil with some correction due to liveliness but the inuximum
angle of Ot is la'rger than the helical angle by the effect of the under layer

of the threads. The angle 0t must be determined by experiments since it is
so much infiuenced by fiexuaZ rigidity, torsional rigidity" and friction as in

the case of B. Generally eo〈et 〈/l P.
   It is desirable that the thread guide is Ear from the bobbin to malce (]u
and 0# small and that the coefficient of friction of threads is small.

b) The suitable shape of the bobbin for non-traverse winding is datermined

by the conditions of

   (1) the helical ang!e should be equal to 0 and
   (2) the geodesic curvature of the thread should be zero, but both the
conditions are not satisfied at the same time. From the condition (l), it is

found that the shape of the bobbin mttst be hyperbolic revolution.

c) In the case of no friction the angle of crossing over is determined by the

equation (11), (11') and (12) which are obtained by using differential geometry

on the torus surface. If friction acts between threads, geodesic curvature is

not zero and the equation of the thTead is more complicated, but the experi-

mental results almost agrees with theoretical conclusion, that is, the angle
of crossing over (P) decreases with increasing of frictional coeflicient (lt), and

theoretical angle in the case of no friction almost coincicles with the angle

extraporated from observed value under in friction.

                            SUMMARY

   The solution of the fundamental equation between the traverse motion

                                         - rctio d6
                                             l'dt +e=X) Wa$ al-and the configuration of the thread on the bobbin (

ready reported. In this report, the conditions of the non-traverse winding

* When the thread falls down in the furrow of the thread layer, it, is observecl that the

 thread slips down or rolls down with tersions.
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(a suitable type of the bobbin, position of the thread guide, crossing over and

so on) were studied comparing the theoretical analysis with the experimental
results and some fundamental conclusions were obtained,

   In order to wind up the thread on the cylinclrical bobbin as closed coil

without traverse motion, the initial winding angle must not be larger than
helical angle, but in the second layer, the thread can be wound by the effect

of the first layer even when the initial winding angle is somewhat larger
than it.

   This critical angle is effe¢ted by friction, rigidity of the thread etc,, and
the experimental results show a tendency expected from the theoretical
analysis.

   The conditions to avoid the side pressure between nighbonring threacls
were considered and the suitable type of the bobbin was analyzed in a region

of small geodesic curvature,

   The conditions of crossing over of the thread were derived under the
cases in which friction is neglected and is taken into consideration. The
condition for the thread without friction was solved, The analytical results
almost coincided with the experimental results.

                            APPENDIX

i) (f-x)Vi+( S: )2 :Ed.-i, ･t･･･t･････ -････--･････-･･･････-･･･--･･････････(A)

                                  tr  put r:re at x=O, f-x=t, -7-=X and'ii `:Y

  then x: d               2zro y'V!1 + (-re)2 ( ddYt )2

                         d
               2rc ro yV;+ (9')2( ZY.2)

  it becomes ( ddxY )2== H2K, . i. x2-ti..

            ro d where -=K - ==N.            I 2nro
            d2ep                   R,                             R2
2)                      cosp(1+                                sinp) ･････････--･･････････････････-･･････}･t･･-〈a)               ==+            dO2 pt R2                             Rl

            dO 1
            dep-V2/Tl･Vsing(i+'==liiRi-2,sing)

            0=" VL£'!ZVsin ga +dep,Ri ,sm q) ' (b)
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 If we neglect --i?-iTsin ip, the equation (a) becomes

           ':'ith"= t: iil, cosip, -････--･･-･--･--･-･-･･-･･-･-･･--"m""(at)

                    "
 It is solved as follows

            (--Ziti-)2::-:2-RR:-.sing

           dO==V/Tsi'.ep'Jr-

            0 "･V;z,,?,"gSZiv"gengo

 putting sin g== cos2 ip,

           e--V{-7Sv,t'dm/li,iiigi,& ･ ･･･(c)

 The equation (c) is the first ldnd of complete elliptic integral and it can be

solved by using the table of elliptic integral.
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