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INTRODUCTION

The deformation curve which a yarn centeral line shows in large
deformation is changed by an equivalent thin rod. Then the pitch of yarn is
varied by the direct force varying at each point of the centeral line, and so
the cross section is variable, T.Suharad has studied this problem as an elastic
rod with variable cross section and M. Mizuno® has studied the deformation
of spring coil. It is an interesting problem in applied mechanics from the
point of view of the large deformation theory, but in bending fabrics the
woven materials and conditions are large factors to solve the problem
mechanically, The relations hetween the crease of fabrics and the viscoelastic
theory were studied by K. Murakami® but in a few experiments of the woven
materials the crease of yarn is too complicated to discuss it viscoelastically.
Many questions about it have not been solved yet and so it is not unworthy
to study bent yarn on the elastic theory,

Now let us consider in this paper the small radius of curvature of a
formed yarn in bending fabrics. In this case the mutual frictions between
the fibers are negligible in order to simplify this problem. The radius of
curvature of yarn centeral line on the elastic’ theory and the local curvature
on the differential geometry are discussed mechanically in this paper.

THEOREM

The straight filament having the same pitch in a state of unloading is
deformed under the compresion force w to the direction of the initial central
line at the both ends, rotational ends. It is assumed that the deformation
curve of the central line is APOB in Fig 1. When the coordinate axes are
determined as shown in Fig.1, the tangent of the deformation curve at
the middle point of the yarn length is parallel to the loading direction and
the deformation curve is OPA. @ is the angle between the tangent at an
arbitary point Pon the deformation curve of the centeral line of the filament
and the load-direction, where z>030, and the angle at the point A is e
Therefore the orthogonal axes (¥, y) are determined as the normal and
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tangential directions at the point O.
If the position of an arbitary point P
P —— b w 18 determined in the case of Fig 1.,
' the deformation of centeral line of
the filament as well as the large
deformation of the rod can be deter-
mined when there is the deformation
curve on a plane, whatever the

P conditions of loading and holding at

@ 0 hoth ends may be.
y Now, let I, be total legth of the
© filament in unloading, ! total length
Fig 1. Schematic diagram of of the filament in loading, A, pitch
bent filament. of the filament in unloading, S the

length of OP along the deformation curve of the centeral line of the filament,
S, the equivalent length of S in unloading. E, and G young’s modulus and
modulus of rigidity of the fiber, and I moment of inertia of the fiber. J
represents the polar moment of inertia of the cross section in the simple case
of circular cross section and it is the same with the cross section of other
type, then, ‘
2U=]

And also let 7 be herix radius of the fiber and A, B, C coefficients  of
rigidity for the direct, bending and shearing forces introduced . respectively
by S. Timoshenko®

Ay = hycosp/2xr® (sinf/ EI + cos*f2GI)
By = hycosfzar (1 -+ sin®f/EI + cos*f/2GI) (a)
Cy = hocosfnr® (cos*f/EI -+ sin®f/2GI)

where f is the herix angle of the fiher and is assumed to be constant in
bending, %, one pitch length of the filament, 4, B, C coefficient of rigidity for
A,, By, Cy at point P under loading respectively, z one pitch at point P under
loading, and T,Q, M the direct force, shearing force and bending moment at
point P respectively, then,

T = — wcost, Q==wsind, M= wgi sind ds (bh)
T) Ay = (ds-dsy)/ds, = Ch—ho)lhy
Therefore,
dsjdsy = hhy =1+ T/ Ay =1 — w/ Ay cost (c)
A= Ahlhy = Ay (L — w/Ay-cosd)
B = Byh/hy = By (L — w/ Aq-cos) (d)

C =1 C()h/h() = C() (1 - W/A()'C050>

From the curvature of the deformation curve of centeral line of the filament,
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dijds = M|B + 1/C- djds W

This equation is the fundamental equation of the deformation curve and
the first term represents the bending moment and the second term the
curvature by the shearing force. When the equations (b)and (d) are introduced
into the equation (1),

dijds = wSi sinfds/By (1—w/Ay+cos®) 4 weosl/Cy (1—w/Ay-cosd)-db/ds

To solve the above equation easily, the following are put in it
s==lot, wjAy =4 Pw/B,=p
w/Cy=v, vil=r1=1w(1/4, + 1C) (e)
Then,

(1 — zcos0) dfjdee = ,.tgi sinfda 2
dida {(1 — zcost) db/da } =— using

{1 — zcosn) d/}/dcr} djda{(1 ~ zcost)) do/de J e =— 11— zcos0) sing-do

(1 — rcos?)* (db/de)? = p (2c080 — 7c0s*0+-¢) &)
Where ¢ is the integral constant and at point A4, #=«a
dbjde = (1d0}ds) = 0 H
Therefore, ,
¢ =— (208 — rcos’) = Uz~ {(1 — rcose)® — 1} @

Introducing the equation (4) into the equation (3),
(1 — zcos0)?- (dO)dad)i= pfe- {(1 — zc0sa)? — (1 — zcosd)? }
Refering the equation (e), put into as following:—

= UA +TCY]WIBY) = 1/l-a/ T~ (®

This problem is discussed in the case of <1 and may be treated by the same
method in the case of +>1, from df/de<0

da= /T 7/l-(1 — rcos) | /(T = zcosa)® — (1 — rcosbye-df  (5)
From the equation (e),
ds = ldo
If ds/df is put into R in the equation (5),

R=4/Fr(1—rcost)/ /(1 — zcosa)t — (1 — zcost)® (6)

Therefore the radius of curvature at point O, #=0,
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R= o/ For(L—r) (/@ ~ccosay = (L= )

Then the loading direction is parallel to the x—axis, a==7/2, and the theoretical
radius of curvature at point O in this case,

Re=n/Frr(l—1)/ a2z — 7% (7

If the radius of curvature equals to the diameter of the warp or fill,
the limitation of loading must be known, then

R=2r
Therefore,
o2 — i m=ma/ f(L—1) (8)
Solving the equation (8), ‘
c=4 -+ [ 2/ /U ) (9
Only the plus in the above equation can be taken by the condition =71, then
v=d 4 [+ 2 EFT /b ) 93

Next, the length of OP along the deformation curve of the centeral line
of the filament, S, the equivalent length of S under unloading, S5, and x,
y are shown:—

§= (" ds= /72 {7 = coost)/n/BCy-an (10)
So={; 1/ — scos0y ds = /{0 + w01/ G-
— v/ 1/ (1~ 0080)0/ FCO- s} (11
5 . —_— e A2 o e
£ = SO singds =,/ fr [1/"»‘] =~ F) 1, ] = N frelfee/ 9r—ct (12)

y mgz coslds =,/F rSﬂ(/)Zcosﬂ(l — tcos0)/ S F(07 +dll (139

where F(0)is 1 — (1 — zcost)?

NUMERICAL EXAMPLES

The radius of curvature of the small hent part on the warp or fill in the
plain fabrics with acetate yarn 100 deniers is calculated in this paper., The
warp is an axis in hending the {fill or the fill is an axis in bending the warp.
Then, D is diameter of the yarn, d diameter of the fiber and N varn count.

The yarn is about 53’# by the relations hetween the yarn count and the
deniers. 7' is the twist in turns per inch and F is the twist multiplier.
Then,
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T=F/N (in—1)
Therefore,
hy=25.4/T (mm)

where suffix w represents the warp and f the fill,
Acording to W. Tsuji’s® data and their calculations,

E=400kg/mm? G = 80 kg/mm?®
d=10,01mm, D=0.13mm
Bow =0, 735 mm, hoy = 1,000 mm

I = /64 = 4,91 X 10~10 mm
and

w28+ cos*BY/E - (2cos’B + sin®f)/aG ,
g x/ (0 + SintB)/E + cos*8/2G g

T = wart/hcosp {<2sin25 + cos*B)/EI + (2c0s* + sinﬂﬁ)/ZGI} e

Introducing the above data into (g’) and the equation (9),
Juw=1.436, Jr=1.459
=10, 142, 75 =20, 144
and from the relation (e’)
Tw == 5,979 X 10* X wy
7= 5,471 X 10* X wy
Since = from the equation (9) equals to = from the equation (e’) eidenticaly,
wy=2.378 X 10-3(g)
Wy = 2,632 X 10-3 (g)
If the yarn has 100 fibers and W is the bending force on the yarn,
W =2.378 X 10-1 (g)
Wr=2.632 X 10-1(g)
Generally in the case of Re=cr, where ¢ is constant,
t= A e/ F/ (A f) €l

The relation between the hending force W and the radius of curvature of the
yarn R is represented in Fig. 2 by the same mothod.

Next,

% =0.065/F * 1/t /272 Qz7)

The relation between the radius of curvature of the yarn and the x-coordinate
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of the loaing point is shown in Fig. 2 from the equation (127).
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Fig 2. The relations between the bendnig loads, the radius of curvature
and the loading point of acetate yarn.

DISCUSSION

(1) In this paper the relations between the radius of curvature for the small
bent part of the crease and the loads are determined elastically. In this case
the herix angle 8 is assumed to be constant and in case that it is variable
J. Prescott® studied with the tension of spring. However this generalized
hending theory is very complicated and so the case that it is variable will be
discussed in the later paper.

It is very interesting that the bending theory which L. Shibuya” used for the
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wave-like plate may be applied to the larger part of the bent fabrics. In fact
E. Alexander and others® assumed fibers to he spiral curve and sine curve
and measured the crimp of fibers by the tension test. Considering the spiral
model for the small part of the bent yarn and the sinsoidal model for the
bent fabrics, the relations between the bending loads and the 1ad1us of
curvature of the bent part may be discussed enough.

The materials of fabrics do not show pure elastical behaviors, but they
should behave themselves viscoelastically acording to K. Murakami’s experi-
ments, But in his paper the tensile strain is very small, a' few percent at
maximum, which W.J. Hamburger and others® have also analized likewise,
and therefore it may be safely regarded as the elastic region.

Generally, as yarn consists of many filaments, not a filament of the
complete circular cross section and the cross section of fiber is complicated,
it is difficult to solve the question. Acording to Meredith’s method, 19 which
regards the cross section of fiber as an approximate circle, it is easy to solve
the question——in determining the cross section area, m is the mass per unit
length which is measured by the cantilever type micro-balance, p the apparent
density of the fiber, then,

m
the cross section area of fiber = 3

The diameter of fiber is determined by the above relation.

The bending stiffness of yarn equals to the product of the bending
stiffness of the fiber and the number of the fibers acording to W.Tsuji’s
experimental results. As he has proved that the theoretical values of the
bending stiffness of yarns equal to their experimental values, the theoretical
values are taken in this paper. The moment of inertia of the yarn cross
section differs by the spaces between fibers and its error seems to come from
these spaces.

The calculations of S, So and -y are elliptic integrals,  and are mnot

important in this paper. The differences between S and S, are very small,
and it is expected that v is near the value of the radius of curvature of bent
yarn.
(2) A single yarn is made of continuous filaments which are considered to lie
on right cylindrical surfaces along circular-herical path. The cylindrical
surfaces are concentric and are spaced one fiber diameter apart., All fibers on
all surface are subjected to the same number of turns about the yarn axis per
unit length along that same yarn axis. Acording to S. Backer’s thesisl® from
the point of view of the differential geometry, it follows that herix angles
formed by the fibers at each concentric surface will vary with the maximum
herix angle occuring at the outermost fiber, and zero herix angle at the yarn
axis. It is assumed that differences in path length of filaments at different
concentric surfaces occur in the spinning or twisting, without the presence of
fiber tension or compression, The local herix angle for a given surface is
constant for all fibers on that surface, and

tan B/ = 2rx¢T (14)
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where, B, is the fiber herix angle on the cylindrical surface of radius # and
T is the twist per inch of the yarn. In particular, the outer fibers of the
yarn form the herix angle g’ with the yarn axis, where B+-p =xr/2, and if D
18 the yarn diameter,

tan f’ = zDT (15)

The single yarn is assumed to form a torus when hent around a fill, as
illustrated in Fig 3. The radius of the bent warp is designated as @, and the
radius of the torus as ». The torus radius, #, equals the sum of the radii of
the warp (crown) and the fill {(inner),

Fig 3. Schematic diagram of bent yarn.

It has been indicated in equations (14) and (15) that the helix angle B,/
of a straight singles yarn is independent upon the local radius, #, of the yarn
and upon its twist 7. This angle, 8+, is therefore constant for a given 7 and
T at every point along the yarn. However, when the yarn is assumed to he .
the bent form of Fig 3. the local helix angle is no longer a function of »
and T alone in a cass where complete freedom of fiber or strand movement
exists,

Then O and P are the torus center and a point on a fiber as it twists
around the warp. X, X; and X; are mutually orthogonal axes forming the
Cartesian coordinate system. In specular, X, is the axis of the torus—-i. e.,
the axis of the filling cross yarn. The circular path of the warp lies in the
X3 plane, The intersection of a plane through X;, making an angle ¢ with Ay,
is indicated in Fig 3. as passing through point P. The circular intersection
of the torus and the indicated plane is enlarged on the right side of Fig, 3.
J is the yarn axis at the circular section. OJ intersects the circle at H, J@
in the plane of the section is perpendicular to JH., Angle ¢ lies between
the X, coordinate and the vector OJ. Angle ¢ lies hetween vector OJ and
vector JP. The ratio between § and ¢ is assumed to be constant and is
designated as 2 —i.e.,
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¢ =20 (16)

This simply means that in proceeding along the warp axis through an angle
¢ about the torus axis, the fiber twists around its yarn axis through a
corresponding, ¢. For each revolution around the torus axis (#=2r), there
are 4 revolution or turns of the fiber about the warp axis.

The parameter 7/a (=g¢) varies from 1.5 to 2. 5, the normal range of
diameter variation encountered in practical fabrics. Parameter 2 is varied
from 0.5 to 1.50. If FF is defined as the twist multiplier,

T=F/N
where 7" is the twist in turns per inch, and N is the yarn count. If the
speeific volume of the yarn is taken to be 1. 1, so that
D= 2a=1/K/N~

where K depends upon the yarn system used (K =228 for cotton, 15.4 for
woolen cut, 22.8 for worsted), then

A= (r/a) nF/K amn

For r/e equal to 2—i. e., where the warp and fill are of equal diameter——the
range “2 equals 0.5 to 1.25” represents a range in twist multiplier from “F
equals 2.23 to 5.58” in cotton system “1.23 to 3.07” for woolen cut, and “1, 38
to 4.54” in the worsted system.

Then &, the local curvature of each point on bent yarn, is determined as
following:

J (cosal—g)* 424422 cosf(cosif —g) - 42%in20 — A%sin2ig (cosfi—g)* {(coslll-—g)ﬂ—{«x?}
k=
a {(CSX() — )P -l 22}

(18)

Table 1. Note on the warp and filll The results of calculations in the

of acetate yarn. examples of table 1 are represented in

w T Fige 4 and 5, where suffix w and f

T warp fill show the warp and fill. When the

F } 4.75 3.50 curvature of the warp is zero at ¢=0°,

s "‘ the warp is flat, When the curvature
ko (mm) 0.74 1. 00

of the fill is minus at ¢=0°, the fill
8 60°55 67°45’ is bent to the opposite side, The warp

‘ and fill have the maximum local

‘ i curvature at ¢=45°, and at many
2 1. 062 1.338 | 0.584 | 0,784 degrees the curvatures decrease. There

e B is little difference in the curvature
between the warp and fill from ¢==90° to 180°, The curvature of each
point along the warp (crown) is also shown as a function of ¢ in Fig 4 and 5.
If the bending loads as the warp (crown) covers the half side of the fill
(inner), as illustrated in Fig 3, are known by the relation between the loads
and the radius of curvature of the central line of bent yarn, the relations

q 2.0 | 25 | L5 20
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Fig 4. The curvatures of bent warp yarn of ¢==2.0 and 2.5.
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Fig 5. The curvatures of hent filling yarn of g=1.5 and 2.0.

between  the loads and the curvature of each point in hent yarn may be
determined. There is little difference in the curvature of g=2.0 of the warp
and fill, of g=2.0 and 2.5 of the warp and of g=1.5 and 2.0 of the fill
from ¢=90° to 180° but there is a little difference in the curvatures at ¢p=45° and
varn is bent with the smallest radius of curvature at this degree, It is shown
that both the warp and fill have larger curvatures in the case of smaller ¢,

CONCLUSION

In this paper the relations between the radius of curvature of the small
bent part and the bending loads are determined elastically in the example of
acetate yarn (100 den.) Next, the local curvature of each point on bent yarn
is determined by the differential geometry,

The conclusion which have heen reached can be generalized as follows,

(1) The bending loads of fill is larger than that of warp, since the
warp twist multiplier is larger than the fill. The coordinate of loading point
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x is about constant in any radius of curvature and there is little difference
in the radius of curvature in the warp and fill.

{(2) The calculations of S, S, and y are elliptic integrals and are not
important in this paper. The difference between S and S, is every small and
it is expected that y is near the value of the radius of curvature of bent
yarn.

(3) When the local curvature of the warp is zero at ¢=0°, the warp is
flat, When the local curvature of the fill is minus at ¢==0°, the fill is bent to
the opposite side. The warp and fill have the maximum local curvature at
¢=45° and the local curvatures at many degrees decrease. There is little
difference in the local curvature between the warp and fill from ¢=90° to 180°.

{4) There is a little difference in the local curvature at ¢=45° and the
yarn is hent with the smallest radius of curvature at this degree, but there
is little difference at the other degrees. It is shown that both the warp and
fill have larger curvature in the case of smaller g¢.

Therefore, if the bending loads as the warp (crown) covers the half side
of the fill {inner) are known by the relation between the loads and radius of
curvature of the central line of bent yarn, the relations between the loads
and the local curvature of each point in bent yarn may be determined.
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