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A molecular theory is presented in this paper which gives a method of
analysis for the mechanical properties  of the filler-reinforced elastomers,
based upon the conception of the internal deformation and the statistical
theory of the rubber-like elasticity. 2 By using a suitable model and a few
new concepts a proper analysis for such a heterogeneous system is obtained.
From the theory the internal mechanism of filler reinforcement is understood.
1t is made clear that reinforcement consists of three effects: the volume effect,
the surface effect and the cavitation effect. From the theory, formulae for
the tension, swelling tension, Young's moduli, local stress distribution, strain
birefreingence, condition for swelling equilibrium, and so on are derived.

1. INTRODUCTION

Tt has long been recognized that rubbery substances and plastic materials
are reinforced by incorporation of suitable powdery substances (: reinforced
fillers) which improve their mechanical properties such as elastic moduli,
hardness, stiffness, resiliens, solvent resistance, plastic. viscosity, -tensile
strength, tear resistance, etc.

Although numerous attempts have been made to clarify and systematize
the internal mechanism of filler reinforcement, there is at present no distinct
picture of the mechanism, much less a satisfactory theoretical treatment of
the phenomena. D ,

As factors obstructing the development of a theory for filler reinforce-
ment the following four problems might be mentioned:

(1) Lack of a useful and general method of mechanical analysis for the

heterogeneous high elastic materials in which rigid particles are dispersed.
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(2) Difficulty in describing analytically
the state of adhesion of filler to the
chain molecules of the rubber-like
substance (refered simply as “rubbery
medium” or “medium”, henceforth)
owing to the variety and complexity
of the adhesion. (3) Scanty information
and even less analytic representation
of the cavitation caused by elongation
which is observed characteristically
only in filler-reinforced vulcanized
rubber.

(4) Very little quantitative knowledge

of the effect of the dispersion state of

particles on the properties of hetero-
geneously filled systems. (The term

“particle” means a dispersion unit of

filler which is not always an ultimate

particle in filler powder but is often
an aggregation of the ultimate parti-
cles).

In order to solve those difficulties, the
following treatments are devised. About
the difficulty (1), the internal deformat-
ion which is to be distinguished from the
apparent deformation in heterogeneous
system, is defined by a suitable for-
mula. In regard to the problems (2) and
(3), a quantitative representation of the
adhesion state which consistsof the defin-
ition of two idealized adhesion states
and the mixing approximation of those is
devised. . It permits an analysis for the
states of adhesion and the cavitation wit-
hout any assumptions of the molecular
mechanism on those phenomena. As to

the problem of the dispersion structure (4), an assumption of uniform disper-
sion of the particles is adopted in this paper.

2. CONSTRUCTION OF MODEL AND ASSUMPTIONS

Suppose that M shperical rigid particles with a radius d are uniformly disp-
érsed in a vulcanized rubber-like substance whose volume is V,. The volume
ratio X of the filler to the rubbery medium and the volume fraction ¥ of the
filler will be given by X=M(4r/3)d%/V, and Y=M(4=/3)d}/V, respectively, where
V=V,+M4x/3)d® is the volume of the dispersed system. Since the particles
are uniformly dispersed in the medium, the center of each particle is located
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at the lattice point of a face-centered cubic lattice. Let us consider, schema-
tically, a spherical domain concentric to each particle with a radius D, such
as D={(3/4x)V/M )}/, and rvegard it as a representation of the dispersed
system in the sense of the one-body approximation. This spherical domain is
hereafter referred to as the “D-sphere”, and against this given name the
particle is sometimes called the “d-sphere”.
From the definitions of X, ¥, D and the others, next relations are clear
V=M4r/3\D*=V (1+X),
Y= M(dr/3)d3/ V== 38, (1
X=Mdrn/3)d3V,=Y[(1-Y),
where y stands for d/D=Y*!~
(1°) Idealized States of the Adhesion: From the microscopic view there are
various interactions between the filler and the chain molecules on the surface
of the particles. Some parts of the chain molecules around the particles are
fixed on the surface of the filler loosely or tightly according to the type of
adhesion. The term “adhesion” in this paper includes both physical attrac-
tions and chemical bonds. The actual state of adhesion is approximated by a
mixture of two idealized states: the one is the ideal state (ideal state I) in
which the medium adheres perfectly to the particles, and the other is the
ideal state of perfect non-adhesion (ideal state II) in which the medium and
the particles exhibit no interaction.

particle

d-~
D - sphere ( e)

D - gphere

r=4R
AR= 4R |

Ideal case 11 (parfect non ~ adhesion) C

Fig.3 One-body approximation in Fig.4 A network chain around point
terms of D-sphere. P within rubbery medium in D-sphere.



4 . Y. Saro and J. Furuxawa No. 35

(2°) Internal Deformation: In general the uniform external deformation a
of the homogeneous materials is a transformation matrix by which any point
P of the material with a position vector R with respect to an arbitrary origin
transforms to the point P’ with a vector R', such as

R'=aR. (2)

Namely we assume that the internal deformation in the homogeneous
materials is equivalent to the external one (ithe “requirement of proportion-
ality”). But the internal deformation in the heterogeneous materials must be
distinguished from the external or apparent one. Now the internal deformation
a, in the present theory is defined by the following formulae, with respect
to the center of D-sphere taken as the origin

R'=az R, . (3)
and
_DR-4g d D—R
“=RD=d* R D=d" “
=al__(D/R)aI!, (4I)
and a', a” imply that
a'=(a—yr)f(1—y), a"={y[(1-y}Ha—7) (4a)

where 7 represents the transformation matrix in which the points of the
inner surface of the rubbery medium facing the particles transforms to their
deformed positions according to the external deformation a. ’

Tt can make sure easily that @, satisfies the following conditions:

(i) ey =a over the D-sphere.

{ii) az =y over the d-sphere.

(iii) apb—>a as Y—>0.

In addition to the above conditions, the following condition is necessary for
the determination of ¢:

(iv)  minimizes the free energy of the system under the external defor-
mation a. ,

(As a matter of fact, the formula of ap must be determined from the
above conditions in opposition to this paper. Although more correct formula
for a, is obtained in this way, and more accurate theory is derived based on
it, they are not touched upon in this paper).

(8°) Shape and Size of the Cavity: Let us consider the external deforma-
tion & of our specimen in simple elongation with the elongation ratio ay=a
along the z-axis and the contraction ratio 8 along the x and y-axes:

500
a=(ai5fj)=( 0B0 (5)
00w/,

where §;; is' Kronecker’s delta

1, f i=j),
"""{ 0, (if i=j).
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Now consider the matrix 7 under the simple elongation. In the ideal state I,
the adhesion holds despite of any external deformation of the specimen.
While in the ideal state II, the parts of medium contacted with the filler slide
over the particle surfaces smoothly or separate themselves from the surface
freely according to the magnitude of the elongation ratio «, then the cavities
are appearing on the both sides of each particle. The shape of the surface
of the cavity is considered to resemble closely to an ellipsoid of revolution
with minor axes (¥ and y-axes), d, and a major axis (z-axis), 7d, (1<),
from the consideration of the axial symmetry. Therefore, the shape of the
cavity is assumed to be the ellipsoid of revolution above mentioned, and then
7 is an unknown function of e which is determined so as to minimize the
free energy of deformation of the specimen under a constant elongation w.
Then the deformation of the cavity  can bhe written as

100

r=(dd=| 0 1 0 (6)
007y /.

To distinguish the quantities for two ideal states I and II, suffixes I and

II will henceforth be appended to them respectively, and the quantities with
out suffix denote them in the general state, Thus we may now write

100 100
rIz(O 1 0) ro=l 0 1 0 (6"
00 1)/, 007/
or
ri=L ri=1+e, 6"
where 1 and & are defined as follows:
100 000
1=(5,~j)=( 010 e=| 0 0 0) (6a)
0 0 -Z 3 0 0 T“l .

By the comparison between ry and y, in Eq. (6"), 7 in the general state
may be represented by

T=1+Cs, (0L, (6"

where { is a parameter depending on the nature of adhesion between the
rubbery medium and the particles such as {=0 and (=1 correspond to the
respective adhesion states of the ideal cases I and IL

(4°) Mixing Approximation and It's Application: For the purpose of repre-
senting the adhesion state in the general state an approximation of mixing
is adopted, so that the general adhesion state is approximated by the one in
the mixed system comprising idealized states of perfect adhesion and perfect
non-adhesion with a mixing ratio (I—{):{, respectively, where £ denotes a
characteristic parameter corresponding to the adhesion state in guestion.
According to the mixing approximation, the volume V', the free energy
Fla) and y of the general specimen in the deformed state can be writen as
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Fig. 5 Schematic representation of change in degree of adhesion
(1-{) with respect to a (as X is fixed) or to X (as « is fixed.)
Vi=(1-QV1'+L{Vr',
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—
o =)
= =

and
7‘=(1”4)7‘I +-,Tn
=14Ze. (%)

Naturally Eq.(#) is equivalent to the presumption on y in Eq. (6'').

Moreover the surface densities of the network chain adhered on the
surface of the particles in the ideal state I, g,0%, and the general state, g,
are given as

gr=(1~8) gr M 4-Le0
= gr m(1-13), 9)

because the surface density in the ideal state II is 0. Since the mixing ratio
(I—&) plays the role of the reduction ratio from gy to g, (I—{) is called
the “degree of adhesion” hereafter. When the volume of rubbery medium V,
is kept constant, Eq.(7) becomes

¢p=1+Y(7—1), (10)
where

o=V |V=ap? (10a)

(5°) Deformation Theorem, Local Deformation: Since the requirement of
proportionality in the ordinary theory of rubber elasticity no longer holds
validity for the heterogeneous system, it must be replaced by the deforma-
tion theorem of the network chains in our system. Consider a network chain
in the D-sphere with end-to-end vector r which is connecting a junction at
the point R to the other junction at R+4R. By using the definition of internal
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deformation in Eq.(3),(4'), the deformation can he derived in the following
way':

AR' = day R)
=ap AR--{day R
=ap 4R, . (1
or’
r=apr, (12)
where

ap =ap +(D/R)a"(11),
(a"={y/(1—y)Ya—7)) (12a)

and r'=4R', r=4R, also I=R/R, and (Il)denotes a dyadic with Z;j components
lii (Appendix A cf.). As a matter of course the deformation theorem in Eq.
(12) becomes the requirement of proportionality in Eq.{(2), when the concent-
ration of the filler Y tends to 0. In the formulae (12), (12a), a,is called the
“local deformation” around the point P defined by R.

(6°) Arrangement of Main Assumptions: In the present consideration, the
filler-reinforced rubber-like substance is considered as a double network
model which is constructed hoth from the ordinary network chains in the
medium with volume density g, and from the adhered network chains over
the particle surfaces with surface density g,=g, (1—£).

It is convenient to arrange the assumptions in the theory, about here:

{(a) Spherical particles are uniformly dispersed in the rubbery medium.

(b) The movements of the center of each particle under the external
deformation accords to the requirment of proportionality.

(c) The one-body approximation in terms of D-sphere is adopted.

(d) The adhesion state is represented by the mixing approximation.

(e) The shape of the surface of cavity assumes the ellipsoid of revolution.

(f) The volume of rubbery medium is kept constant.

(g) The usual assumptions in the ordinary theory of rubber elasticity are
adopted here except the requirement of proportionality: such as

() The network chains are Gaussian.

(8 The free energy of the system consists of two parts: the part by
the sum of the entropy of individual chains and the liquid like interaction
energy Ulg) among the segments ( Ulp) is a function of ¢ only in Eq.(10),
and is related with (f) ).

3. ENERGY OF DEFORMATION OF DOUBLE NETWORK SYSTEM

The free energy of the system per unit initial volume (@) under the
external deformation may be devided into two parts: the volume energy
F{a)+ Ug) and the surface energy Frla), then

Fla)=F{a)+ Fs(a)+ Ul$). (13)

Moreover the volume energy consists from the entropy part F.a) and the
internal energy Ul$). The former is induced from the entropy of ordinary
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network chains which are spatially distributed in rubbery medium with
volume density g,. The surface energy Fia) is induced from the entropy
of adhered network chains whose ends in one side are distributed on the
particle surface with surface density g; in the ideal state I

As well known the entropy of a Gaussian chain with end-to-end vector
r and N segments of each length « is represented by

where % is Boltzmann’s constant and T is the absolute temparature. When
the external deformation proceeds through 1-»a, the above entropy should
increases in such a way

3k ‘1 3k 2 Wiy
ZN a‘“" ' i’ ‘MZYMN«(IE—'.)
= ~‘EN‘§"‘(a1: redp r), (14,)

because of r—r'=a,r according to the deformation theorem in Eq.(L2).

(1°) The Volume Energy of Deformation 4F(a): The entropy part of the
volume energy contained in a unit volume about a point P at the position R
is given by

Z IN 57 Z‘ AMS(aI, reoap ]‘)f(l‘,‘ N)d)', (15)

where the quantity f(r, N) is defined as the probability that one end of a
network chain which consists of N segments with -end-to-end - vector » will
be in the volume element dr when the other end is fixed at R, and gy is
the number of the network chains with N segments per unit volume of
rubbery medium, then

&r=2Xigx. (16)

Therefore, F(a) can be obtained by the integration of the entropy in Eq.{15)
taken with respect to the medium of all D-sphere such as (Appendix B cf.)

F{a)=(M/V) | (Tgn (3kT/(2Ne*) (@ r+apfir, N)drddR (17)

={MG/(2V)}STr (Grar R

(D)
..... RS Y S S A 2 7 3’ 17t
£(1+ y Maa—2- 1 iy Tor+ 331 l* )Ivr}: {17
where G=g.kT, j --------- dR denotes the volume integral taken with respect to
)

the rubbery medium in each D-sphere, a denotes the transpose matrix of a,
and lap denotes
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Isp="Tr. (AB)=§/3Aka;k (18)
LR
for arbitrary matrices A and B, then
Iaa=2(¥;2=2,82+a2,
1
]'11’:2“;'7'1’:2.8—!"“7‘81
i
17r=§;|7”i2=3+7'a»
L=Tr. 1=3,

(18")

Hence the energy of deformation 4F a) is defined as the increase in F.la)
through the process of deformation 1-»a, such as

AFr(a)—:Fr(a)—F:(l)

When ;=1 and yy=r are substituted in ry in Ea.(17), we obtain
A=t Ve Iy — 2P (Ta—1, ¢
AF,[(a) 2{(1+ 1_—y )(]aa II) 2 1—y (Irz [1) (1\). l)
and

AF o) =G (1 W aa— T =2~ Leam )

+yr I+ l'zj:y ) Iprr—1I1)} (19. 2)
Using the mixing approximation, the relations ler=I«+ Iy and Ilp=(*—1)

F,a) in the general state can be written as follows:
AF (@)=(1—-C) 4F,1(a)+{4F x(a)
=G NIy 2 ~
-—2{(1—{— iy ) Taa —Iy) = 2—{la — 1)

—2- L aly— D+ P -IEY (19)
I—y 1—y )

(2°) The Surface Energy of Deformation 4Fr(a) : Similarly the surface
energy per unit initial volume of the system in the deformed state Fr(e) can
be calculated by almost the same way as in F.{a) except Fryla)=0, because
there are not any adhered chains over the surface of all particles in the ideal
state II: grp=0.

In this case the local deformation ap in the ideal state I is reduced to
the next form according to Eq.(12a)

Car 315:(11 =1+(@— (L)1) (20)

The surface energy per unit area on the surface of the particles is given
by

3kT ' ;
Sl ptm 2 o - . p
G ng’ 5Nz SEapr ap r];e=1df(r, Nydr, (21)

hence Fri(a) is given as the surface integral of above entropy over each
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surface S of all particles in the system: (Appendix cf.)

Fyila)= (M1 V){ (g 0L kT /(2Na} {Cap reaprdies Sir, N)AFIAS

(22)
M47¢d (nﬂ 1 1
- ZV kT {311+ y(I II) ( ”“') (Iaa Zfa"}“]l)}
g mpT y ] - o
=g oy e 2L (8y 4y + 21, (22/)

where g,y denotes the surface density of the adhered network chains with
N segments in the ideal state I, and hence gy =g, M, As hefore
N

AF, (@)= 8100k 3’ ...... {aa— )= 25— I,)} (23)

is obtained. From the fact 4F fn(a)zo, we get
AF ((a)=(1—{)AF; 1(a)+LdF; nla)

=G (W.M)z{ (Lua— )= 23Tu— L)}, (24')
here ) ’
G' =g/ "(1-L)kT/d (24a)

is a surface modulus which is converted into the volume modulus equivalent
to G=g,kT.

(3°) The Free Energy of Deformation 4F(a) : When 4F.(e) in Eq.(19) and
AdFy (@) in Eq. (24") are substituted in Eaq. (13), the free energy of deformation
of the system 4F{(a) can be derived as follows;

dF(@)=(1/2}{ Adllaa—I,)— ZBc(la—I))

= 2Celatr—1{+ DLy — 1) 3 AU($), (25)
where
Ae=G{1+y*(1—3)+Ey*[(1—yf},
Be=G{y*(1—y)+ Ky /[(1-3)}, (25a)
Ce=Gy*(1— ),
De=Gy{1+y* (1)},
and
K=K,(1-0),
K,=g;m /(g d). (25b)

It is a notable fact that the deformed state of the system cannot be
determined only by 4F(e), but also by the following condition on the volume:
of the system as shown in a Eg. (10} ;

p=1+Y(r—1J, (10)
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especially
pr=1-¥(y—1) (10a)

(4°) Stability of Deformation and Determination of Cavity: The size of cavity
is represented in term of y or ¢y which is determined by the stability
condition of the deformation in the ideal state II

The determination equation of ¢y is obtained by the minimization of
4F1(a) under the incidental condition in Eqg. (10a).

Under the simple elongation ay=wy=p, ay=«a, dFy(a) which is given by
taking {=1 in Eq.(25) and the incidental condition are written in these
forms, ‘

AFy(ey=AdF, (o)
=(1/2){ A\e*+ 2B 1P~ 3)— 2B, (a+ 2B —3)

—2C,ay— 1)+ D\(y*— 1)}+ 4Ul¢) (26)
and
pu=ap?y=I1+Y(y—1). (26a)
The condition for the stability as a being kept constant is given by
adFy N - 04 Fy _

o4 =0, o4 =0 27
( il )a,r ( ay )“ B @)

and it is written in the following formula:
Aifu—By _ afu o7/
Cla—Dlr Y’ (&7)

or using Eq.(25a) and Eq.(26a), it becomes

= Y{I=9+3) & W —3°=0. (277)
From Eq. (27") the next formula is derived

07y I Y=98), 5 I4+y—29"
bl = =T Iy Ty

and it is to be used in next section.

4. TENSION AND YOUNG'S MODULUS

(1°) Tension: In the simple elongation a;=a;=p, wy=c«, the internal
pressure p=—(34U/aV") is determined by the fact

6y=04F |00ty =( or oo=04F[bay=10.
Using this relation and Eq. (25), the tension o3=¢ hecomes
a =(04F[0x)s
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Kow= 5. 65
10} {(1~¢)=0.52

G = Zkg/em?

(MgCOs-NR)

@ ! Experiment
— : Theory

i 2 3
1
(e~

" Fig.6 An example for relation of tension wversus elongation
in filled rubber vulcanizates®). Theoretical curves are
calculated from Eq. (28’).

= Acla—pja®)— Be(1—fa®)—(Ce/Y Yp— 1), (28)
or using Eq. (25a)

o=G({ 1+ 3{ ..... + Kt ¥ (e ,_54_)

_ __}’_?n-w. S AR R T N At B nar
25+ K=y %) CIEDE

The tension ¢ in Eq.(28") is divided into three parts: the volume effect
which contains the volume concentration function ¥?/(1—y), the surface effect
which contains the surface concentration function ¥8/(I—%)* and the factor K,
and the cavitation effect (¢— I)/{y(I—»)} which is the product of the volume
function y2/(I—3) and the size of the cavity (y—I}=(p—1)/¥®. When » tends
to 0 in Eq. (28", o agrees with

o=Gle—1/a?)

in usual theory.

As one of the example the comparison bhetween the theoretical tension
and the experimental one® is shown in Fig.6.

(2°) Initial Young’s Modulus: To obtain Young’s modulus E at a=100%,
differentiating ¢ in Eq.(28') with respect to ¢, E can be calculated as follows:

2
E = (Néiﬂ‘)a.—l
=3(A¢—Be/2{1—¢'(1)[3}—(Ce/ Y )p'(1),
or using the Eq.(25a) and ¢/(1)={¢1'(1) in Eq. (10)
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E/E,

o Ay
7 volume effect
1y

Pl 1_—~y) (1-¢§)

"1% surface effect

A=W
K 1-p* (1-¢b)

X

RS T

Pig.7 Three effects and reinforcing tendency
in Young’s modulus.

E=E {1 +~§~79_-)~i§—}(1—¢§) veesennnee(volume effect)
+ K—%%;%é_zl(l—gb&) RIITILIEEEY (surface effect)
S T SOV itati ,
Toy T j’ (cavitation effect)
(29),
where '
¢=¢xu'(1)/3
AP b o e ,
i I S (292)
and E, is the initial Young’s modulus in the ordinary theory;'
E,=3G.

It is clear that E tends to E, in the ordinary theory as » tends
to 0.
As shown in Eq.(29), E is also divided into three effect, and they are
shown in Fig. 7 schematically.

The theoretical view of the reinforcement in Young’s modulus £ with
respect to several valus for K, and (I—{) is shown in Fig. 8 There are
various types of the reinforcing curves which range from the linear property to:
the curved one corresponding to our experience. As examples of the linear
property and curved one, the measured curves for precipitated calcium
carbonate filled natural rubber vulcanizate and sillica filled one are shown im
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Fig.9 a An example of linear reinforcing

property in modulus. 6 Theoretical
curves are calculated from Eq.(29)
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Fig.9 b An example of curved rein-

forcing property in modulus,
Theoretical curves are calculated
from Eq.(29)
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Fig. 9, a and b, respectively.®

5. THREE EFFECTS AND INTERNAL MECHANISM OF
FILLER REINFORCEMENT

Each quantity in the theory are divided into three parts which are the
volume effect, the surface effect and the cavitation effect, as seen in ¢ and
E. In general the volume effect has the volume modulus G=g.kT and a
concentration fnuction »*/(I~—y), and the surface effect has the surface
modulus G'=gykT/d (converted volume one) and a concentration function
YI—yR

The concentration dependencies of fi-

15 ller reinforcement in the theory are det-
ermined through the volume concentration

function ¥¥/(1—y) due to the spatial distri-

bution of the ordinary network chains

Surface function within rubbery medium and the surface
y—%:—”)/ﬁ)— concentration function »¥/(I—yP due to
the surface distribution of the adhered

one over the particles. Although the cav-

itation effect is influenced also through

PO the volume function y¥(I1—y), it’s reason

e is understood that the cavitation effect
4‘3\"6\«%%/ due to the spatial distribution of the

i network chains in the cavity with volume
density 0.

The volume concentration function
Y¥(I—y) increases almost linearly with
‘ ) filler concentration X in the wide range

0 1 2 3 X of 0<X<9, (it is easily verified that
Fig. 10 Volume concentration Y[I=y)==3X for 0<X<9), while the
function and surface concen- surface one y*/(1— y)? increases very rapidly

tration function in Young’s with increasing X, as shown in Fig. 10.

modulus, Hence the linear property of the volume

effect is clearer at the lower range of X,

and the curved property of the surface
effect. comes to have relative merit at the higher range of X. The curveture
in the reinforcing curves increases or decreases in response to the magnitude
of K=g,/(gd), (g;=g,™(1—{)) which is a ratio of the surface density g/d
(coverted volume one) to the volume density g. of the network chains.
Therefore K plays a role of an amplibication factor of the surface effect
which is relative to the volume effect.

It may be clear from the above consideration that the reinforcing heha-
viour of the every filler (not only the inert filler but also the active filler)
can be understood in the whole aspect.

For example, let us see again the theoretical view of the reinforcing
curves of ‘E in Fig. 8. ‘

10
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6. SWELLING ELASTICITY AND CONDITION FOR
SWELLING EQUILIBRIUM

In the swelling of the filler-reinforced heterogeneous specimen, the
distinction between the internal swelling and the apparent (external) swelling
is necessary. It is impossible to distinguish without having a theory based
upon the heterogeneous character of the filled specimen,

(1°) The Tension and Young’s Modulus in Swollen State: Let us consider
the swollen deformed filled specimen in the equilibrium state with apparent
deformation &' due to the solvent absorbed and the force externally applied.

Let us assume that the volumes of rubbery medium and solvent in the
swollen deformed gel are additive. The volume of the specimen in the general
adhesion state becomes

V' = Vit M{d/3)d% s+t V), (30)

where # is the number of moles of solvent with molar volume Vi in the swollen
medium and s denotes { in the swollen state. If the volume fraction of chain
molecules within the swollen medium denotes vy, the internal swelling ratio
is given by I1jug:

For simplicity the process from the natural state to the above state is
divided into the next two stages:

(i) Isotropic swelling process from the natural state to the state of external
swelling ratio ¢3:

11— a,=ql,
where the suffix s denotes the swollen quantities in general.
(if) Deformation process without a volume change in the swollen medium
a—ra’ =aa,=qa,

where a is deformation due to the external applied forces.

In the first stage, the initial volume of specimen V=M(4n/3)D® is expa-
nded to Vi=g*V=M(4x/3)D'3, where D'=¢D. Then the concentration which
sways the properties of the swollen specimen is not y, but y' defined as
d/D', and

y'=d|D'=(d|D\D|D")
=y[q (). (31"
Therefore the deformation theorem of the network chains in the swollen
double—network system is obtained thus
rlzap(yl)r:

where ay{y') is the local deformation in which y in Eq.(4) is replaced by #'.

The entropy part of deformation energy of the swollen system 4 Fda')
under the simple elongation is obtained in such a way, when the quantities «,
£ and y in Eq.(25) are substituted by &', ¢ and »' respectively, that
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AFe(a’)z(1/2){14(‘/(05/2"‘2‘812’—3)—23;"(“, +28' —3)
—~2C¢ ! (y~ I+ D' (r2— 1)CsY, (82
where

Ac'=A4'(yl), B¢’=B¢(y’), etc.
in Eq.(25a).

The changes of free energy 4F, and 4F, in the processes 1—>a; and a,
—>a' are calculated in the following ways,

(i) 1—>a, : (taking account of non~cavitation: y=1]):
AR\ =CAFAy', @)~ AF {, 1))y
=(3/2{Ac'(¢*— 1)~ 2B (g—1)}. (33)
(i) as—>a'=aqa, : (take care that «' =qa, f'=qp in Eq.(32)
dFy=AF(y', @')—dF,
=(1/2)[A¢’{q2(a2+2‘82)—~3}—2B’¢{q(a-}-2ﬁ)—-3}
—2C¢' qaly— 1)Cs+ De' (2~ 1)s])
—(1/2){Ac'(3¢%— 3)—2B,'(3g—3)}
=(1/2){q* Ac'(0*+ 28°— 8)— 2 B¢ (a+ 28— 3)
—24Cc'afy— Dot De' (72— 1), (34)

Then the change of free energy 4F{«) per unit swollen volume in the whole:
process can be written thus,

AF=(V/V)AFy=q-34F,
=(q7%/2) {qAc (02 + 22— 3)— 2B, (a+28—3)

—2C¢'aly— I){e+q™* D¢ (1>~ 1L, } + AU,), (35)
where ¢, is the volume condition corresponding to the process (ii) defined as
P =V|Vi=ap?
\ =1+ Y7~ IV | (36)

From the above equations the tension ¢s and Young’s modulus Es in the:
swollen state are obtained in a similar way as in ¢ and E;

=g y* y'® _%s
Us—Gq E(]{l-l‘ l_y, +K=(1___y1)2} (a a,2)

yE o I g Bey_ ps—1
R Uy =8t e

as’ y(1
and ,
o -3 y'E Y
B 300 Ul o+ Koy Yo
._..:Z_ __l,_z._ s.._L —_ .—.._.W_(f_bjgik; 38),

where
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Ke=Ky1-0),  (Ko=g,((g,d))

and

(—g gy (1— y+y’2)+3 38
9= 3{q‘1 2+ 4gy I~y -+ y' — (382)

As a matter of course if the concentration y=y'q tends to 0, ¢s and Ex
become ¢ and E respectively in the ordinary theory;

os—r5=Gvat ¥—1fe?), (as y—>0 )

and
E—3E=Ew, (as y—>0).
(CaCoy-NR) & (CaCOy-NR) , & 6}7?‘
(Unswelling sample) A (Swallen sample) N .\r{/‘//\,."
10 10K
£ -8
£ &
o ¢
st sf .
'- ‘ Ko=4. 45 /
5 CL-h= 045 » (- g',)-«-UJ
G =2 43 kg/lom® . Gyt G2 kgl o’
& Experiment A e Faperiment (47182, G2 43%g/ )
memene L Theory —— ; Theory
Iy i} —1 - L 1 N L 3 A O 2
0 1 P 3 0 1 z | 3 ¥
(a—dp) tam)

. . 3
Fig.11 Comparison between tension ¢ and swelling tension o
Theoretical curves are calculated from Egs.(28') and (37)
respectively.

The comparison between the theory and the experiment® is shown in
Fig. 11 for ¢ and o over a wider range (0<X<0.5) than one in Fig.6. For
the specimens of higher concentration X=0.4, 0.5, the experimental curves
lie far under the theoretical ones. It can be understood that the treatment
of (I—{)=constant {Fig.5 cf.) adopting here becomes unsuitable at such a
high concentration range, because of the excess of local deformation. The
theoretical view of the swelling efféct on Young's modulus E is shown in
Fig. 12, '

{2°) The Equilibrium Condition in Free Swelling : Let the specimen be imm-
ersed in the solvent, and it is invaded by the liguid molecules until the initial
volume V increases to the equilibrium one Vi=¢*V without an external force
apphed in the isothermal process.
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K= 0.1 | K= 5 K10
b
0 0.0% DUE 612 018 .04 008 012 0.18 .04 0.08 0.1% 016
X ' X
e E/E, mmmmee E/Ea

Fig.12 Comparison between initial Young's modulus I in
unswelling state and £ in swollen state. (calculated
from Eqs.(29) and (38))

From the equations (30) and (33), the swelling ratio ¢® and the energy of
deformation 4F. of the system in this case can be written as follows,

@=1+mV,/V, (39)
and ,

dFe=(3[2)V{Ac'(¢*— 1)—2B¢'(¢— 1)}. (33")
Using these equations, we get

dd4F. _ 84F. g

ony - oq ony
=V Adq—B"). (40)

As well known the invasion of the liquid molecules into the rubbery medium
owes to the decreasing nature in the free energy of mixing 4Fw, while the
invasion of the liquid brings about the increase of the elastic energy 4F.
stored in extending double network system due to swelling. The condition
for equilibrium with respect to the invasion of liquid is that, for a small
variation d#; moles of the liquid content, the decrease (04Fmjon)dn,; in AFm
is canceled with the increament (84Fe/on,)dn; in 4F. . In other words the free
energy of the system dF=4Fun+4F. is minimized with respect to #;:
04dF _ 8dFwm ,; 84F.

Bnl' - an[ + anl =0' . (41)
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11} gyt 0 -
| L AXI0%(1 ) (CaCOyNR)

(m)

d BET e 1 4 X 1080( 1 /om3)

(in benzene)

<o

Clp,
¢ t,‘””. y
5

A=) 0 07

E=te/{e—1/a?)}a
S N ®
g
{ apparent degree of swelling)

]
B

¢ [ixperiment
4 — ¢ Theory

O Exporiment ([~ f,

=024
—  Theory

0 0.04 0,08 P OS] 0 004 0.08 Xa.'iz ST

Fig.13 An example of reinforcement in unswelling Young's modulus
and resistance to swelling in benzene,® Theoretical curves are
calculated from Eqs.(28') and (43)

Using Eq.(40) and the Flory-Huggins expression for 84F./an, such that

_,Qfl_fﬂ.—«RT{log (1— )+ vy wg?), (42)

the equilibrium condition 1in Eq. (41) becomes

log (I—vo) +vg+ py? - BT Z—q {1+ ;7 § y:a

+Reg Lo 2} Koy 2}3 0, (43

where p is the Huggins coefficient.

As an example, the modulus E'={o/(@—1/0%}e=2 in the unswollen state
and swelling ratio ¢* are compared with those calculated from Eg. (28°) and
Eq. (43) as shown in Fig.13. The same specimens are used in hoth experime-
nts. ®

CONSIDERATION OF GENERALIZED SURFACE ENERGY AND
SURFACE LAYER

(1°) The Theory Taking Account of the Surface Energies besides 4Fy:
When the surface of the cavity is extending, several kinds of surface energies
induced by the various molecular mechanisms in addition to 4Fy, may
appear, if we consider in detail.

Although such energies cannot be estimated similarly as the energy of the
external surface in the ordinary theory of rubber elasticity, the phenomen-
ological treatment of the surface energies of cavity is not always difficult
in the present theory.

In general, the surface energy of any kind is proportional to the surface
area in question and the every surface force is a function of that area.

In the present theory the total surface area of the cavity S(y) under the
external deformation a is written as
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StY=M2rd?*{ 1+(y /YI=1]/® sin~WI—1/ } (44)

then the resultant surface force I'(y) based on the various energies is a function
of y. Therefore, the work H{y) done during the extension of the surface
from S(I) to S(y) becomes

Hy) = rgyast), | (45)

and it must be added to the 4F(a) in Eq.(25). Let 4F*(a) be the energy of
deformation of the system in this case and it is given by

AF¥@)=A4F +Hiy)
=(1/2} Aclo®+ 20— 3)— 2Bcla+28—3)
—2Ccy— 1)+ De(y— D3 AUlg)+ H(y). (46)

From this 4F*a) and the condition on the volume in Eq. (10) the tension o*
in this case is obtained in the same way as before,

* yZ y3 _ ¢
o* = G{1 +‘“""~_"_7-+ K(ij_ “y)g}( o — 2 )

Although o* does not differ from the previous tension ¢ in Eq. (28)
formally, but the determinate equation for y namely

Apn—Be ___afy
G TV o

differs from the previous one in Eq.(27') only a term 0H/dr.

(2°) On the Surface Layer Coverling the Particles: The state and the
structure of the boundary of filler to rubbery medium is not clear at present.
‘However, many investigators believe that there are perhaps some degenerated
layers consisting of rubber vulcanizates around the surface of the filler with
finite thickness.

Such a layer surrounding a dispersed particle may be described in terms
of some simplifing picture, e.g., the following picture is considered : the
overcuring layer enclosing each d-sphere with the thickness 4 and the
volume density g,(R) around the position R. Perhaps g(R) may be a decreasing
continuous function at d<R<d--4, having a limiting value of 11e.in}i ‘§,(R)=g,.

In this case, the analysis requires increases in the number of observables,
e.g., not only g(R) but also § appears as additional parameter in this picture.

At least if one of those informations is inacurrate, the theory based
upon such a model falls into a mere speculation because of the excess in
parameters. Actually the thickness of the boundary layer may not be defined
without the precise data.

Such being the case, let us avoid the detailed discussion concerned with
the structure and the state of the boundary layer at present.
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Neverthless, if the dispersion structure within the specimen in quesion
is suitable to a picture with 4 and g(R) above mentioned, the present theory
may remain valid, more or less, according to the actural state, by using of
the converted surface density:

gr=7{"" Gl RIFUR, (49)

where d' is a suitable parameter having some value in the range d<ld'<d+é.
But the ahove method is not so desirable.

APPENDIX

A. Deformation Theorem of Network Chains: The definition of the internal
deformation in Eq.(3) is written again

R'=a, R, (Al)
where

a, =a'—(D/Ra" (A2
and

a'=(a—ya)fI~-y), a"={y/1—-y)Ha—7) (A3)

Taking the increment 4R in R about the point P, the equation (Al)
becomes
AR'=dapR)

=ag (dR)+(daz )R
=a, (AR} {d(ay)/dR}IIRR
=ay (4R)+{(D/RY)a"(dRR). (Ad)
As seen in Fig. 4, the following relations are clear
R=Rl, 4R=A4R.l.

According to the above relations the i-component JRX: of a factor JRR in
Eq. (A4) can be written as the following form

3
AdRX, —-—_(}_,";AX iliR)
=

=R 3 {lil;)d X,

J=1
or in the vector form
ARR=R(I1)4R. (AbB)

Then the factor 4RR in Eq.(A4) is replaced by this relation, the local
deformation apand the deformation theorem are so obtained that
4R'=ay AR+ (D/R)a''(11)4R
={ar +(D/R)a''(11)}4R,
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e
d- sphty’.:'g_/

@

y

.

Fig. 14 Illustration of spherical coor-
dinate systems (R, @, ®) and
(r, 0, p)

r'=anr, (A8)
where ' =4R', r=4R and
ap =ap +(D/Ra''(Il). (A7)

B. On the Calculation of Volume
Energy: Now consider the spherical
coordinate system of two kinds (R, O,
) and (7, 8, ¢} in a D-sphere as illustr-
ated in Fig. 14. It is to be noticed that
2'-axis is taken in the same direction
of elongation axis, and the origin P
(defined as a vector R) of the coordinate
system (7, 4, ¢) moves within the whole
rubbery medium in the D-sphere as
the integration in Eq.(17) is taken in
the D-sphere. ;

The each volume elements around

Rand r in those coordinate systems
can*be written,

dR=RinOdOdd ' (B1)
and
dr=r%sin6dfdo. (B2)

Remember the definition of the probability f(r, N)dr in the section 8 and
since the network chains in the system are Gaussian and have the isotropic
distribution with respect to r, f(r, N)dr can be written such that

JSir, Nydr= fawy7)risinfdrdidy, (B3)

where
wa(r)={3/(2xNa?)¥¥/2exp{ — 37%/(2Na?)}, (B4)
Sw=gv/8gr (Eq.(16) cf.). (B5)

The next relation is necessary in our calculation;
S(apr-apr) f(r, Nydr
= Tr. (apap) g P flr, N)dr=(Na¥/3)fyTr. (apay). (B6)

To prove this relation, let &k be the direction cosine of r, the next calculation
is performed such that

S(apr-apr) fr N)drzS Tr. (ap a )rr) f(r, N)dr

=Tr. (ap ap) S (rr)f(r, N)dr
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=5

=Tr. (@pan) fol S Paon(r)dridr} {(1/4z)

0

(Ick) sinfdide’}

S ¥
P

= fN(Naz/B)Tr. (aPaJ-')y

but the well known relation

oo

S (Pl dardr = Na® (B7)
Q

and the relation

i 2r n
= S S (kk) sinddodg
o0
¥ 2 / SN0 cos®p sin®) sing cosp sind cosl cose
= ;1»_-7;8 sin 0do S ( sin®) cose sing sin®’ sin%p sind cost sing | dp
0 sinf cosf cosp sind cosd sing costt
L 7 sin20 0 0
=7 ( 0 7 sin?f 0 ) sin 6do
0 0 0 2z cos™
; 10 0
= 3( 0 10 ) (B8)
0 0 1

are used in the above calculation.
In this connection, the following relation is equivalent to Eq. (B8)

S (11)dQ=(dx/3)1, | (BY)

where d@ is the solid angle such as d@2=sin &dOdo,

By using of the equations (B6), (A7), (A2), (A3), and (BY), now the entropy
part of the volume energy F«(a) of the system per unit initial volume in Eq.
(17) can be calculated in the following way,

Frla)=(M|V) | &dRS{SKT/2Na| Tr. (aparrrifir, Nydr

=M/ Vg, 5 T (apay) dR[ gﬁ\-{skT/(zNaS)}(Naﬂ/g)]

={Mg.ET/2V)} S Tr. (@pardR
D

={MG/2V}} Tr. S R*dR S[a’a’+2(D/R){a'a'(ll)-a'a"}
d

HDYRY(I)a' &' (1)~ 20 & (L L)+ a' ' )0
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D
={MG [(2V)}{4=/3)Tx. S R 3a"*—4(D/R)a'a' + 2D} R¥)a'"*}d R
d

={ Md4nD¥(2V)}G/2)Tr. {(I—y¥a"*— 21—y a'a' +2(1— Ya''?}
={G/2(1—NHI—y+ Y ea— 2 ar+ 91—y + 5" I}, (BIO)
but the relations V=M4n/3)D*, G=gkT and d/D=y are used in the midst
of the above calculation. ‘
Taking y=1 or r=yr in Eq.(B10), 4F,1(a) or AF,x(a) is obtained at once.
C. On the Calculation of Surface Energy: Similarly the surface energy Fri(a)
of the system per unit initial volume in the ideal state I is calculated.
(Remember that 4Fru(aj=0). Taking r=1 and using d/D=y in Eq.(A7), the
local deformation at the surface of d-sphere in the ideal state I is reduced
such that

taP]r=1 =1y~ la'(11). (C1)
R=d
Using the equations (B6), (C1) and (A3)and an abridgement { J=[ap ap%7;=dl )
Fyr(a) can be calculated as

Frila) = (1) | dSSH3kT/2Na} | Tr.C Jrvlgy e, N)dr

=(M]V)(g, ET/2) S &duTr.C )

—{Mdzg, "ET/(2V)}Tr. S (14-29-1a"(I1)+ y~2a' @' (11))d82
—{Mdndy V' Ygr O RT[2Y1/3)Tr. (3L+2y~1a + 57470/ "%

__ &pmpT _ 1 p_op
=. 5 y3{311+ (Ia 11)+(1_y)2(faa Z]a Il)}
(C2)

It is notable thaf the specific surface area of the filler per unit volume
of the specimen M4nd?*V=s appeares at the midst of Eq.(C2), and it is so
rewritten that

s=Md4rd?/V
=(3/d)y", (C3)
because of V=Mdr/3)D% According to Eq.(C2), the surface effect in the

filler reinforcement is proportional to the specific ares s or inversely propor-
tional to the mean diameter d under the constant concentration.

2
1—y
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