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Abstract

We give a result that relates the diffeomorphism type of the link of a non-
degenerate semi-quasi-homogeneous hypersurface simple K3 singularity with the
singularities of the normal K3 surface that appears as the exceptional divisor of the
resolution of the singularity. As a result, we show that the links are diffeomorphic to
the connected sum of copies of S2×S3. Moreover, we also show that the topological
types of hypersurface simple K3 singularities defined by non-degenerate semi-quasi-
homogeneous polynomials are all different.

1 Introduction

Let f = f(z1, . . . , zn) be a polynomial defining an isolated singularity at the origin of Cn.
The intersection

L := f−1(0) ∩ S2n−1
ϵ

of the hypersurface f−1(0) and a small (2n − 1)-sphere S2n−1
ϵ with the center at the

origin is a closed spin (2n − 3)-manifold, which is called the link of the singularity. The
homeomorphism type of the embedding L ↪→ S2n−1

ϵ determines the topological type of
the isolated hypersurface singularity (see Theorem 2.3).

The simple K3 singularity was defined in Ishii-Watanabe [8] as a Gorenstein purely
elliptic singularity of type (0, 2), which is a three-dimensional analogue of the simple
elliptic singularity in dimension 2. Its geometric characterization was also given in [8] as
follows:

Definition 1.1. A three-dimensional normal isolated singularity (X, x) is called a
simple K3 singularity if the exceptional divisor of a Q-factorial terminal modification is
an irreducible normal K3 surface, where a normal K3 surface means a normal surface
whose resolution is a K3 surface.
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A normal K3 surface has only rational double points as its singularities from Artin [1,
2]. Moreover, Shimada [21] determined all possible configurations of rational double points
on normal K3 surfaces.

Boyer, Galicki and Matzeu showed in [3] that the links of hypersurface simple K3
singularities defined by non-degenerate quasi-homogeneous polynomials are all diffeomor-
phic to some connected sum of S2×S3 by using Sasakian structures. In this paper, more
generally, we investigate the topological types of hypersurface simple K3 singularities
defined by non-degenerate semi-quasi-homogeneous polynomials.

First we focus on the links of hypersurface simple K3 singularities defined by non-
degenerate semi-quasi-homogeneous polynomials. It is known that the link of a three-
dimensional hypersurface isolated singularity is a simply connected closed spin C∞-manifold
of dimension 5. Due to Smale’s result, its diffeomorphism type is determined by the sec-
ond homology group H2(M), where every (co)homology group is a (co)homology group
with integer coefficients unless otherwise stated (see Theorem 3.1).

Let f(z) =
∑

k akz
k be a polynomial in C[z1, . . . , zn], where k = (k1, . . . , kn) ∈ Zn

≥0.
Then the Newton diagram Γ+(f) of f is the convex hull of

∪
ak ̸=0(k + Rn

≥0) in Rn
≥0 and

the Newton boundary Γ(f) of f is the union of the compact faces of Γ+(f). For a face ∆
of Γ(f), we put

f∆(z) :=
∑
k∈∆

akz
k.

We say that the polynomial f is non-degenerate if

∂f∆/∂z1 = · · · = ∂f∆/∂zn = 0

has no solutions in (C\{0})n for any face ∆ of Γ(f). We say that a hypersurface singularity
defined by f at the origin is non-degenerate if f is a non-degenerate polynomial.

The non-degenerate hypersurface simple K3 singularities are classified as follows:

Theorem 1.2 (Watanabe [25]). Let f =
∑

akz
k ∈ C[z1, . . . , z4] be a non-degenerate

polynomial defining an isolated singularity at the origin of C4. Then the singularity is a
simple K3 singularity if and only if Γ(f) contains (1, 1, 1, 1) and the face ∆0(f) of Γ(f)
containing (1, 1, 1, 1) in its relative interior is of dimension 3.

Definition 1.3. Let f ∈ C[z1, . . . , z4] be a non-degenerate polynomial defining a sim-
ple K3 singularity at the origin, and let ∆0(f) be the face of Γ(f) containing (1, 1, 1, 1) in
its relative interior. Then the weight-vector α(f) of f is the vector α(f) = (α1, α2, α3, α4) ∈
Q4

>0 with
∑

αi = 1 such that the 3-dimensional polygon ∆0(f) is perpendicular to α(f)
in R4.

Yonemura [26], and independently Fletcher [5], classified all vectors α ∈ Q4
>0 that

appear as the weight-vector α(f) of a non-degenerate polynomial f defining a hypersurface
simple K3 singularity, and made the famous list of ninety-five weight-vectors, which is
also called Reid’s 95 examples. They also provide a non-degenerate quasi-homogeneous
polynomial defining a hypersurface simpleK3 singularity for each weight-vector in the list.
Throughout this paper, we use the numbering of the weight-vectors given in Yonemura’s
list [26, Table 2.2].
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Definition 1.4. Let (X, x) be a hypersurface simple K3 singularity defined by a
polynomial f =

∑
akz

k. We say that f is semi-quasi-homogeneous if f∆0 = 0 defines an
isolated singularity at the origin, where

f∆0 :=
∑

k∈∆0(f)

akz
k

is the principal part of f .

Moreover, we have the following result, proved by Tomari [23] (see also [26, Theorem
3.1]) and Yonemura [26, Theorem 4.2]:

Theorem 1.5. Let (X, x) be a hypersurface simple K3 singularity defined by a non-
degenerate semi-quasi-homogeneous polynomial of weight-vector α = (p1/p, . . . , p4/p),
where p, p1, . . . , p4 are positive integers such that gcd(p1, . . . , p4) = 1. Then (X, x) has
a unique minimal resolution π′ : (X ′, K ′) → (X, x), which is given by the weighted blow-
up of C4 with weight (p1, . . . , p4). The exceptional divisor K ′ is a normal K3 surface with
only rational double points of type Al, and the ADE-type RK′ of Sing(K ′) is determined
by α, where the ADE-type is a finite formal sum of symbols Al (l ≥ 1), Dm (m ≥ 4) and
En (n = 6, 7, 8) with non-negative integer coefficients.

There is a list of Sing(K ′) for 95 weight-vectors in [26]. The following are well-defined:

R(α) := RK′ :=
∑

alAl +
∑

dmDm +
∑

enEn.

r(α) := r(K ′) :=
∑

all +
∑

dmm+
∑

enn,

where r(α) is called the total Milnor number.

We show that the second homology groups of the links are free when the hypersur-
face simple K3 singularities are defined by non-degenerate and semi-quasi-homogeneous
polynomials. In order to calculate the second homology groups of the links in higher
dimensions, the monodromy of the Milnor fibration is often used (see also [12] and [9]).
However a different method is described in this paper, which uses the information of
the normal K3 surfaces that appears as the exceptional divisor of the resolution of the
singularity. The main result is as follows:

Theorem 1.6. The link L of a hypersurface simple K3 singularity (X, x) defined by
a non-degenerate semi-quasi-homogeneous polynomial of weight-vector α is diffeomorphic
to the connected sum of 21− r(α) copies of S2 × S3.

The plan of this paper is as follows. In §2 and in §3, we recall known results of topolog-
ical types of the hypersurface singularities and Smale’s result in [22], respectively. In §4,
we prove Theorem 1.6. From Smale’s result, the key point of the proof of Theorem 1.6 is
to calculate the second homology group H2(L,Z) of the link L of a hypersurface simple
K3 singularity (X, x). In §5, we give a partial affirmative answer for Orlik’s Conjecture
3.2 stated in [16]. In §6, we show that the topological types of hypersurface simple K3
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singularities defined by non-degenerate semi-quasi-homogeneous polynomials are different
when the weight-vectors are different (see Theorem 6.1). In order to show this, we use
Lê Dũng Tráng’s result in [10]: the characteristic polynomial of the monodromy of the
Milnor fibration is a topological invariant. As a corollary, we give a partial affirmative
answer for Saeki’s problem stated in [18] for four variables, which is related to Zariski’s
multiplicity problem [27]: the weight-vectors of non-degenerate semi-quasi-homogeneous
polynomials defining simple K3 singularities are topological invariants (see Corollary 6.3).

The author would like to express her gratitude to Professor Ichiro Shimada for his
constructive discussion and constant support.

2 Topological types of hypersurface singularities

Let n be an integer ≥ 2, and let f : (Cn, 0) → (C, 0) and g : (Cn, 0) → (C, 0) be germs
of holomorphic functions with isolated critical points at the origin. We put Vf := f−1(0)
and Vg := g−1(0).

Definition 2.1. We say that f and g are topologically equivalent if there exists a
homeomorphism germ φ : (Cn, 0) →∼ (Cn, 0) satisfying φ(Vf ) = Vg.

Let ϵ be a sufficiently small positive real number. We put D2n
ϵ := {z ∈ Cn | ∥z∥ ≤ ϵ}

and S2n−1
ϵ := ∂D2n

ϵ . The pair (S2n−1
ϵ , S2n−1

ϵ ∩ Vf ) (or simply S2n−1
ϵ ∩ Vf ) is called the link

of the singularity.

Definition 2.2. We say that f and g are link equivalent if (S2n−1
ϵ , S2n−1

ϵ ∩ Vf ) is
homeomorphic to (S2n−1

ϵ′ , S2n−1
ϵ′ ∩ Vg) for all sufficiently small ϵ and ϵ′.

The link equivalence implies the topological equivalence because (D2n
ϵ , D2n

ϵ ∩ Vf ) is
homeomorphic to the cone over the link (S2n−1

ϵ , S2n−1
ϵ ∩Vf ) (see [12, Theorem 2.10]). The

converse was proved by Saeki in [19]. Therefore we have the following:

Theorem 2.3 ([12, 19]). Two germs f and g of holomorphic functions with isolated
critical points are topologically equivalent if and only if f and g are link equivalent.

Let h : F→F be the characteristic homeomorphism of the Milnor fiber F of the
fibration

ϕ : S2n−1
ϵ \ (S2n−1

ϵ ∩ Vf ) → S1

associated to f . We denote by

∆f (t) := det(tI − h∗)

the characteristic polynomial of the monodromy h∗ : Hn−1(F,C) → Hn−1(F,C) on
Hn−1(F,C). The Milnor number µ(f) of f is defined by

µ(f) := dimC C[[z1, . . . , zn]]/(∂f/∂z1, . . . , ∂f/∂zn).

Then we have the following:

Theorem 2.4 ([10] Theorem 3.3). If two germs f and g are topologically equivalent,
then ∆f (t) = ∆g(t) and µ(f) = µ(g) hold.
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3 Smale’s theorem

Let f ∈ C[z1, . . . , z4] be a polynomial defining an isolated singularity at the origin of C4.
Then the link

K := f−1(0) ∩ S7
ϵ

is a simply connected closed spin C∞-manifold of dimension 5. By the following result of
Smale, the diffeomorphism type of the link K is determined by H2(K).

Theorem 3.1 (Smale [22]). There exists a one-to-one correspondence φ from the set
of isomorphism classes of simply connected closed spin C∞-manifolds of dimension 5 to
the set of isomorphism classes of finitely generated abelian groups.

Let M be a simply connected closed spin C∞-manifold of dimension 5, and let H2(M)
be F ⊕ T , where F is the free part and T is the torsion part. Then the correspondence φ
is given by φ(M) := F ⊕ (1/2)T , where T = (1/2)T ⊕ (1/2)T .

As a corollary, we have the following:

Corollary 3.2. Let M be a simply connected closed spin 5-dimensional C∞-manifold.
If H2(M) is free of rank r, then M is diffeomorphic to the connected sum of r copies of
S2 × S3.

4 Proof of Theorem 1.6

4.1 Preparations

Let L be the link of a hypersurface simple K3 singularity (X, x) defined by a non-
degenerate semi-quasi-homogeneous polynomial f of weight-vector α. In order to show
Theorem 1.6, it is enough to show the following proposition according to Smale’s classifi-
cation.

Proposition 4.1. The second homology group H2(L) of the link L is a free group of
the rank 21− r(α).

Further the following proposition also holds:

Proposition 4.2. Let (X1, x1) and (X2, x2) be hypersurface simple K3 singularities
defined by non-degenerate semi-quasi-homogeneous polynomials f1 and f2, respectively, of
the same weight-vector α := α(f1) = α(f2). If Proposition 4.1 holds for (X1, x1), then
Proposition 4.1 holds for (X2, x2).

Proof. We put α = ( p1/p, p2/p, p3/p, p4/p ), where p, p1, . . . , p4 are positive
integers such that gcd(p1, . . . , p4) = 1. We choose a sufficiently large N , and consider the
space C[z1, . . . , z4]N of all polynomials of degree ≤ N . Then there exists a Zariski open
dense subset Uα,N of the linear subspace

Uα,N := {
∑

akz
k | ak = 0 for any k = (k1, . . . , k4) with k · α ≤ 1 }
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of C[z1, . . . , z4]N such that Uα,N contains both f1 and f2, and that, if g ∈ Uα,N , then g is
a non-degenerate semi-quasi-homogeneous polynomial defining a hypersurface simple K3
singularity of weight-vector α. Consider the universal family

Xα,N := { (x, g) ∈ C4 × Uα,N | g(x) = 0 } ⊂ C4 × Uα,N

of hypersurface simple K3 singularities of weight-vector α defined by polynomials in Uα,N .
Then we have a simultaneous minimal resolution of these singularities, because, by [26,
Theorem 3.1], the weighted blow-up of C4 with weight (p1, . . . , p4) yields the minimal
resolution for each member Xg := {g = 0} of the family Xα,N → Uα,N . In particular, the
exceptional divisors K

′
g of the minimal resolution of Xg form a family over Uα,N , and all

members are normal K3 surfaces with the same type of rational double points by [26,
Theorem 4.2]. Since Uα,N is connected, we have the required result. �

Therefore, in proving Proposition 4.1, we can assume that (X, x) is the hypersurface
simple K3 singularity defined by the non-degenerate quasi-homogeneous polynomial of
weight-vector α given in Yonemura [26, Table 2.2].

Note the condition that a polynomial contains a term of the form zni or zni zj, in
Yonemura’s paper [26], which is equal to the necessary conditions for a polynomial having
an isolated singularity (see [20, Corollary 1.6]).

Summarizing the above results, it is enough to show the following theorem in order to
show Theorem 1.6,

Theorem 4.3. Let L be the link of a hypersurface simple K3 singularity (X, x) defined
by a non-degenerate quasi-homogeneous polynomial of weight-vector α. Then the second
homology group H2(L) is a free group of the rank 21− r(α).

4.2 Resolutions of (X, x)

The link of a hypersurface simple K3 singularity (X, x) defined by a non-degenerate
quasi-homogeneous polynomial of weight-vector α is considered as the boundary of the
neighborhood of the smooth exceptional divisor in the ambient space of the singularity
(X, x). In order to show Theorem 4.3, first we consider the weighted blow-up of C4 at
the origin 0 ∈ C4 by using the method of toric varieties (see [7], [14], [15]).

Let p := (p1, p2, p3, p4) be the quadruple of positive integers with gcd(pi, pj, pk) = 1
for all distinct i, j, k. Then the weighted blow-up

Π : ( V, P(p1, p2, p3, p4) ) → ( C4, 0 )

with weight p, where P(p1, p2, p3, p4) is the weighted projective space, is constructed as
follows: Let N := Z4 and let M := HomZ(N,Z) be the dual Z-module of N . A subset σ
of NR := N ⊗Z R is called a cone if there exists n1, . . . , ns ∈ N such that σ is written as

σ := {
s∑

i=1

tini | ti ∈ R≥0 },
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which we simply denote σ := ⟨n1, . . . , ns⟩ and call n1, . . . , ns the generators of σ. For a
cone σ in NR, we define the dual cone of σ by

σ̌ := {m ∈ MR | m(u) ≥ 0 for any u ∈ σ},

and associate a normal variety

Xσ := SpecC[σ̌ ∩M ]

with the cone σ, where C[σ̌ ∩ M ] is a C-algebra generated by zm for m ∈ σ̌ ∩ M . We
assume that the generators n1, . . . , ns of a cone σ consist of primitive elements of N , i.e.
each ni satisfied niR ∩ N = niZ. We define the determinant detσ of a cone σ as the
greatest common divisor of all (s, s) minors of the matrix (nij), where ni := (ni1, . . . , ni4).

Let σ ⊂ NR = R4 be the first quadrant of R4, i.e. σ := ⟨e1, e2, e3, e4⟩ where e1 :=
(1, 0, 0, 0), . . . , e4 := (0, 0, 0, 1). We divide the cone σ into four cones by adding the vector
p = (p1, p2, p3, p4) in σ.

σ :=
4∪

i=1

σi, where σi := (p, ej, ek, el).

From the inclusion σi ⊂ σ, we obtain natural morphisms

Πi : Vi → SpecC[σ̌ ∩M ] = C4,

where Vi := SpecC[σ̌i ∩M ]. Let

V :=
4∪

i=1

Vi

be the union of Vi which is glued along the images of Πi. Then we have a morphism

Π : V → C4,

where

V − Π−1(0) ≃ C4 − {0} and Π−1(0) = P(p1, p2, p3, p4).
Let X ′ be the proper transform of X by Π. Let

π := Π |X′

and the exceptional set

K ′ := π−1(0).

Then
π : (X ′, K ′) → (X, x)

is the weighted blow-up with weight p, and K ′ is a normal K3 surface. The minimal-
ity of the weighted blow-up and the singularities on normal K3 surfaces were stated in
Theorem 1.5.
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4.3 Resolutions of (X ′, K ′)

In this section, we study the resolution of (X ′, K ′) because we need a smooth exceptional

divisor K̃ ′ in the ambient space of the singularity to show Theorem 4.3 (see §4.5). Due to
Theorem 1.5, it is enough to consider isolated cyclic quotient singularities of dimension 3.

Let Cn = {g} be a cyclic group of order n. The generator g acts on C3 by

g : (z1, z2, z3) → (ξz1, ξ
q1z2, ξ

q2z3),

where ξ is a primitive nth root of unity and q1, q2 are integers satisfying 0 < q1, q2 < n and
gcd(n, q1) = gcd(n, q2) = 1. Note that, in this case, we can take the canonical generator
g ∈ Cn and define the canonical way of the resolution which is minimal (see [6]). Here we
express the singularities in terms of toric varities as follows:

C3/Cn = SpecC[σ̌ ∩ Z3], where σ = ⟨(n,−q1,−q2), (0, 1, 0), (0, 0, 1)⟩.
We denote this cyclic quotient singularity by Nn

q1,q2
.

Consider the case of a nondegenerate hypersurface simple K3 singularity with weight-
vector α = (p1/p, p2/p, p3/p, p4/p). From the results of Yonemura [26, Proposition 3.4],
the cone is expressed as follows:

σ = ⟨(a, pk, pl), (0, 1, 0), (0, 0, 1)⟩,
where a = aij := gcd(pi, pj) ≥ 2 if pi | p or a = pi ≥ 2 if pi |/p for {i, j, k, l} = {1, 2, 3, 4}.
Moreover, the condition a | (pk + pl) for a = aij or pi is always satisfied from p =

∑4
i=1 pi

and [26, Proposition 2.3]. Therefore by changing the generator of Ca, we have (pk, pl) ≡
(a− 1, 1) mod a. The following lemma holds.

Lemma 4.4. The cone is expressed as

σ = ⟨(a, a− 1, 1), (0, 1, 0), (0, 0, 1)⟩,
where a = aij or pi for {i, j} ⊂ {1, 2, 3, 4}.

Note that the above cone σ defines the singularity Na
1−a,−1. By changing the generator

of Ca again, we have Na
1−a,−1

∼= Na
1,a−1. It follows from the result of Fujiki [6, Lemma 6]

that Na
1,a−1

∼= Na
a−1,a−1.

Set Sing(K ′) := {x1, . . . , xn}, and the Milnor number of xi is denoted by µ(xi). Then
r(α) = r(K ′) =

∑n
i=1 µ(xi).

Proposition 4.5. Let (X ′, K ′) be the weighted blow-up of (X, x) with weight p. Let π̃′ :

(X̃ ′, K̃ ′)→(X ′, K ′) be a toric resolution of (X ′, K ′). Then X̃ ′ is a smooth six-dimensional

manifold and K̃ ′ = K ∪R, where K is a smooth K3 surface, R =
∪n

i=1Ri is the disjoint
union of the union Ri of rational surfaces, and K∩Ri is a tree of µ(xi) rational curves P1.

More precisely, Ri =
∪µ(xi)

j=1 Fj, where Fj(2 ≤ j ≤ µ(xi)) is isomorphic to the Hirzebruch

surface of degree j ≥ 2 and F1 is isomorphic to the projective plane P2 such that Fj and
Fj+1 intersect transversally with Fj ∩ Fj+1 = P1, and no three of the Hirzebruch surfaces
intersect.
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P2 F2 Fµ(xi)−1 Fµ(xi)

P1

Ri

P1
1 P1

2 P1
µ(xi)−1

P1
µ(xi)

Ei

K

Proof. For each singularity xi on K ′, it follows from Lemma 4.4 that it is enough to
consider the cone σ = ⟨(a, a−1, 1), (0, 1, 0), (0, 0, 1)⟩, where a = µ(xi)+1. By using Oka’s
method in [15], a simplicial subdivision of σ is obtained by adding new 1-dimensional
cones Rλ for 1 ≤ λ ≤ a− 1,

Rλ :=
1

a− (λ− 1)
(a, a−1, 1)+

1

a− (λ− 1)
(0, 1, 0)+

a− λ

a− (λ− 1)
(λ−1, λ−1, 1) = (λ, λ, 1),

and subdividing by induction. The orbit ORλ
has dimension 2 and the orbit closure V (Rλ)

is constructed from the cones of σ containing Rλ. From the configuration of the cones of
σ, due to the known results on two-dimensional compact non-singular toric varieties in
Fulton [7] and Fujiki [6, Corollary to Lemma 6](see also [14] and [24]), we have required
results: the orbit closure V (Rλ) for 1 ≤ λ ≤ a− 2 is isomorphic to the Hirzebruch surface
Fj of degree j ≥ 2, and the orbit closure V (Ra−1) is isomorphic to the projective plane
P2. �

4.4 Homology group H∗(K̃ ′)

Here we study the homology group H∗(K̃ ′), which will be used to show Theorem 4.3.

Lemma 4.6. Let R =
∪n

i=1Ri, where Ri =
∪µ(xi)

j=1 Fj in Proposition 4.5. Then

H∗(R) ∼=

 Zr(K′) if ∗ = 2, 4,
Zn if ∗ = 0,
0 otherwise.
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Proof. First we calculate the homology group H∗(Ri) of Ri. For j = 1, we have

H∗(F1) ∼= H∗(P2) ∼=
{

Z if ∗ = 0, 2, 4,
0 otherwise.

For 2 ≤ j ≤ µ(xi), we have

H∗(Fj) ∼=


Z if ∗ = 0, 4,
Z⊕ Z if ∗ = 2,
0 otherwise.

It follows from the Mayer-Vietoris sequence by induction on the number µ(xi) ≥ 2
that

H∗(Ri) ∼= H∗(

µ(xi)∪
j=1

Fj) ∼=

 Zµ(xi) if ∗ = 2, 4,
Z if ∗ = 0,
0 otherwise,

which also holds for µ(xi) = 1. Since R =
∪n

i=1Ri and Ri ∩ Rj = ∅ for i ̸= j, H∗(R) =
H∗(

∪n
i=1Ri) ∼=

⊕n
i=1H∗(Ri), which completes the proof. �

Lemma 4.7.

H∗(K ∩R) ∼=

 Zr(K′) if ∗ = 2,
Zn if ∗ = 0,
0 otherwise.

Proof. It follows from Theorem 1.5 that K ∩ R =
∪n

i=1Ei, where Ei =
∪µ(xi)

j=1 P1
j is

a tree of µ(xi) rational curves P1
j and Ei ∩Ej = ∅ for i ̸= j. Consider the Mayer-Vietoris

sequence by induction on the number µ(xi), we have

H∗(Ei) ∼=

 Zµ(xi) if ∗ = 2,
Z if ∗ = 0,
0 otherwise.

Therefore we obtain H∗(K ∩ R) = H∗(
∪n

i=1Ei) =
⊕n

i=1H∗(Ei), which completes the
proof. �

Then we obtain the homology group H∗(K̃ ′) of K̃ ′ = K ∪R.

Proposition 4.8.

H∗(K̃ ′) ∼=


Z if ∗ = 0,
Z22 if ∗ = 2,
Zr(K′)+1 if ∗ = 4,
0 otherwise.

Proof. Since K is a smooth K3 surface, we have

H∗(K) ∼=


Z if ∗ = 0, 4,
Z22 if ∗ = 2,
0 otherwise.
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Consider the Mayer-Vietoris sequence,

→ H∗(K ∩R) → H∗(K)⊕H∗(R) → H∗(K̃ ′) → .

It follows from the above lemmas and the exactness that we have the homology groups
H∗(K̃ ′). �

4.5 Proof of Theorem 4.3

Proof. Let N := N(K̃ ′) be a smooth neighborhood of K̃ ′ in X̃ ′. Then L := ∂N is
the link of the singularity. From Smale’s result, it is enough to show H2(L) is a free group
of the rank 21− r(K ′). Consider the exact sequence of a pair (N,L)

→ H3(N,L) → H2(L) → H2(N) → H2(N,L) → H1(L) → .

Note that L is simply connected. By the Poincaré-Lefschetz duality, the universal coeffi-
cient theorem and Proposition 4.8 we have

H3(N,L) ∼= H3(N) ∼= H3(K̃ ′) ∼= Hom(H3(K̃ ′),Z)⊕ Ext(H2(K̃ ′),Z) = 0,

H2(N) ∼= H2(K̃ ′) ∼= Z22,

H2(N,L) ∼= H4(N) ∼= H4(K̃ ′) ∼= Hom(H4(K̃ ′),Z)⊕ Ext(H3(K̃ ′),Z) = Zr(K′)+1,

H1(L) = 0.

Hence we obtain the required result H2(L) ∼= Z21−r(K′) = Z21−r(α). �

Remark 4.9. There exist 3-dimensional hypersurface singularities which are not hy-
persurface simple K3 singularities, but whose links are diffeomorphic to the connected
sum of some copies of S2 × S3. For example, the link of the hypersurface singularity
defined by

f = x2 + y2 + zc + wd, where 2 ≤ c ≤ d,

is diffeomorphic to the connected sum of n copies of S2×S3, where n = gcd(c, d)− 1 (see
[9]).

5 Orlik’s Conjecture

Consider the Milnor fibration as stated in §2. Then the matrix (tI − h∗) is equivalent to
a diagonal matrix since the polynomial ring C[t] is a principal ideal domain. Therefore
there exist unimodilar matrices U(t) and V (t) with entries in C[t] so that

U(t)(tI − h∗)V (t) = diag(m1(t), . . . ,mµ(f)(t)),

where mi(t) divides mi+1(t) for 1 ≤ i ≤ µ(f). The minimal polynomial mµ(f)(t) con-
tains each irreducible factor of the characteristic polynomial ∆f (t). Suppose f is quasi-
homogenous. Then Orlik’s Conjecture 3.2 for the homology group of the link L in [16] is
as follows:
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Hn−2(L;Z) ∼= Zm1(1) ⊕ Zm2(1) ⊕ · · · ⊕ Zmµ(f)(1),

where Z1 is the trivial group and Z0 is the infinite cyclic group.

For three variables, the conjecture folds from the result of Orlik and Wagreich in [17].
In general, the characteristic polynomial ∆f (t) of the monodromy and the Milnor number
µ(f) are calculated from the weight-vector α(f) by means of the formula of Milnor and
Orlik [13]. The results are given in Table 5.1, where Φk denotes the kth cyclotomic
polynomial.

By using this table, we can calculatemi(1) for 1 ≤ i ≤ µ(f) for each quasi-homogeneous
defining polynomial in Yonemura’s list: for example, in the case No.1 of Table 5.1, we
have ∆f (t) = Φ21

1 Φ20
2 Φ20

4 and µ(f) = 81. Then mi(t) = 1 for 1 ≤ i ≤ 60,m61(t) =
Φ1,mi(t) = Φ1Φ2Φ4 for 62 ≤ i ≤ 81. Hence we have mi(1) = 0 for 61 ≤ i ≤ 81. Together
with Theorem 1.6, we have the following corollary.

Corollary 5.1. Let f be a non-degenerate semi-quasi-homogeneous polynomial defin-
ing hypersurface simple K3 singularity at the origin. Let L be the associated link of the
singularity defined by f . Then H2(L;Z) ∼= Zm1(1) ⊕ Zm2(1) ⊕ · · · ⊕ Zmµ(f)(1).

6 Topological types

From the result of Theorem 1.6, the links of hypersurface simple K3 singularities defined
by non-degenerate semi-quasi-homogeneous polnomials are diffeomorphic when the total
Milnor numbers are the same: for example, the links associated with the polynomials
No.1: x4+y4+z4+w4 and No.5: x2+y6+z6+w6 in Yonemura’s list are diffeomorphic to
the connected sum of 21 copies of S2×S3 because both exceptional divisors are smooth. In
this section, we consider topological types of hypersurface simple K3 singularities defined
by non-degenerate semi-quasi-homogeneous polynomials.

Theorem 6.1. Let f and g be non-degenerate semi-quasi-homogeneous polynomials
defining hypersurface simple K3 singularities (Xf , x) and (Xg, x

′) at the origin of weight-
vector α(f) and α(g), respectively. If α(f) ̸= α(g), then ∆f (t) ̸= ∆g(t). Moreover,
(Xf , x) and (Xg, x

′) are not topological equivalent.

For the proof, we use the following lemma, which follows from the result of Lê and
Ramanujam [11, Theorem 2.1] via the argument in [4, page 74].

Lemma 6.2. Let f = f(z1, . . . , z4) be a semi-quasi-homogeneous polynomial defining
a simple K3 singularity at the origin, and let f∆0 be the principal part of f . Then f and
f∆0 are topologically equivalent.

Proof of Theorem 6.1. By Lemma 6.2, we can assume that f and g are non-degenerate
and quasi-homogeneous. It follows from Table 5.1 that we have ∆f (t) ̸= ∆g(t) for all 95
weight-vectors in [26]. Together with Theorem 2.4, we have required results. �

As a corollary, we give a partial affirmative answer for Saeki’s problem stated in [18]:
whether weight-vectors are topological invariants or not.
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No. ∆f (t) µ(f)

1 Φ21
1 Φ20

2 Φ20
4 81

2 Φ10
1 Φ10

2 Φ7
3 Φ

8
4 Φ

8
6 Φ

6
12 90

3 Φ18
1 Φ16

2 Φ17
3 Φ16

6 100

4 Φ12
1 Φ10

2 Φ12
3 Φ10

4 Φ11
6 Φ11

12 132

5 Φ21
1 Φ20

2 Φ21
3 Φ21

6 125

6 Φ16
1 Φ12

2 Φ16
5 Φ13

10 144

7 Φ19
1 Φ18

2 Φ19
4 Φ18

8 147

8 Φ15
1 Φ14

2 Φ14
3 Φ14

4 Φ14
6 Φ13

12 165

9 Φ12
1 Φ12

2 Φ12
4 Φ11

5 Φ12
10 Φ

11
20 228

10 Φ20
1 Φ20

2 Φ20
3 Φ20

4 Φ21
6 Φ20

12 242

11 Φ10
1 Φ8

2 Φ
9
3 Φ

10
5 Φ8

6 Φ
8
10 Φ

9
15 Φ

7
30 252

12 Φ16
1 Φ14

2 Φ16
3 Φ15

6 Φ16
9 Φ14

18 272

13 Φ14
1 Φ14

2 Φ13
3 Φ14

4 Φ14
6 Φ14

8 Φ13
12 Φ

13
24 322

14 Φ12
1 Φ12

2 Φ12
3 Φ12

6 Φ12
7 Φ12

14 Φ
12
21 Φ

11
42 492

15 Φ8
1 Φ

4
3 Φ

8
5 Φ

5
15 88

16 Φ6
1 Φ

6
2 Φ

3
3 Φ

6
4 Φ

4
6 Φ

6
8 Φ

4
12 Φ

3
24 102

17 Φ8
1 Φ

8
3 Φ

6
5 Φ

7
15 104

18 Φ14
1 Φ13

3 Φ12
9 112

19 Φ15
1 Φ14

2 Φ14
4 Φ12

8 105

20 Φ10
1 Φ10

2 Φ9
3 Φ

10
4 Φ10

6 Φ10
8 Φ10

12 Φ
9
24 230

21 Φ20
1 Φ19

5 96

22 Φ12
1 Φ10

3 Φ12
5 Φ11

15 168

23 Φ11
1 Φ10

2 Φ11
3 Φ6

4 Φ
11
6 Φ7

12 105

24 Φ14
1 Φ14

2 Φ13
3 Φ12

4 Φ14
6 Φ12

12 154

25 Φ18
1 Φ17

3 Φ18
9 160

26 Φ8
1 Φ

8
2 Φ

4
4 Φ

8
5 Φ

9
10 Φ

5
20 132

27 Φ8
1 Φ

8
2 Φ

8
3 Φ

8
4 Φ

9
6 Φ

6
8 Φ

9
12 Φ

7
24 182

28 Φ12
1 Φ12

3 Φ12
7 Φ13

21 264

29 Φ6
1 Φ

4
2 Φ

6
3 Φ

5
5 Φ

4
6 Φ

4
10 Φ

5
15 Φ

3
30 130

30 Φ4
1 Φ

4
2 Φ

4
4 Φ

3
5 Φ

4
8 Φ

4
10 Φ

3
20 Φ

3
40 132

31 Φ7
1 Φ

6
2 Φ

6
3 Φ

6
4 Φ

6
6 Φ

6
8 Φ

5
12 Φ

5
24 133

32 Φ12
1 Φ6

2 Φ
12
7 Φ7

14 132

33 Φ10
1 Φ6

2 Φ
10
3 Φ7

6 Φ
9
9 Φ

6
18 140

34 Φ8
1 Φ

4
2 Φ

8
3 Φ

8
5 Φ

4
6 Φ

5
10 Φ

8
15 Φ

4
30 184

35 Φ6
1 Φ

6
2 Φ

6
4 Φ

5
7 Φ

6
14 Φ

5
28 150

36 Φ9
1 Φ

8
2 Φ

8
4 Φ

8
5 Φ

8
10 Φ

7
20 153

37 Φ13
1 Φ12

2 Φ13
4 Φ12

8 Φ12
16 195

38 Φ11
1 Φ10

2 Φ11
3 Φ11

5 Φ10
6 Φ11

10 Φ
11
15 Φ

10
30 319

39 Φ13
1 Φ12

2 Φ13
3 Φ13

6 Φ12
9 Φ12

18 221

40 Φ15
1 Φ12

2 Φ15
7 Φ13

14 195

41 Φ9
1 Φ

8
2 Φ

8
3 Φ

9
4 Φ

8
6 Φ

8
8 Φ

8
12 Φ

7
24 187

42 Φ19
1 Φ18

2 Φ19
5 Φ19

10 189

43 Φ6
1 Φ

6
2 Φ

6
3 Φ

6
4 Φ

7
6 Φ

5
9 Φ

6
12 Φ

6
18 Φ

5
36 200

44 Φ15
1 Φ14

2 Φ15
4 Φ15

8 Φ14
16 231

45 Φ12
1 Φ12

2 Φ12
4 Φ12

7 Φ13
14 Φ

12
28 342

46 Φ4
1 Φ

4
2 Φ

4
3 Φ

4
6 Φ

4
11 Φ

4
22 Φ

4
33 Φ

3
66 244

47 Φ7
1 Φ

6
2 Φ

6
3 Φ

6
6 Φ

7
7 Φ

6
14 Φ

6
21 Φ

5
42 247

48 Φ6
1 Φ

6
2 Φ

5
3 Φ

6
4 Φ

6
6 Φ

6
8 Φ

5
12 Φ

6
16 Φ

5
24 Φ

5
48 258

No. ∆f (t) µ(f)

49 Φ8
1 Φ

6
2 Φ

8
3 Φ

7
6 Φ

8
7 Φ

6
14 Φ

8
21 Φ

6
42 296

50 Φ13
1 Φ12

2 Φ13
3 Φ13

5 Φ13
6 Φ12

10 Φ
13
15 Φ

12
30 377

51 Φ12
1 Φ12

2 Φ12
3 Φ12

4 Φ13
6 Φ12

9 Φ12
12 Φ

12
18 Φ

12
36 434

52 Φ3
1 Φ

2
2 Φ

3
3 Φ

2
4 Φ

3
6 Φ

3
9 Φ

3
12 Φ

2
18 Φ

2
36 87

53 Φ7
1 Φ

6
2 Φ

6
3 Φ

6
6 Φ

5
9 Φ

4
18 91

54 Φ6
1 Φ

3
3 Φ

6
7 Φ

4
21 96

55 Φ7
1 Φ

6
2 Φ

4
4 Φ

7
5 Φ

7
10 Φ

5
20 117

56 Φ3
1 Φ

2
2 Φ

3
3 Φ

3
5 Φ

2
6 Φ

3
10 Φ

4
15 Φ

3
30 95

57 Φ5
1 Φ

4
2 Φ

4
3 Φ

5
4 Φ

4
6 Φ

4
8 Φ

5
12 Φ

3
24 95

58 Φ11
1 Φ10

2 Φ10
4 Φ11

8 Φ10
16 165

59 Φ10
1 Φ9

3 Φ
10
7 Φ10

21 208

60 Φ11
1 Φ10

2 Φ10
3 Φ10

6 Φ11
9 Φ10

18 187

61 Φ4
1 Φ

4
2 Φ

2
4 Φ

4
7 Φ

5
14 Φ

3
28 102

62 Φ6
1 Φ

4
2 Φ

4
4 Φ

6
5 Φ

5
10 Φ

5
20 102

63 Φ14
1 Φ12

2 Φ13
5 Φ12

10 126

64 Φ5
1 Φ

4
2 Φ

5
3 Φ

5
4 Φ

5
6 Φ

4
8 Φ

6
12 Φ

5
24 119

65 Φ4
1 Φ

4
3 Φ

4
11 Φ

5
33 152

66 Φ18
1 Φ17

7 120

67 Φ8
1 Φ

6
3 Φ

8
7 Φ

7
21 152

68 Φ5
1 Φ

4
2 Φ

5
3 Φ

5
5 Φ

5
6 Φ

4
10 Φ

6
15 Φ

5
30 153

69 Φ9
1 Φ

8
2 Φ

8
4 Φ

9
8 Φ

6
16 117

70 Φ8
1 Φ

6
2 Φ

7
3 Φ

6
6 Φ

8
9 Φ

7
18 130

71 Φ12
1 Φ12

3 Φ11
5 Φ12

15 176

72 Φ14
1 Φ13

3 Φ14
5 Φ14

15 208

73 Φ3
1 Φ

2
2 Φ

3
5 Φ

3
10 Φ

3
25 Φ

2
50 129

74 Φ5
1 Φ

4
2 Φ

5
4 Φ

5
8 Φ

4
16 Φ

4
32 135

75 Φ9
1 Φ

4
2 Φ

9
11 Φ

5
22 153

76 Φ8
1 Φ

4
2 Φ

8
13 Φ

5
26 168

77 Φ11
1 Φ10

2 Φ11
13 Φ

11
26 285

78 Φ12
1 Φ10

2 Φ12
11 Φ

11
22 252

79 Φ7
1 Φ

6
2 Φ

7
4 Φ

7
8 Φ

7
16 Φ

6
32 207

80 Φ4
1 Φ

4
2 Φ

4
4 Φ

4
11 Φ

5
22 Φ

4
44 186

81 Φ9
1 Φ

6
2 Φ

9
13 Φ

7
26 207

82 Φ13
1 Φ12

2 Φ13
11 Φ

13
22 285

83 Φ5
1 Φ

4
2 Φ

5
3 Φ

5
6 Φ

5
9 Φ

4
18 Φ

5
27 Φ

4
54 245

84 Φ4
1 Φ

3
3 Φ

4
9 Φ

3
27 88

85 Φ9
1 Φ

6
2 Φ

8
7 Φ

6
14 99

86 Φ4
1 Φ

3
5 Φ

4
25 96

87 Φ12
1 Φ11

13 144

88 Φ6
1 Φ

5
3 Φ

6
9 Φ

6
27 160

89 Φ14
1 Φ13

11 144

90 Φ5
1 Φ

2
2 Φ

5
17 Φ

3
34 135

91 Φ4
1 Φ

2
2 Φ

4
19 Φ

3
38 132

92 Φ5
1 Φ

4
2 Φ

5
19 Φ

5
38 189

93 Φ6
1 Φ

4
2 Φ

6
17 Φ

5
34 186

94 Φ6
1 Φ

5
19 96

95 Φ8
1 Φ

7
17 120

Table 5.1: Topological invariants
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Corollary 6.3. Let f and g be non-degenerate semi-quasi-homogenous polynomials
defining hypersurface simple K3 singularities at the origin of weight-vector α(f) and α(g),
respectively. If f and g are topologically equivalent, then α(f) = α(g).
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