ON A CONFORMAL KILLING VECTOR FIELD IN A COMPACT ALMOST KÄHLERIAN MANIFOLD

Kazuhiko Takano and Jae-Bok Jun

Abstract

In this paper, we will prove that in a compact almost Kählerian manifold M^{n}, any conformal Killing vector field is Killing if $n \geq 4$.

1. Introduction

Let M be an n-dimensional Riemannian manifold. We denote respectively by $g_{i j}$ and ∇_{j} the metric and the covariant derivative in terms of local coordinates $\left\{x^{i}\right\}$, where Latin indices run over the range $\{1,2, \cdots, n\}$. A conformal Killing vector field u^{i} in M is given by

$$
\begin{equation*}
\nabla_{k} u_{j}+\nabla_{j} u_{k}=2 \rho g_{k j}, \tag{1.1}
\end{equation*}
$$

where $u_{i}=g_{i r} u^{r}$ and ρ is a scalar function, called the associated scalar of u^{i}. If ρ vanishes identically, then the vector field is called Killing.

Also, a conformal Killing vector field is Killing in a compact Kählerian manifold [3]. In a Sasakian manifold, any conformal Killing vector field is uniquely decomposed into the summation of Killing and closed conformal Killing [2].

In [1], Y. Ogawa has studied differential operators in a almost Kählerian manifold. Using of the operators of the almost Kählerian manifold, we prove the following theorem:

Theorem. In a compact almost Kählerian manifold M^{n}, any conformal Killing vector field ($n \geq 4$) is Killing.

Received December 20, 2002.
2000 Mathematics Subject Classification: 53C55, 57R25.
Key words and phrases: almost Kählerian manifold, conformal Killing vector field.
The second author was partially supported by KMU 2004.

2. Preliminaries

We represent tensors by their components with respect to the natural basis and use the summation convention. For a differential p-form

$$
u=\frac{1}{p!} u_{i_{1} \cdots i_{p}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}
$$

with skew symmetric coefficients $u_{i_{1} \cdots i_{p}}$, the coefficients of its exterior differential $d u$ and the exterior codifferential δu are given by

$$
(d u)_{i_{1} \cdots i_{p+1}}=\sum_{a=1}^{p+1}(-1)^{a+1} \nabla_{i_{a}} u_{i_{1} \cdots \hat{i_{a} \cdots i_{p+1}}} \text { and }(\delta u)_{i_{2} \cdots i_{p}}=-\nabla^{h} u_{h i_{2} \cdots i_{p}}
$$

where $\nabla^{h}=g^{h j} \nabla_{j}$ and $\widehat{i_{a}}$ means i_{a} to be deleted.
We consider an almost Hermitian manifold $M^{n}(n=2 m)$ with positive definite metric $g_{j i}$ and almost complex structure $\phi_{j}{ }^{i}$. We put $\phi_{j i}=\phi_{j}^{r} g_{r i}$. An almost Hermitian manifold is called almost Kählerian if the 2 -form $\phi_{j i}$ is closed. We want to recall some operators for differential forms in the almost Kählerian manifold. Denote by \mathcal{F}^{p} the set of all p-forms. The operators $\Gamma, \gamma: \mathcal{F}^{p} \rightarrow \mathcal{F}^{p+1}, C, c, \vartheta: \mathcal{F}^{p} \rightarrow \mathcal{F}^{p-1}$ and $\Phi: \mathcal{F}^{p} \rightarrow \mathcal{F}^{p}$ are defined respectively by

$$
\begin{gathered}
(\Gamma u)_{i_{0} \cdots i_{p}}=\sum_{a=0}^{p}(-1)^{a} \phi_{i_{a}}{ }^{r} \nabla_{r} u_{i_{0} \cdots \hat{i}_{a} \cdots i_{p}}, \\
(\gamma u)_{i_{0} \cdots i_{p}}=\sum_{a \neq b}(-1)^{a} \nabla_{i_{a}} \phi_{i_{b}}{ }^{r} \cdot u_{i_{0} \cdots \widehat{i_{a} \cdots r \cdots i_{p}}}, \\
(C u)_{i_{2} \cdots i_{p}}=\phi^{r s} \nabla_{r} u_{s i_{2} \cdots i_{p}},(c u)_{i_{2} \cdots i_{p}}=\sum_{a=2}^{p} \nabla^{r} \phi_{i_{a}}^{s} \cdot u_{r i_{2} \cdots s \cdots i_{p}}, \\
(\vartheta u)_{i_{2} \cdots i_{p}}=\sum_{a=2}^{p} \phi_{i_{a}}{ }^{r} \nabla^{s} \phi_{r}{ }^{t} \cdot u_{t i_{2} \cdots s \cdots i_{p}}, \\
(\Phi u)_{i_{1} \cdots i_{p}}=\sum_{a=1}^{p} \phi_{i_{a}}{ }^{r} u_{i_{1} \cdots r \cdots i_{p}}
\end{gathered}
$$

for any p-form u, where we put $\phi^{j i}=g^{r j} \phi_{r}{ }^{i}$. For any 0 -form u_{0} and 1form u_{1}, we define $\gamma u_{0}=C u_{0}=c u_{0}=\vartheta u_{0}=\Phi u_{0}=0$ and $c u_{1}=\vartheta u_{1}=$ 0 . In the almost Kählerian manifold, we know $* \Gamma *=-C, * \gamma *=-c$ and $* \Phi *=(-1)^{p} \Phi$ for any p-form, where $*$ means the dual mapping [1].

We denote by L (resp. Λ) the exterior (resp. interior) product with the associated 2-form ϕ, then the operators $L: \mathcal{F}^{p} \rightarrow \mathcal{F}^{p+2}$ and Λ :
$\mathcal{F}^{p} \rightarrow \mathcal{F}^{p-2}$ are written by $L u=\phi \wedge u$ and $\Lambda u=(-1)^{p} * L * u$ for any p-form $u . \Lambda$ is trivial on 0 and 1-forms. These local expressions are defined by

$$
\begin{aligned}
(L u)_{k j i_{1} \cdots i_{p}}= & \phi_{k j} u_{i_{1} \cdots i_{p}} \\
& -\sum_{a=1}^{p} \phi_{i_{a j}} u_{i_{1} \cdots k \cdots i_{p}} \\
& -\sum_{b=1}^{p} \phi_{k i_{b}} u_{i_{1} \cdots j \cdots i_{p}} \\
& +\sum_{a<b} \phi_{i_{a} i_{b}} u_{i_{1} \cdots k \cdots j \cdots i_{p}}, \\
(\Lambda u)_{i_{3} \cdots i_{p}}= & \frac{1}{2} \phi^{r s} u_{r s i_{3} \cdots i_{p}} .
\end{aligned}
$$

For the operators above, we find from [1]:
(2.1) $(d \Lambda-\Lambda d) u=-(C+c) u$,
2.2) $(d L-L d) u=0$,
(2.3) $(\Gamma \Lambda-\Lambda \Gamma) u=(\delta-\vartheta) u$,
(2.4) $(\gamma \Lambda-\Lambda \gamma) u=\vartheta u$,
(2.5) $(\Lambda L-L \Lambda) u=(m-p) u$,
(2.6) $(\delta L-L \delta) u=(\Gamma+\gamma) u$.

Moreover in a compact almost Kählerian manifold, it follows from [1] that for a p-form u and a $(p+1)$-form v
$(2.7)(\Gamma u, v)=(u, C v)$,
$(2.8)(\gamma u, v)=(u, c v)$,
where (,) denotes the global inner product.

3. Proof of theorem

From (1.1), we find $\delta u=-n \rho$. Operating $\phi_{h}{ }^{k}$ to (1.1), we obtain $(\Gamma u)_{h j}-(d \Phi u)_{h j}+(\gamma u)_{h j}=4(L \rho)_{h j}$. We will use the similar arrangements of indices without any special notice. This equation may be written as follows:

$$
\begin{equation*}
n(\Gamma u-d \Phi u+\gamma u)+4 L \delta u=0 \tag{3.1}
\end{equation*}
$$

If we operate Λd to (3.1) and regard to (2.1) $\sim(2.5)$, then we have

$$
(n-4) d \delta u+n(C \Gamma u+c \Gamma u+C \gamma u+c \gamma u)=0,
$$

which denotes that $(n-4)(\delta u, \delta u)+n(\Gamma u+\gamma u, \Gamma u+\gamma u)=0$ from (2.7) and (2.8). Thus we find $\delta u=0(n \geq 6)$ and

$$
\begin{equation*}
\Gamma u+\gamma u=0(n \geq 4) \tag{3.2}
\end{equation*}
$$

Substituting (3.2) into (3.1) and owing to (2.6) and (3.2), we get $n d \Phi u-$ $4 \delta L u=0$. Applying δ to this, we find $\delta d \Phi u=0$, namely $d \Phi u=0(n \geq$ 4). From (3.1) we obtain $L \delta u=0$, which means that $\delta u=0(n \geq 4)$, that is $\rho=0(n \geq 4)$. Consequently, we complete the proof of Theorem.

References

[1] Y. Ogawa, Operators on almost Kählerian spaces, Natur. Sci. Rep. Ochanomizu Univ. 21 (1970), 1-17.
[2] M. Okumura, On infinitesimal conformal and projective transformations of normal contact spaces, Tohoku Math. J. 14 (1962), 398-412.
[3] Y. Tashiro, On conformal and projective transformations in Kählerian manifolds, Tohoku Math. J. 14 (1962), 317-320.

Kazuhiko Takano, Department of Mathematics, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380-8553, Japan
E-mail: ktakano@gipwc.shinshu-u.ac.jp
Jae-Bok Jun, Department of Mathematics, College of Natural Science, Kookmin University, Seoul 136-702, Korea
E-mail: jbjun@kookmin.ac.kr

