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                           INTRODUCTION

   The deformation curve which a yarn centeral line shovLrs in large
deformation is changed by an equivalent thin rod. Than the pitch of yarn is

varied by the direct force varying at each point of the centeral line, and so

the cross section is varial)le, T. Suharai) has studied this problem as an ela$tic

rod with variable cross section and M.Mizuno2) has studied the deformation
of spring coil. It is an interesting･problem in applied niechanics from the

point of view of the large deformation theory, but in bending fabrics the
woven materials and conditions are large factors tQ solve the problern
mechanically. The relations between the crease of fabrics and the viscoelaseic

theory were studied by K.Murakami3) but in a few experiinents of the woven
materials the crease of yarn is'too complicated to discuss it viscoela$tically.

Many questions about it have not been solved yet and so it is not unworthy
to study bent yarn on the elastic theory.

   Now let us consider in this paper the small radius of curvature ofa
formed yarn in bending fabrics. In this case the mutual frictions between '
the fibers are negligible in order to simplify thi$ problem. The radius of
curvature of yarn centeral line on the elastic' theory and the local curvature

on the differential geometry are discussed mechanically in this paper.

                             THEOREM

   The straight filament having the same pitch in a state of unloading is
deforrned under the compresion force w to the direction of the initial central

lineat the both ends, rotational ends. It is assumed that the deformation
curve of the centra!.line is APOB in Fig 1. When the coordinate axes are
determined as shown in Fig.1, the tangent of the deformation curve at
the middle point of the yarn length is parallel to the loading direction and

the deformation curve is OPA, ais the angle between the tangent at an
arbitary point Pon the deformation curve of the centeral line of the filament

and the load-direction, where rr〉0〉O, and the angle at the point A is (v.
Therefore the orthogonal axes (x, y) are determined as the normal and
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                                     tangential directions at the point (),

                     X If the position of an arbitary pOiiit P
                                     is detennined in the case oE l?ig 1.,
                         b 'W the cleformation of centeral line o'E

                                     the filament as well a$, the large
                                     deformation o'E the rod can bG} dater-

                                     mined when there i$ the cleformatic)n

                                     curve on a plane, whatever the
                                     conditions of loading ancl holding at

                                     both end$ may be.

   Y Now, let lo be t,otal legth of the
                    O filament in unloading, l total length
       Fig 1. Schematic diagram of of the filaiinent in loading, hfv pitc'h

             bent filament･ of the filainent in unloacling, S the
lje,n,ghkhe,i,ag?･ved;,gif.itl,geXk･k,X,iOg,!/tag`,i,X'k.:iiidV,i?)Eij.}2.Ca,X"gt,e4,Ziglk'Si,f･gr?f,t"lcfu'i,LX･:ili!rrai¥,k

represents the polar moment of inertia of the cross section in the ,simple ¢ase
of circular cross section and it is the $ame with the cro$s $eeticm oE otlier

type, then,
                                  2I=f
 And also let rbe herix radius of the 'Ejber and A, B, Ccoefficients of
 rigidity for the direct, bending and shearing forces introduced respectively

 by S, Timoshenko4)

                   Ao = hocosP12rrr3 (sin2P!Ef --l- coseP!2Gl)

                   Be =: hocosPITr (1 + sin2t31EI + cos21312Gl) 〈l al)

                   Co = hecosP!rcr3 (cos2P!EI + sin2P12GI)

 wherePis the herix angle of the fiber and is assumed to be constant in ,
 bending, he one pitch length of the filament,A,B,C coefficient of rigidity for

 Ae,Bo,Ce at point P under loading respectively, h one pitch at point P uncter

 loading, and T, Q,M the direct force, shearing force and bending moment at

 point P respectively, then,

                T==-wcose, Q =wsino, M=: wSl sina ds (,b)

                        77Aa = (ds-dSo)!dso =' (h'"-ho)lho

 Therefore,

                   dsldso =: hlho =:1 ff- 77Ao =1-- zv!Ao･co$e (c)

                   A = Aoh!ho i Ao (1 - w!Ao'cosO)

                   B= Bohlho == Be (1 -- wlAo･cose) (d)

                   C t= Coh!ho == Co (1 -- wlAo･cosO)

 From the curvature of the deformation curve of centeral llne of the filarnent,
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                       de!ds=M7B+11C･ dO!ds (1)
   This equation is the fundamental equation of the deformation curve and

the first term represents the bending moment and the second term the
curvature by the shearing force. When the equations (b) and (d) are introduced

into the equation (1), '
     devds == wSi sinOdslBo (1-w/Ao･cosO) -F wcosO!Ce (1--w/Ao･cose)･devds

To solve the above equation easily, the following are put in lt.

                      str=lev, wlAo = 2, l2zq!Be =tt

                  w!Co == v, v+2tuT=t zv (1!Ao -l- 11Co) (e)

Then,

                     a- Tcoso) deldtv =sc ItSl sinedev (2)

                   didct {(1 - TcosO) dOldcu } t== - t{sinO

   {(1 -- rcosH) devdce} didev {(1 --- TcosO) dO!d(v } drv :- xt (1- TcosO) sinO･dO

               (1 ---- Tcose)2 (de!dcv)2 == /t (2coso -- Tcos2o+c) (3)

Wherecis the integral constant and at point A, 0=ev

                          dO!do == (ldOlds) tr=nO (f)
Therefore,

              c=!---- (2cosav --- Tcos2a) == 1!r･ {(1 - Tcosa)2 -- 1} (4)

Introducing the equation (4) into the equation (3),

          (1 -- rcose)L'.(dOldtu)2= fefr. {(1 -- Tcosav)2 -- (1 - Tcose)2 }

Refering the equation (e), put into as following:---

                Avlofst == tv'(11Ao + llCo)/ (l21B,) = nyl･,v'7 (g)

This problem is discussed in the case of ･:;$1 and rnay be treatecl by the same

method in the case of T〉1, from de!dev;$O

         do = VT･ rll･(1 - TcosO) !V(veZ - Tcosav)2 - (1 - TcosO)2･dO (5)

From the equation (e),

                               ds = ldcr

If ds/dO is put into R in the equation (5),

          R : ,vf' jJi"-:･"r (1 - Tcose) ! ,vi(1 --- Tcosev)2 :"rv (1 --- Tcose)2 (6)

Therefore the radius of curvature at point O, e =tO,



              R = ,v!T･r (1 - T) ! iv/(rr1 L::"'T"c-6's'rrde' ')L" :1:':la('i'' :':'' i1)'t''

Then the loading direction is parallel to the x-axis,att:-,x!2, and the thc:ore)tic;al

radius of curvature at point O in this ca$e,

                     Rtu,vl llL"･r(1 --･ T)l,vl2T LL::-}i"'' 〈7)

   If the radius of curvature equals to the diameter of the warp or 'fill,

the Iimitation of loading must be known, theii

                               R =nt 2r

Therefore,

                       2V2.-TL'M mVfW('1-T) ('8,〉
Solving the equation (8),

                       T== 4+ f± 2V4":r- Mf' /( 4, +f〉 {9 ,)

O,nly the plus in the above equation can be taken by the conditivn r;i:I,:,1, the,n

                       r, =4÷f+ 2V4op+ f'/(4+f) (9' 1,}

    Next, the length of OP along the de'fiormation curve of the centctrai line.

of the filament, S, the equivalent length of S under tmloadisug, Si,, anei x,

y are shown:-

         S=: jg ds = ../ I)e'i rS,-!2 (1 ･- rcosO)/./F('tt ･do CIO ),

         s, ==Sg 1/(1 --- 2cose) ds r:-, ,v(flr{a + v/R)S,"/"1/,./l7z"orf}-dlt

                    -- ,/2Sg/21/(1-Acoso),.!ff('+-o".〉-, de} 〈,n,〉

         x := Sg sineds =t,.iTr [1/r1 --,viP(b'M"i,2] = ,vifi ･1!T･V2TT .-.r: 〈l12 ,)

         y ttdjg cosods =:,virrlndg2coso(i - rcose)/,.!y〈v,〉 ･d" a:s 〉

where .F(e) is 1 -- (1 --- TcosO)2

                     NUMERICAL EXAMPLES

   The radius of curvature of the small bent part on the warp or till in tlre

p!ain fabrics with acetate yarn 100 deniers is calculated in thi$ paper. Tha
warp is an axis in bending the fill or the fill is an axis in bending the warp.

Then, D is diameter of the yarn, d diameter of the fiber and Af yarn count.

   The yarn is about 53'S by the relations between the yai"n eount ancl the

deniers. T is the twist in turns per inch and F is the twist multiplier.

Then,
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                         T--.FT)v"7V- (in-'i)

Therefore,

                        ho t= 25. 4/T (mm)

where suffix w represent$ the warp and f the fill.

Acording to W. Tsuji's5) data and their calculations
                                            '
                   E =:-, 400 kg/mm2, G == 80 kg/mm2

                   d== O. Ol mm, D == O. 13 mm

                   hoiv tO. 735 mm, hof =pt 1, OOO mm

                    I ta Td4/64 ltst 4. 91 × 10-10 mm

and

             f"=,VE[-l-Sig/ig"tin･.S-z-,tll/lll-!-ll---PII-iltttL-Zg--i"II,ii,,J/-L-26Sr-e'?]';.ll'[gsg'if'a)/2ina ,,,,

       T t= wrrr3/hucosP {(2sin2P + cos2P)/di + (2cos2P + sin2t9)/2GJ} (e')

Introducing the above data into (g') and the equation (9),

                     Sv tu 1. 436, .f) = 1. 459

                      Tw= O. 142, Tf m# O. 144

and from the relation (e')

                        Tzv m 5. 979 × 10` × zvtv

                        Tf = 5. 471 × 10` × zvf

Since T from the equation (9) equals to T from the equation (e') eidenticaly,

                        wf y 2. 378 x 10in3 (g)

                        wf == 2, 632 x 10-3 (g)

If the yarn has 100 fibers and MZ is the bending force on the yarn,

                        IOIv = 2. 378 x 10-i (g)

                        VPrf = 2. 632 × lo-i (g)

Generally in the case of R#=cr, where c is constant,

                     Tte= c2 +f+ cVcua, +- ")or (c2 -F f) (9fi)

The relation between the bending force W and the radius Qf cttrvature of the

yam R is represented in Fig. 2 by the same mothod.

Next,

                        xtr O. 065Vf"･11T･V2.--.2 (12,)
The relation between the radius of curvature of the yarn and the x-coordinate
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of the loaing point is shown in Fig. 2 from the equation ('12'),

10-i

10-"

N. /!･iilt

               rnii;
               1,O

o, rs ,
o

                         mm I"'

Fig 2. The relations between the bendnig loads,the radius of curvatut'e

      and the loading point of acetate yarn.

DISCUSSION

(1) In this paper the relations between the radius of curvature for the sma!1

bent part of the crease and the loads are determined elastically. In this ca$e

the herix angle P is assumed to be constant and in case that it is variable

J.prescott6) studied with the tension of spring. However this generalized
bending theory is very complicated and so the case that it is variable w･ill 1)ct

discusse'd in the later paper.

  It is very interesting that the bending theory which I, Shibuya7) used for the
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wave--like plate may be apPIied to the larger part of the bent fabrics. In fact

E.Alexander and others8) assumed fibers to be spiral curve and sine curve
and measured the crimp of fibers by the tension test, Considering the spiral

model for the small part of the bent yarn and the sinsoidal model for the
bent fabrics, the relations between the bending loads and the radius of

curvature of the bent part may be discussed enotigh. '
    The materials of fabrics do not $how pure elastical behaviors, but they

should behave themselves viscoelastical!y acording to K, Murakami's experi-

ments. But in his paper the tensile strain is very small, a' few percent at

maximum, which W.J. Hamburger and others9) have also analizecl likewise,
and therefore it may be safely regarded as the elastic region,

    Generally, as yarn consists of many filaments, not a filament of the
complete circular cros$ section and the cross section of fiber is complicatecl,

it is difficuit to solve the question. Acording to Meredith's method,iO) which

regards the cross section of fiber as an approximate circle,it is easy to solve

the question in determining the cross section area, m is the mass per unit
length which is measured by the cantilever type micro-balance, p the apparent

density of the fiber, then,

          . the cross section area of fiber ==, za- ?･--
                                                   R
The diameter of fiber is determined by tlie above relation.

    The bending stiffness of yarn equals to the product of the bending
stiffness of the fiber and the number of the fibers acording to W.Tsuji's

experiniental results. As he has provecl that the theoretical vaiues of the
bending stiffness of yarns equal to their experimental values, the theoretical

values are taken in this paper. The moment of inertia of the yarn cross
section differs by the spaces between fibers ancl its error seems to come from

these spaces.

    The calculations ot S, So andy are elliptic integrals, and are not
important in this paper. The differences between S and So are very small,
and it is expected that y is near the value of the radius of curvature of bent

yarn,
(2) A single yarn is mqde of continuous filament$ which are considered to lie

on right cylindrical surfaces along circular-herical path. The cylindrica!
surfaces are coneentric and are spaced one fiber diameter apart, All fibers on

all surface are subjected to the same number of turns about the yarn axis per

unit length along that same yarn axis. Acording to S. Backer's thesisii) from

the point of view of the differential geometry, it follows that herix angles

formed by the fibers at each concentric surface will vary with the maximum
herix angle occuring at the outermost fiber, and zero herix angle at the yarn

axis. It is assumed that differences in path length of filaments at different

concentric surfaces occur in the spinning or twisting, without the presence of

fiber tension or compression. The local herix angle for a given surface is
constant for all 'fibers on that surface, and

                            tan Pr' --- 2nrT (14)



where, Pr' is the fiber herix angle on the cylindrical surface of radius r and

Tis the twist per inch of the yarn. In particular, the outer fibers of the

yarn form the herix angle P' with the yarn axis, where P+P'=:-,n12, and if D

is the yarn diameter,

                             tan P' t: rrDT (15)
   The single yarn is assumed to form a torus when bent around a fill, as
illustrated in Fig 3. The radius of the bent warp is designated as a, and the

radius of the torus as r. The torus radius, r, equals the sum of the ra(lii of

the warp (crown) and the fill (inner),

      t
      i
      I 〉(i
      I
      :
      t

"{1-
tY-'"l'ii""l'"..Nl,-,",..-.ilX' ,,.,t.n)[l`li'"ipd-'

0 "P- -' l x- ..    :sx i opt l-!-
    L/. t' x)ts L-iSil`e' y

    l

ri "-lv... I ,....c.r"x 95 ar,

Fig 3. Schematic diagram oi bent yarn.

    It ha.s been indicated in equatiolls (14) and (15) that the helix angle P,ft'

of a straight sin.gles yarn is independent upon the local radius, r, of the yarn

and upon its t.wist T. This angle, Pr', is therefore constant fora given r and

Tat every point along the yarn. However, when the yarn is assumed to be
the bent form of Fig 3. the local helix angle is no longera function of r
and T alone in a case where complete freedom of fiber or strand movement
exists.

   Then O and Pare the torus center and a point on a fiber as it twists
around the warp. Xi, X2 and X3 are mutually orthogonal axes forming the
Cartesian coordinate system. In specular, Xs is the axis of the torus i.e.,

the axis of the filling cross yarn. The circular path of the warp lies in the

pu3 .pla,ne. Ti}e in.tersection of a plane through X3, making an angle 0 with .Yi,

is indicated in Fig 3. as passing through point P. The circular intersection
of.the torus and the indicated p!ane is enlarged on the right side of Fig, 3.

I is the yarn axis at the circular section. OJ intersects the circle at ILr. JQ

in the plane of the section is perpendicular to JU. Angle 0 lies between
the Xi coordinate and the vector OJ. Angle ip lies between vector Ol and

vector fP. The ratio between0 and ip is assumed to be constant and is
designated as 2 i.e.,
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                                gl)=AO (16)
Tlxis $imply means that in proceeding along the warp axis through an angle

0 abont the torus axis, the fiber twists around its yarn axis througha
corresponding,, di, For each revolution around the torus axis (0=2rr), there

are a revolution or turns of the fiber about the warp axis.

 , The parameter r/a(=-y) varies from 1.5 to 2.5, the normal range of
cTiameter variation encountered in practical 'Eabric$. Parameter 2 is varied
from O.5 to 1.50. If F is defined as the twist multiplier,

                              T =i ITLvi?icr-L

whera T is the twist in tu'rns per inch, and IV is the yarn count. If the
spceific volume of the yarn is taken to be 1.1, so that

                          D:= 2ti == 1/KIVN-

where K clepends upon the yarn systeni used (K "" 28 for cotton, 15.4 for

woolen cut, 22.8 for worsted), then

                            2t= (r/a) rr1;7K (17)
For r/a eciual to 2 i,e., where the warp and fill are of equal diameter-------the

rEuige "R equals O.5 to 1.25" represents a range in twist multiplier from "17

eqtial$ 2.23 to 5,58" in cotton system "1,23 to3,07" for woolen cut, and "l.38

to 4L.54･" in the worsted system,

   Then h, the local cLirvature of each point on bent yarn, is determined as
following:

k=: .t-..../m.tFt.-t.H.. .m--vetma" -nvtL.. - -----...-.-.....-.-Trm mu---+za-".-...Trn.....----t--Lhm..t.ttt.....im./.n

                            a{(csae --- y)2+22} as)

   Table 1, Note on the warp and filll The results of calculations in the
          of acetatg yef.n:..". .... examples of table1 are represented in '

'Ms-

i-! (cosRe -- o):' -t-2` d-2RL'cosO(cos20-g) +422$in20 -- 22sin22e (cosO ---g) 2 /{(cosRe --- g)2+2e}

X.  hSX,

  F

ho (mm)

i;

warp

4.75

O.74

60055,

          lg 2,O i 2.5
2 1.062 l 1.338

...",:.F..mrm. show the ･warp and fill. When the
fill'' Fig･ 4 and 5, where suffix wancl f

       3,so curvature of the warp is zero at ip ==OO,

"" '"'-- Il'6Li"'-' the warR i? fla?. When the curvature

. -Hm of the fill is mmus at iptatOO, the fill
6704s' is bent to the opposite side. The warp

L5 1･ 2,O
: and fill have the maximum local

. -, .- curvature at ip==t450, and at many
o,ss4 l' o.7s4 degrees the curvatures decrease.There
     '     " . is little difference m the curvature

between the warp and fill from gb :900 to 1800. The cinrvature of each
point along the warp (crown) is also shown asafunction of g) in Fig 4and 5.

If the bending loads as the warP (crown) covers the half side of the fill
(inner), as illustrated in Fig 3, are known by the relation between the loads

and tlie raclius of curvature of the central lihe of bent yarn, the relations
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 Fig 4. The curvatures of bent warp yarn of g ='2.0 and 2,5,
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Fig 5. The curvatures of bent filling yarn of g--1.5 and 2.0.

sbF,I,eW,Xm,liilnejd?e,tlfliegeS£.g2iditsitiiegiif"e,r,,:,Ztc:,'8,sOfh,xegcCuhg,v8,/...-,.'?,et,oi?.gl-ffe2nio,Ygflsce,':wY,}/,gi

from 9=90e to l800 but there is a little difference in the curvatures at g5=450 and

va,nsg,Retus{vth,S'he.an}s･,1ie,s.t.zae,i;:,?f,.c,"J."e.tkrs,ftt,figiz,ge,gg,ez･.i,t,,ks,s,h,own

                            CONCLUSION

,..,i B,gh,`S,.P3P8,r,tg,e.a?･i,a,t'?6LS,8e,Y,)Ie2Z,gh,il,f,e,//"8,,gi,8.LII;ai.y,r2,,of.li£e.s:eag,i

,a･,Cedt,a, ,̀e,ll?･X;,i,(i,e,O,d,?,n'3,,N,,e,X,tfi,,t.h,e,i,O,C,a.i,,C,",r.vat"reofeachpointonbentyarn

   The conclusioi} which have been reached can be generalized as follows,

   (1) The ben.dn.ig lgadsi of fill is larger than that of warp, since the

warp twist muitiplier is Iarger than the fill. The coordinate of loading point
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x is about constant in any radius of curvature and there is Iittle difference

in the radius of curvature in the warp and fM.

   〈2) The calculations of S, S, and y are elliptic integrals and are not
impoytant in this paper. The difference between S and S[) is every small and

it is expected that y is near the value of the radius of curvature of bent

yarn,
   C3) When the local curvature of the warp is zero at g5t==GO, the warp is

flat, When the local curvature of the fM is minus at gb:raOQ, the till is bent to

the opposite side, The wai'p and fill have the maximum ]ocal curvature at
g･!-'M-45`) and the local curvatures at many degrees decrease. There is little

difference in the local curvature between the warp and fill from gb :90" to 180",

    (4') There is a little difference in the local curvature at gb="45Q and the
yarn' i:s bent with the smallest radius of curvature at this degree, but tbere

is little difference at the other clegrees. It is shown that both the warp and

fill have larger curvature in the case of smaller y.
    Therefore, if the bending loads as the warp (crown) coveys the hal'fi side

of the fill (inner) are lgnewn by the relation between the loads and radius of

curvature of the central line of bent ya:n, the relations between the loads

ancl the local curvature of each point in bent yarn may be deterrnined.
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