# THE TOPOLOGICAL TYPES OF HYPERSURFACE SIMPLE K3 SINGULARITIES 

Atsuko Katanaga*


#### Abstract

We give a result that relates the diffeomorphism type of the link of a nondegenerate semi-quasi-homogeneous hypersurface simple $K 3$ singularity with the singularities of the normal $K 3$ surface that appears as the exceptional divisor of the resolution of the singularity. As a result, we show that the links are diffeomorphic to the connected sum of copies of $S^{2} \times S^{3}$. Moreover, we also show that the topological types of hypersurface simple $K 3$ singularities defined by non-degenerate semi-quasihomogeneous polynomials are all different.


## 1 Introduction

Let $f=f\left(z_{1}, \ldots, z_{n}\right)$ be a polynomial defining an isolated singularity at the origin of $\mathbb{C}^{n}$. The intersection

$$
L:=f^{-1}(0) \cap S_{\epsilon}^{2 n-1}
$$

of the hypersurface $f^{-1}(0)$ and a small $(2 n-1)$-sphere $S_{\epsilon}^{2 n-1}$ with the center at the origin is a closed spin $(2 n-3)$-manifold, which is called the link of the singularity. The homeomorphism type of the embedding $L \hookrightarrow S_{\epsilon}^{2 n-1}$ determines the topological type of the isolated hypersurface singularity (see Theorem 2.3).

The simple K3 singularity was defined in Ishii-Watanabe [8] as a Gorenstein purely elliptic singularity of type $(0,2)$, which is a three-dimensional analogue of the simple elliptic singularity in dimension 2. Its geometric characterization was also given in [8] as follows:

Definition 1.1. A three-dimensional normal isolated singularity $(X, x)$ is called a simple $K 3$ singularity if the exceptional divisor of a $\mathbb{Q}$-factorial terminal modification is an irreducible normal $K 3$ surface, where a normal $K 3$ surface means a normal surface whose resolution is a $K 3$ surface.

[^0]A normal $K 3$ surface has only rational double points as its singularities from Artin [1, 2]. Moreover, Shimada [21] determined all possible configurations of rational double points on normal $K 3$ surfaces.

Boyer, Galicki and Matzeu showed in [3] that the links of hypersurface simple K3 singularities defined by non-degenerate quasi-homogeneous polynomials are all diffeomorphic to some connected sum of $S^{2} \times S^{3}$ by using Sasakian structures. In this paper, more generally, we investigate the topological types of hypersurface simple $K 3$ singularities defined by non-degenerate semi-quasi-homogeneous polynomials.

First we focus on the links of hypersurface simple $K 3$ singularities defined by nondegenerate semi-quasi-homogeneous polynomials. It is known that the link of a threedimensional hypersurface isolated singularity is a simply connected closed spin $C^{\infty}$-manifold of dimension 5. Due to Smale's result, its diffeomorphism type is determined by the second homology group $H_{2}(M)$, where every (co)homology group is a (co)homology group with integer coefficients unless otherwise stated (see Theorem 3.1).

Let $f(z)=\sum_{k} a_{k} z^{k}$ be a polynomial in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, where $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. Then the Newton diagram $\Gamma_{+}(f)$ of $f$ is the convex hull of $\bigcup_{a_{k} \neq 0}\left(k+\mathbb{R}_{\geq 0}^{n}\right)$ in $\mathbb{R}_{\geq 0}^{n}$ and the Newton boundary $\Gamma(f)$ of $f$ is the union of the compact faces of $\Gamma_{+}(f)$. For a face $\Delta$ of $\Gamma(f)$, we put

$$
f_{\Delta}(z):=\sum_{k \in \Delta} a_{k} z^{k} .
$$

We say that the polynomial $f$ is non-degenerate if

$$
\partial f_{\Delta} / \partial z_{1}=\cdots=\partial f_{\Delta} / \partial z_{n}=0
$$

has no solutions in $(\mathbb{C} \backslash\{0\})^{n}$ for any face $\Delta$ of $\Gamma(f)$. We say that a hypersurface singularity defined by $f$ at the origin is non-degenerate if $f$ is a non-degenerate polynomial.

The non-degenerate hypersurface simple $K 3$ singularities are classified as follows:
Theorem 1.2 (Watanabe [25]). Let $f=\sum a_{k} z^{k} \in \mathbb{C}\left[z_{1}, \ldots, z_{4}\right]$ be a non-degenerate polynomial defining an isolated singularity at the origin of $\mathbb{C}^{4}$. Then the singularity is a simple $K 3$ singularity if and only if $\Gamma(f)$ contains $(1,1,1,1)$ and the face $\Delta_{0}(f)$ of $\Gamma(f)$ containing $(1,1,1,1)$ in its relative interior is of dimension 3.

Definition 1.3. Let $f \in \mathbb{C}\left[z_{1}, \ldots, z_{4}\right]$ be a non-degenerate polynomial defining a simple $K 3$ singularity at the origin, and let $\Delta_{0}(f)$ be the face of $\Gamma(f)$ containing $(1,1,1,1)$ in its relative interior. Then the weight-vector $\alpha(f)$ of $f$ is the vector $\alpha(f)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \in$ $\mathbb{Q}_{>0}^{4}$ with $\sum \alpha_{i}=1$ such that the 3 -dimensional polygon $\Delta_{0}(f)$ is perpendicular to $\alpha(f)$ in $\mathbb{R}^{4}$.

Yonemura [26], and independently Fletcher [5], classified all vectors $\alpha \in \mathbb{Q}_{>0}^{4}$ that appear as the weight-vector $\alpha(f)$ of a non-degenerate polynomial $f$ defining a hypersurface simple $K 3$ singularity, and made the famous list of ninety-five weight-vectors, which is also called Reid's 95 examples. They also provide a non-degenerate quasi-homogeneous polynomial defining a hypersurface simple $K 3$ singularity for each weight-vector in the list. Throughout this paper, we use the numbering of the weight-vectors given in Yonemura's list [26, Table 2.2].

Definition 1.4. Let $(X, x)$ be a hypersurface simple $K 3$ singularity defined by a polynomial $f=\sum a_{k} z^{k}$. We say that $f$ is semi-quasi-homogeneous if $f_{\Delta_{0}}=0$ defines an isolated singularity at the origin, where

$$
f_{\Delta_{0}}:=\sum_{k \in \Delta_{0}(f)} a_{k} z^{k}
$$

is the principal part of $f$.
Moreover, we have the following result, proved by Tomari [23] (see also [26, Theorem 3.1]) and Yonemura [26, Theorem 4.2]:

Theorem 1.5. Let $(X, x)$ be a hypersurface simple $K 3$ singularity defined by a nondegenerate semi-quasi-homogeneous polynomial of weight-vector $\alpha=\left(p_{1} / p, \ldots, p_{4} / p\right)$, where $p, p_{1}, \ldots, p_{4}$ are positive integers such that $\operatorname{gcd}\left(p_{1}, \ldots, p_{4}\right)=1$. Then $(X, x)$ has a unique minimal resolution $\pi^{\prime}:\left(X^{\prime}, K^{\prime}\right) \rightarrow(X, x)$, which is given by the weighted blowup of $\mathbb{C}^{4}$ with weight $\left(p_{1}, \ldots, p_{4}\right)$. The exceptional divisor $K^{\prime}$ is a normal $K 3$ surface with only rational double points of type $A_{l}$, and the $A D E$-type $R_{K^{\prime}}$ of $\operatorname{Sing}\left(K^{\prime}\right)$ is determined by $\alpha$, where the $A D E$-type is a finite formal sum of symbols $A_{l}(l \geq 1), D_{m}(m \geq 4)$ and $E_{n}(n=6,7,8)$ with non-negative integer coefficients.

There is a list of $\operatorname{Sing}\left(K^{\prime}\right)$ for 95 weight-vectors in [26]. The following are well-defined:

$$
\begin{aligned}
& R(\alpha):=R_{K^{\prime}}:=\sum a_{l} A_{l}+\sum d_{m} D_{m}+\sum e_{n} E_{n} . \\
& r(\alpha):=r\left(K^{\prime}\right) \\
&:=\sum a_{l} l+\sum d_{m} m+\sum e_{n} n
\end{aligned}
$$

where $r(\alpha)$ is called the total Milnor number.
We show that the second homology groups of the links are free when the hypersurface simple $K 3$ singularities are defined by non-degenerate and semi-quasi-homogeneous polynomials. In order to calculate the second homology groups of the links in higher dimensions, the monodromy of the Milnor fibration is often used (see also [12] and [9]). However a different method is described in this paper, which uses the information of the normal $K 3$ surfaces that appears as the exceptional divisor of the resolution of the singularity. The main result is as follows:

Theorem 1.6. The link $L$ of a hypersurface simple $K 3$ singularity $(X, x)$ defined by a non-degenerate semi-quasi-homogeneous polynomial of weight-vector $\alpha$ is diffeomorphic to the connected sum of $21-r(\alpha)$ copies of $S^{2} \times S^{3}$.

The plan of this paper is as follows. In $\S 2$ and in $\S 3$, we recall known results of topological types of the hypersurface singularities and Smale's result in [22], respectively. In §4, we prove Theorem 1.6. From Smale's result, the key point of the proof of Theorem 1.6 is to calculate the second homology group $H_{2}(L, \mathbb{Z})$ of the link $L$ of a hypersurface simple $K 3$ singularity $(X, x)$. In $\S 5$, we give a partial affirmative answer for Orlik's Conjecture 3.2 stated in [16]. In $\S 6$, we show that the topological types of hypersurface simple $K 3$
singularities defined by non-degenerate semi-quasi-homogeneous polynomials are different when the weight-vectors are different (see Theorem 6.1). In order to show this, we use Lê Dũng Tráng's result in [10]: the characteristic polynomial of the monodromy of the Milnor fibration is a topological invariant. As a corollary, we give a partial affirmative answer for Saeki's problem stated in [18] for four variables, which is related to Zariski's multiplicity problem [27]: the weight-vectors of non-degenerate semi-quasi-homogeneous polynomials defining simple $K 3$ singularities are topological invariants (see Corollary 6.3).

The author would like to express her gratitude to Professor Ichiro Shimada for his constructive discussion and constant support.

## 2 Topological types of hypersurface singularities

Let $n$ be an integer $\geq 2$, and let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ and $g:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be germs of holomorphic functions with isolated critical points at the origin. We put $V_{f}:=f^{-1}(0)$ and $V_{g}:=g^{-1}(0)$.

Definition 2.1. We say that $f$ and $g$ are topologically equivalent if there exists a homeomorphism germ $\varphi:\left(\mathbb{C}^{n}, 0\right) \leadsto\left(\mathbb{C}^{n}, 0\right)$ satisfying $\varphi\left(V_{f}\right)=V_{g}$.

Let $\epsilon$ be a sufficiently small positive real number. We put $D_{\epsilon}^{2 n}:=\left\{z \in \mathbb{C}^{n} \mid\|z\| \leq \epsilon\right\}$ and $S_{\epsilon}^{2 n-1}:=\partial D_{\epsilon}^{2 n}$. The pair ( $S_{\epsilon}^{2 n-1}, S_{\epsilon}^{2 n-1} \cap V_{f}$ ) (or simply $S_{\epsilon}^{2 n-1} \cap V_{f}$ ) is called the link of the singularity.

Definition 2.2. We say that $f$ and $g$ are link equivalent if $\left(S_{\epsilon}^{2 n-1}, S_{\epsilon}^{2 n-1} \cap V_{f}\right)$ is homeomorphic to ( $S_{\epsilon^{\prime}}^{2 n-1}, S_{\epsilon^{\prime}}^{2 n-1} \cap V_{g}$ ) for all sufficiently small $\epsilon$ and $\epsilon^{\prime}$.

The link equivalence implies the topological equivalence because ( $D_{\epsilon}^{2 n}, D_{\epsilon}^{2 n} \cap V_{f}$ ) is homeomorphic to the cone over the link ( $S_{\epsilon}^{2 n-1}, S_{\epsilon}^{2 n-1} \cap V_{f}$ ) (see [12, Theorem 2.10]). The converse was proved by Saeki in [19]. Therefore we have the following:

Theorem 2.3 ( $[12,19]$ ). Two germs $f$ and $g$ of holomorphic functions with isolated critical points are topologically equivalent if and only if $f$ and $g$ are link equivalent.

Let $h: F \rightarrow F$ be the characteristic homeomorphism of the Milnor fiber $F$ of the fibration

$$
\phi: S_{\epsilon}^{2 n-1} \backslash\left(S_{\epsilon}^{2 n-1} \cap V_{f}\right) \rightarrow S^{1}
$$

associated to $f$. We denote by

$$
\Delta_{f}(t):=\operatorname{det}\left(t I-h_{*}\right)
$$

the characteristic polynomial of the monodromy $h_{*}: H_{n-1}(F, \mathbb{C}) \rightarrow H_{n-1}(F, \mathbb{C})$ on $H_{n-1}(F, \mathbb{C})$. The Milnor number $\mu(f)$ of $f$ is defined by

$$
\mu(f):=\operatorname{dim}_{\mathbb{C}} \mathbb{C}\left[\left[z_{1}, \ldots, z_{n}\right]\right] /\left(\partial f / \partial z_{1}, \ldots, \partial f / \partial z_{n}\right)
$$

Then we have the following:
Theorem 2.4 ([10] Theorem 3.3). If two germs $f$ and $g$ are topologically equivalent, then $\Delta_{f}(t)=\Delta_{g}(t)$ and $\mu(f)=\mu(g)$ hold.

## 3 Smale's theorem

Let $f \in \mathbb{C}\left[z_{1}, \ldots, z_{4}\right]$ be a polynomial defining an isolated singularity at the origin of $\mathbb{C}^{4}$. Then the link

$$
K:=f^{-1}(0) \cap S_{\epsilon}^{7}
$$

is a simply connected closed spin $C^{\infty}$-manifold of dimension 5 . By the following result of Smale, the diffeomorphism type of the link $K$ is determined by $H_{2}(K)$.

Theorem 3.1 (Smale [22]). There exists a one-to-one correspondence $\varphi$ from the set of isomorphism classes of simply connected closed spin $C^{\infty}$-manifolds of dimension 5 to the set of isomorphism classes of finitely generated abelian groups.

Let $M$ be a simply connected closed spin $C^{\infty}$-manifold of dimension 5, and let $H_{2}(M)$ be $F \oplus T$, where $F$ is the free part and $T$ is the torsion part. Then the correspondence $\varphi$ is given by $\varphi(M):=F \oplus(1 / 2) T$, where $T=(1 / 2) T \oplus(1 / 2) T$.

As a corollary, we have the following:
Corollary 3.2. Let $M$ be a simply connected closed spin 5-dimensional $C^{\infty}$-manifold. If $H_{2}(M)$ is free of rank $r$, then $M$ is diffeomorphic to the connected sum of $r$ copies of $S^{2} \times S^{3}$.

## 4 Proof of Theorem 1.6

### 4.1 Preparations

Let $L$ be the link of a hypersurface simple $K 3$ singularity $(X, x)$ defined by a nondegenerate semi-quasi-homogeneous polynomial $f$ of weight-vector $\alpha$. In order to show Theorem 1.6, it is enough to show the following proposition according to Smale's classification.

Proposition 4.1. The second homology group $H_{2}(L)$ of the link $L$ is a free group of the rank $21-r(\alpha)$.

Further the following proposition also holds:
Proposition 4.2. Let $\left(X_{1}, x_{1}\right)$ and $\left(X_{2}, x_{2}\right)$ be hypersurface simple $K 3$ singularities defined by non-degenerate semi-quasi-homogeneous polynomials $f_{1}$ and $f_{2}$, respectively, of the same weight-vector $\alpha:=\alpha\left(f_{1}\right)=\alpha\left(f_{2}\right)$. If Proposition 4.1 holds for $\left(X_{1}, x_{1}\right)$, then Proposition 4.1 holds for ( $X_{2}, x_{2}$ ).

Proof. We put $\alpha=\left(p_{1} / p, p_{2} / p, p_{3} / p, p_{4} / p\right)$, where $p, p_{1}, \ldots, p_{4}$ are positive integers such that $\operatorname{gcd}\left(p_{1}, \ldots, p_{4}\right)=1$. We choose a sufficiently large $N$, and consider the space $\mathbb{C}\left[z_{1}, \ldots, z_{4}\right]_{N}$ of all polynomials of degree $\leq N$. Then there exists a Zariski open dense subset $\mathcal{U}_{\alpha, N}$ of the linear subspace

$$
\overline{\mathcal{U}}_{\alpha, N}:=\left\{\sum a_{k} z^{k} \mid a_{k}=0 \text { for any } k=\left(k_{1}, \ldots, k_{4}\right) \text { with } k \cdot \alpha \leq 1\right\}
$$

of $\mathbb{C}\left[z_{1}, \ldots, z_{4}\right]_{N}$ such that $\mathcal{U}_{\alpha, N}$ contains both $f_{1}$ and $f_{2}$, and that, if $g \in \mathcal{U}_{\alpha, N}$, then $g$ is a non-degenerate semi-quasi-homogeneous polynomial defining a hypersurface simple $K 3$ singularity of weight-vector $\alpha$. Consider the universal family

$$
\mathcal{X}_{\alpha, N}:=\left\{(x, g) \in \mathbb{C}^{4} \times \mathcal{U}_{\alpha, N} \mid g(x)=0\right\} \subset \mathbb{C}^{4} \times \mathcal{U}_{\alpha, N}
$$

of hypersurface simple $K 3$ singularities of weight-vector $\alpha$ defined by polynomials in $\mathcal{U}_{\alpha, N}$. Then we have a simultaneous minimal resolution of these singularities, because, by [26, Theorem 3.1], the weighted blow-up of $\mathbb{C}^{4}$ with weight $\left(p_{1}, \ldots, p_{4}\right)$ yields the minimal resolution for each member $X_{g}:=\{g=0\}$ of the family $\mathcal{X}_{\alpha, N} \rightarrow \mathcal{U}_{\alpha, N}$. In particular, the exceptional divisors $K_{g}^{\prime}$ of the minimal resolution of $X_{g}$ form a family over $\mathcal{U}_{\alpha, N}$, and all members are normal $K 3$ surfaces with the same type of rational double points by [26, Theorem 4.2]. Since $\mathcal{U}_{\alpha, N}$ is connected, we have the required result.

Therefore, in proving Proposition 4.1, we can assume that $(X, x)$ is the hypersurface simple $K 3$ singularity defined by the non-degenerate quasi-homogeneous polynomial of weight-vector $\alpha$ given in Yonemura [26, Table 2.2].

Note the condition that a polynomial contains a term of the form $z_{i}^{n}$ or $z_{i}^{n} z_{j}$, in Yonemura's paper [26], which is equal to the necessary conditions for a polynomial having an isolated singularity (see [20, Corollary 1.6]).

Summarizing the above results, it is enough to show the following theorem in order to show Theorem 1.6,

Theorem 4.3. Let $L$ be the link of a hypersurface simple K3 singularity ( $X, x$ ) defined by a non-degenerate quasi-homogeneous polynomial of weight-vector $\alpha$. Then the second homology group $H_{2}(L)$ is a free group of the rank $21-r(\alpha)$.

### 4.2 Resolutions of $(X, x)$

The link of a hypersurface simple $K 3$ singularity $(X, x)$ defined by a non-degenerate quasi-homogeneous polynomial of weight-vector $\alpha$ is considered as the boundary of the neighborhood of the smooth exceptional divisor in the ambient space of the singularity $(X, x)$. In order to show Theorem 4.3, first we consider the weighted blow-up of $\mathbb{C}^{4}$ at the origin $0 \in \mathbb{C}^{4}$ by using the method of toric varieties (see [7], [14], [15]).

Let $p:=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ be the quadruple of positive integers with $\operatorname{gcd}\left(p_{i}, p_{j}, p_{k}\right)=1$ for all distinct $i, j, k$. Then the weighted blow-up

$$
\Pi:\left(V, \mathbb{P}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right) \rightarrow\left(\mathbb{C}^{4}, 0\right)
$$

with weight $p$, where $\mathbb{P}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is the weighted projective space, is constructed as follows: Let $N:=\mathbb{Z}^{4}$ and let $M:=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$ be the dual $\mathbb{Z}$-module of $N$. A subset $\sigma$ of $N_{\mathbb{R}}:=N \otimes_{\mathbb{Z}} \mathbb{R}$ is called a cone if there exists $n_{1}, \ldots, n_{s} \in N$ such that $\sigma$ is written as

$$
\sigma:=\left\{\sum_{i=1}^{s} t_{i} n_{i} \mid t_{i} \in \mathbb{R}_{\geq 0}\right\}
$$

which we simply denote $\sigma:=\left\langle n_{1}, \ldots, n_{s}\right\rangle$ and call $n_{1}, \ldots, n_{s}$ the generators of $\sigma$. For a cone $\sigma$ in $N_{\mathbb{R}}$, we define the dual cone of $\sigma$ by

$$
\check{\sigma}:=\left\{m \in M_{\mathbb{R}} \mid m(u) \geq 0 \text { for any } u \in \sigma\right\},
$$

and associate a normal variety

$$
X_{\sigma}:=\operatorname{Spec} \mathbb{C}[\check{\sigma} \cap M]
$$

with the cone $\sigma$, where $\mathbb{C}[\check{\sigma} \cap M]$ is a $\mathbb{C}$-algebra generated by $z^{m}$ for $m \in \check{\sigma} \cap M$. We assume that the generators $n_{1}, \ldots, n_{s}$ of a cone $\sigma$ consist of primitive elements of $N$, i.e. each $n_{i}$ satisfied $n_{i} \mathbb{R} \cap N=n_{i} \mathbb{Z}$. We define the determinant $\operatorname{det} \sigma$ of a cone $\sigma$ as the greatest common divisor of all $(s, s)$ minors of the matrix $\left(n_{i j}\right)$, where $n_{i}:=\left(n_{i 1}, \ldots, n_{i 4}\right)$.

Let $\sigma \subset N_{\mathbb{R}}=\mathbb{R}^{4}$ be the first quadrant of $\mathbb{R}^{4}$, i.e. $\sigma:=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$ where $e_{1}:=$ $(1,0,0,0), \ldots, e_{4}:=(0,0,0,1)$. We divide the cone $\sigma$ into four cones by adding the vector $p=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ in $\sigma$.

$$
\sigma:=\bigcup_{i=1}^{4} \sigma_{i}, \quad \text { where } \sigma_{i}:=\left(p, e_{j}, e_{k}, e_{l}\right)
$$

From the inclusion $\sigma_{i} \subset \sigma$, we obtain natural morphisms

$$
\Pi_{i}: V_{i} \rightarrow \operatorname{Spec} \mathbb{C}[\check{\sigma} \cap M]=\mathbb{C}^{4}
$$

where $V_{i}:=\operatorname{Spec} \mathbb{C}\left[\check{\sigma}_{i} \cap M\right]$. Let

$$
V:=\bigcup_{i=1}^{4} V_{i}
$$

be the union of $V_{i}$ which is glued along the images of $\Pi_{i}$. Then we have a morphism

$$
\Pi: V \rightarrow \mathbb{C}^{4}
$$

where

$$
V-\Pi^{-1}(0) \simeq \mathbb{C}^{4}-\{0\} \quad \text { and } \quad \Pi^{-1}(0)=\mathbb{P}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)
$$

Let $X^{\prime}$ be the proper transform of $X$ by $\Pi$. Let

$$
\pi:=\left.\Pi\right|_{X^{\prime}}
$$

and the exceptional set

$$
K^{\prime}:=\pi^{-1}(0) .
$$

Then

$$
\pi:\left(X^{\prime}, K^{\prime}\right) \rightarrow(X, x)
$$

is the weighted blow-up with weight $p$, and $K^{\prime}$ is a normal $K 3$ surface. The minimality of the weighted blow-up and the singularities on normal $K 3$ surfaces were stated in Theorem 1.5.

### 4.3 Resolutions of ( $\left.X^{\prime}, K^{\prime}\right)$

In this section, we study the resolution of $\left(X^{\prime}, K^{\prime}\right)$ because we need a smooth exceptional divisor $\widetilde{K^{\prime}}$ in the ambient space of the singularity to show Theorem 4.3 (see §4.5). Due to Theorem 1.5, it is enough to consider isolated cyclic quotient singularities of dimension 3.

Let $\mathcal{C}_{n}=\{g\}$ be a cyclic group of order $n$. The generator $g$ acts on $\mathbb{C}^{3}$ by

$$
g:\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(\xi z_{1}, \xi^{q_{1}} z_{2}, \xi^{q_{2}} z_{3}\right)
$$

where $\xi$ is a primitive $n$th root of unity and $q_{1}, q_{2}$ are integers satisfying $0<q_{1}, q_{2}<n$ and $\operatorname{gcd}\left(n, q_{1}\right)=\operatorname{gcd}\left(n, q_{2}\right)=1$. Note that, in this case, we can take the canonical generator $g \in \mathcal{C}_{n}$ and define the canonical way of the resolution which is minimal (see [6]). Here we express the singularities in terms of toric varities as follows:

$$
\mathbb{C}^{3} / \mathcal{C}_{n}=\operatorname{Spec} \mathbb{C}\left[\check{\sigma} \cap \mathbb{Z}^{3}\right], \quad \text { where } \sigma=\left\langle\left(n,-q_{1},-q_{2}\right),(0,1,0),(0,0,1)\right\rangle
$$

We denote this cyclic quotient singularity by $N_{q_{1}, q_{2}}^{n}$.
Consider the case of a nondegenerate hypersurface simple $K 3$ singularity with weightvector $\alpha=\left(p_{1} / p, p_{2} / p, p_{3} / p, p_{4} / p\right)$. From the results of Yonemura [26, Proposition 3.4], the cone is expressed as follows:

$$
\sigma=\left\langle\left(a, p_{k}, p_{l}\right),(0,1,0),(0,0,1)\right\rangle,
$$

where $a=a_{i j}:=\operatorname{gcd}\left(p_{i}, p_{j}\right) \geq 2$ if $p_{i} \mid p$ or $a=p_{i} \geq 2$ if $p_{i} \nmid p$ for $\{i, j, k, l\}=\{1,2,3,4\}$. Moreover, the condition $a \mid\left(p_{k}+p_{l}\right)$ for $a=a_{i j}$ or $p_{i}$ is always satisfied from $p=\sum_{i=1}^{4} p_{i}$ and $\left[26\right.$, Proposition 2.3]. Therefore by changing the generator of $\mathcal{C}_{a}$, we have $\left(p_{k}, p_{l}\right) \equiv$ $(a-1,1) \bmod a$. The following lemma holds.

Lemma 4.4. The cone is expressed as

$$
\sigma=\langle(a, a-1,1),(0,1,0),(0,0,1)\rangle,
$$

where $a=a_{i j}$ or $p_{i}$ for $\{i, j\} \subset\{1,2,3,4\}$.
Note that the above cone $\sigma$ defines the singularity $N_{1-a,-1}^{a}$. By changing the generator of $\mathcal{C}_{a}$ again, we have $N_{1-a,-1}^{a} \cong N_{1, a-1}^{a}$. It follows from the result of Fujiki [6, Lemma 6] that $N_{1, a-1}^{a} \cong N_{a-1, a-1}^{a}$.

Set $\operatorname{Sing}\left(K^{\prime}\right):=\left\{x_{1}, \ldots, x_{n}\right\}$, and the Milnor number of $x_{i}$ is denoted by $\mu\left(x_{i}\right)$. Then $r(\alpha)=r\left(K^{\prime}\right)=\sum_{i=1}^{n} \mu\left(x_{i}\right)$.

Proposition 4.5. Let $\left(X^{\prime}, K^{\prime}\right)$ be the weighted blow-up of $(X, x)$ with weight $p$. Let $\widetilde{\pi^{\prime}}$ : $\left(\widetilde{X^{\prime}}, \widetilde{K^{\prime}}\right) \rightarrow\left(X^{\prime}, K^{\prime}\right)$ be a toric resolution of $\left(X^{\prime}, K^{\prime}\right)$. Then $\widetilde{X^{\prime}}$ is a smooth six-dimensional manifold and $\widetilde{K^{\prime}}=K \cup R$, where $K$ is a smooth K3 surface, $R=\bigcup_{i=1}^{n} R_{i}$ is the disjoint union of the union $R_{i}$ of rational surfaces, and $K \cap R_{i}$ is a tree of $\mu\left(x_{i}\right)$ rational curves $\mathbb{P}^{1}$. More precisely, $R_{i}=\bigcup_{j=1}^{\mu\left(x_{i}\right)} \mathbb{F}_{j}$, where $\mathbb{F}_{j}\left(2 \leq j \leq \mu\left(x_{i}\right)\right)$ is isomorphic to the Hirzebruch surface of degree $j \geq 2$ and $\mathbb{F}_{1}$ is isomorphic to the projective plane $\mathbb{P}^{2}$ such that $\mathbb{F}_{j}$ and $\mathbb{F}_{j+1}$ intersect transversally with $\mathbb{F}_{j} \cap \mathbb{F}_{j+1}=\mathbb{P}^{1}$, and no three of the Hirzebruch surfaces intersect.


Proof. For each singularity $x_{i}$ on $K^{\prime}$, it follows from Lemma 4.4 that it is enough to consider the cone $\sigma=\langle(a, a-1,1),(0,1,0),(0,0,1)\rangle$, where $a=\mu\left(x_{i}\right)+1$. By using Oka's method in [15], a simplicial subdivision of $\sigma$ is obtained by adding new 1-dimensional cones $R_{\lambda}$ for $1 \leq \lambda \leq a-1$,
$R_{\lambda}:=\frac{1}{a-(\lambda-1)}(a, a-1,1)+\frac{1}{a-(\lambda-1)}(0,1,0)+\frac{a-\lambda}{a-(\lambda-1)}(\lambda-1, \lambda-1,1)=(\lambda, \lambda, 1)$,
and subdividing by induction. The orbit $O_{R_{\lambda}}$ has dimension 2 and the orbit closure $V\left(R_{\lambda}\right)$ is constructed from the cones of $\sigma$ containing $R_{\lambda}$. From the configuration of the cones of $\sigma$, due to the known results on two-dimensional compact non-singular toric varieties in Fulton [7] and Fujiki [6, Corollary to Lemma 6](see also [14] and [24]), we have required results: the orbit closure $V\left(R_{\lambda}\right)$ for $1 \leq \lambda \leq a-2$ is isomorphic to the Hirzebruch surface $\mathbb{F}_{j}$ of degree $j \geq 2$, and the orbit closure $V\left(R_{a-1}\right)$ is isomorphic to the projective plane $\mathbb{P}^{2}$.

### 4.4 Homology group $H_{*}\left(\widetilde{K^{\prime}}\right)$

Here we study the homology group $H_{*}\left(\widetilde{K^{\prime}}\right)$, which will be used to show Theorem 4.3.
Lemma 4.6. Let $R=\bigcup_{i=1}^{n} R_{i}$, where $R_{i}=\bigcup_{j=1}^{\mu\left(x_{i}\right)} \mathbb{F}_{j}$ in Proposition 4.5. Then

$$
H_{*}(R) \cong \begin{cases}\mathbb{Z}^{r\left(K^{\prime}\right)} & \text { if } *=2,4 \\ \mathbb{Z}^{n} & \text { if } *=0 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. First we calculate the homology group $H_{*}\left(R_{i}\right)$ of $R_{i}$. For $j=1$, we have

$$
H_{*}\left(\mathbb{F}_{1}\right) \cong H_{*}\left(\mathbb{P}^{2}\right) \cong \begin{cases}\mathbb{Z} & \text { if } *=0,2,4, \\ 0 & \text { otherwise }\end{cases}
$$

For $2 \leq j \leq \mu\left(x_{i}\right)$, we have

$$
H_{*}\left(\mathbb{F}_{j}\right) \cong \begin{cases}\mathbb{Z} & \text { if } *=0,4 \\ \mathbb{Z} \oplus \mathbb{Z} & \text { if } *=2 \\ 0 & \text { otherwise }\end{cases}
$$

It follows from the Mayer-Vietoris sequence by induction on the number $\mu\left(x_{i}\right) \geq 2$ that

$$
H_{*}\left(R_{i}\right) \cong H_{*}\left(\bigcup_{j=1}^{\mu\left(x_{i}\right)} \mathbb{F}_{j}\right) \cong \begin{cases}\mathbb{Z}^{\mu\left(x_{i}\right)} & \text { if } *=2,4 \\ \mathbb{Z} & \text { if } *=0 \\ 0 & \text { otherwise }\end{cases}
$$

which also holds for $\mu\left(x_{i}\right)=1$. Since $R=\bigcup_{i=1}^{n} R_{i}$ and $R_{i} \cap R_{j}=\emptyset$ for $i \neq j, H_{*}(R)=$ $H_{*}\left(\bigcup_{i=1}^{n} R_{i}\right) \cong \bigoplus_{i=1}^{n} H_{*}\left(R_{i}\right)$, which completes the proof.

Lemma 4.7.

$$
H_{*}(K \cap R) \cong \begin{cases}\mathbb{Z}^{r\left(K^{\prime}\right)} & \text { if } *=2 \\ \mathbb{Z}^{n} & \text { if } *=0 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. It follows from Theorem 1.5 that $K \cap R=\bigcup_{i=1}^{n} E_{i}$, where $E_{i}=\bigcup_{j=1}^{\mu\left(x_{i}\right)} \mathbb{P}_{j}^{1}$ is a tree of $\mu\left(x_{i}\right)$ rational curves $\mathbb{P}_{j}^{1}$ and $E_{i} \cap E_{j}=\emptyset$ for $i \neq j$. Consider the Mayer-Vietoris sequence by induction on the number $\mu\left(x_{i}\right)$, we have

$$
H_{*}\left(E_{i}\right) \cong \begin{cases}\mathbb{Z}^{\mu\left(x_{i}\right)} & \text { if } *=2 \\ \mathbb{Z} & \text { if } *=0 \\ 0 & \text { otherwise }\end{cases}
$$

Therefore we obtain $H_{*}(K \cap R)=H_{*}\left(\bigcup_{i=1}^{n} E_{i}\right)=\bigoplus_{i=1}^{n} H_{*}\left(E_{i}\right)$, which completes the proof.

Then we obtain the homology group $H_{*}\left(\widetilde{K^{\prime}}\right)$ of $\widetilde{K^{\prime}}=K \cup R$.
Proposition 4.8.

$$
H_{*}\left(\widetilde{K^{\prime}}\right) \cong \begin{cases}\mathbb{Z} & \text { if } *=0 \\ \mathbb{Z}^{22} & \text { if } *=2, \\ \mathbb{Z}^{r\left(K^{\prime}\right)+1} & \text { if } *=4, \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. Since $K$ is a smooth $K 3$ surface, we have

$$
H_{*}(K) \cong \begin{cases}\mathbb{Z} & \text { if } *=0,4 \\ \mathbb{Z}^{22} & \text { if } *=2 \\ 0 & \text { otherwise }\end{cases}
$$

Consider the Mayer-Vietoris sequence,

$$
\rightarrow H_{*}(K \cap R) \rightarrow H_{*}(K) \oplus H_{*}(R) \rightarrow H_{*}\left(\widetilde{K^{\prime}}\right) \rightarrow
$$

It follows from the above lemmas and the exactness that we have the homology groups $H_{*}\left(\widetilde{K^{\prime}}\right)$.

### 4.5 Proof of Theorem 4.3

Proof. Let $N:=N\left(\widetilde{K^{\prime}}\right)$ be a smooth neighborhood of $\widetilde{K^{\prime}}$ in $\widetilde{X^{\prime}}$. Then $L:=\partial N$ is the link of the singularity. From Smale's result, it is enough to show $H_{2}(L)$ is a free group of the rank $21-r\left(K^{\prime}\right)$. Consider the exact sequence of a pair $(N, L)$

$$
\rightarrow H_{3}(N, L) \rightarrow H_{2}(L) \rightarrow H_{2}(N) \rightarrow H_{2}(N, L) \rightarrow H_{1}(L) \rightarrow .
$$

Note that $L$ is simply connected. By the Poincaré-Lefschetz duality, the universal coefficient theorem and Proposition 4.8 we have

$$
\begin{aligned}
& H_{3}(N, L) \cong H^{3}(N) \cong H^{3}\left(\widetilde{K^{\prime}}\right) \cong \operatorname{Hom}\left(H_{3}\left(\widetilde{K^{\prime}}\right), \mathbb{Z}\right) \oplus \operatorname{Ext}\left(H_{2}\left(\widetilde{K^{\prime}}\right), \mathbb{Z}\right)=0 \\
& H_{2}(N) \cong H_{2}\left(\widetilde{K^{\prime}}\right) \cong \mathbb{Z}^{22}, \\
& H_{2}(N, L) \cong H^{4}(N) \cong H^{4}\left(\widetilde{K^{\prime}}\right) \cong \operatorname{Hom}\left(H_{4}\left(\widetilde{K^{\prime}}\right), \mathbb{Z}\right) \oplus \operatorname{Ext}\left(H_{3}\left(\widetilde{K^{\prime}}\right), \mathbb{Z}\right)=\mathbb{Z}^{r\left(K^{\prime}\right)+1}, \\
& H_{1}(L)=0
\end{aligned}
$$

Hence we obtain the required result $H_{2}(L) \cong \mathbb{Z}^{21-r\left(K^{\prime}\right)}=\mathbb{Z}^{21-r(\alpha)}$.
Remark 4.9. There exist 3-dimensional hypersurface singularities which are not hypersurface simple $K 3$ singularities, but whose links are diffeomorphic to the connected sum of some copies of $S^{2} \times S^{3}$. For example, the link of the hypersurface singularity defined by

$$
f=x^{2}+y^{2}+z^{c}+w^{d}, \text { where } 2 \leq c \leq d,
$$

is diffeomorphic to the connected sum of $n$ copies of $S^{2} \times S^{3}$, where $n=\operatorname{gcd}(c, d)-1$ (see [9]).

## 5 Orlik's Conjecture

Consider the Milnor fibration as stated in $\S 2$. Then the matrix $\left(t I-h_{*}\right)$ is equivalent to a diagonal matrix since the polynomial ring $\mathbb{C}[t]$ is a principal ideal domain. Therefore there exist unimodilar matrices $U(t)$ and $V(t)$ with entries in $\mathbb{C}[t]$ so that

$$
U(t)\left(t I-h_{*}\right) V(t)=\operatorname{diag}\left(m_{1}(t), \ldots, m_{\mu(f)}(t)\right)
$$

where $m_{i}(t)$ divides $m_{i+1}(t)$ for $1 \leq i \leq \mu(f)$. The minimal polynomial $m_{\mu(f)}(t)$ contains each irreducible factor of the characteristic polynomial $\Delta_{f}(t)$. Suppose $f$ is quasihomogenous. Then Orlik's Conjecture 3.2 for the homology group of the link $L$ in [16] is as follows:

$$
H_{n-2}(L ; \mathbb{Z}) \cong \mathbb{Z}_{m_{1}(1)} \oplus \mathbb{Z}_{m_{2}(1)} \oplus \cdots \oplus \mathbb{Z}_{m_{\mu(f)}(1)}
$$

where $\mathbb{Z}_{1}$ is the trivial group and $\mathbb{Z}_{0}$ is the infinite cyclic group.
For three variables, the conjecture folds from the result of Orlik and Wagreich in [17]. In general, the characteristic polynomial $\Delta_{f}(t)$ of the monodromy and the Milnor number $\mu(f)$ are calculated from the weight-vector $\alpha(f)$ by means of the formula of Milnor and Orlik [13]. The results are given in Table 5.1, where $\Phi_{k}$ denotes the $k$ th cyclotomic polynomial.

By using this table, we can calculate $m_{i}(1)$ for $1 \leq i \leq \mu(f)$ for each quasi-homogeneous defining polynomial in Yonemura's list: for example, in the case No. 1 of Table 5.1, we have $\Delta_{f}(t)=\Phi_{1}^{21} \Phi_{2}^{20} \Phi_{4}^{20}$ and $\mu(f)=81$. Then $m_{i}(t)=1$ for $1 \leq i \leq 60, m_{61}(t)=$ $\Phi_{1}, m_{i}(t)=\Phi_{1} \Phi_{2} \Phi_{4}$ for $62 \leq i \leq 81$. Hence we have $m_{i}(1)=0$ for $61 \leq i \leq 81$. Together with Theorem 1.6, we have the following corollary.

Corollary 5.1. Let $f$ be a non-degenerate semi-quasi-homogeneous polynomial defining hypersurface simple K3 singularity at the origin. Let $L$ be the associated link of the singularity defined by $f$. Then $H_{2}(L ; \mathbb{Z}) \cong \mathbb{Z}_{m_{1}(1)} \oplus \mathbb{Z}_{m_{2}(1)} \oplus \cdots \oplus \mathbb{Z}_{m_{\mu(f)}(1)}$.

## 6 Topological types

From the result of Theorem 1.6, the links of hypersurface simple $K 3$ singularities defined by non-degenerate semi-quasi-homogeneous polnomials are diffeomorphic when the total Milnor numbers are the same: for example, the links associated with the polynomials No.1: $x^{4}+y^{4}+z^{4}+w^{4}$ and No.5: $x^{2}+y^{6}+z^{6}+w^{6}$ in Yonemura's list are diffeomorphic to the connected sum of 21 copies of $S^{2} \times S^{3}$ because both exceptional divisors are smooth. In this section, we consider topological types of hypersurface simple $K 3$ singularities defined by non-degenerate semi-quasi-homogeneous polynomials.

Theorem 6.1. Let $f$ and $g$ be non-degenerate semi-quasi-homogeneous polynomials defining hypersurface simple $K 3$ singularities $\left(X_{f}, x\right)$ and $\left(X_{g}, x^{\prime}\right)$ at the origin of weightvector $\alpha(f)$ and $\alpha(g)$, respectively. If $\alpha(f) \neq \alpha(g)$, then $\Delta_{f}(t) \neq \Delta_{g}(t)$. Moreover, $\left(X_{f}, x\right)$ and $\left(X_{g}, x^{\prime}\right)$ are not topological equivalent.

For the proof, we use the following lemma, which follows from the result of Lê and Ramanujam [11, Theorem 2.1] via the argument in [4, page 74].

Lemma 6.2. Let $f=f\left(z_{1}, \ldots, z_{4}\right)$ be a semi-quasi-homogeneous polynomial defining a simple $K 3$ singularity at the origin, and let $f_{\Delta_{0}}$ be the principal part of $f$. Then $f$ and $f_{\Delta_{0}}$ are topologically equivalent.

Proof of Theorem 6.1. By Lemma 6.2, we can assume that $f$ and $g$ are non-degenerate and quasi-homogeneous. It follows from Table 5.1 that we have $\Delta_{f}(t) \neq \Delta_{g}(t)$ for all 95 weight-vectors in [26]. Together with Theorem 2.4, we have required results.

As a corollary, we give a partial affirmative answer for Saeki's problem stated in [18]: whether weight-vectors are topological invariants or not.

| No. | $\Delta_{f}(t)$ | $\mu(f)$ | No. | $\Delta_{f}(t)$ | $\mu(f)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\Phi_{1}^{21} \Phi_{2}^{20} \Phi_{4}^{20}$ | 81 | 49 | $\Phi_{1}^{8} \Phi_{2}^{6} \Phi_{3}^{8} \Phi_{6}^{7} \Phi_{7}^{8} \Phi_{14}^{6} \Phi_{21}^{8} \Phi_{42}^{6}$ | 296 |
| 2 | $\Phi_{1}^{10} \Phi_{2}^{10} \Phi_{3}^{7} \Phi_{4}^{8} \Phi_{6}^{8} \Phi_{12}^{6}$ | 90 | 50 | $\Phi_{1}^{13} \Phi_{2}^{12} \Phi_{3}^{13} \Phi_{5}^{13} \Phi_{6}^{13} \Phi_{10}^{12} \Phi_{15}^{13} \Phi_{30}^{12}$ | 377 |
| 3 | $\Phi_{1}^{18} \Phi_{2}^{16} \Phi_{3}^{17} \Phi_{6}^{16}$ | 100 | 51 | $\Phi_{1}^{12} \Phi_{2}^{12} \Phi_{3}^{12} \Phi_{4}^{12} \Phi_{6}^{13} \Phi_{9}^{12} \Phi_{12}^{12} \Phi_{18}^{12} \Phi_{36}^{12}$ | 434 |
| 4 | $\Phi_{1}^{12} \Phi_{2}^{10} \Phi_{3}^{12} \Phi_{4}^{10} \Phi_{6}^{11} \Phi_{12}^{11}$ | 132 | 52 | $\Phi_{1}^{3} \Phi_{2}^{2} \Phi_{3}^{3} \Phi_{4}^{2} \Phi_{6}^{3} \Phi_{9}^{3} \Phi_{12}^{3} \Phi_{18}^{2} \Phi_{36}^{2}$ | 87 |
| 5 | $\Phi_{1}^{21} \Phi_{2}^{20} \Phi_{3}^{21} \Phi_{6}^{21}$ | 125 | 53 | $\Phi_{1}^{7} \Phi_{2}^{6} \Phi_{3}^{6} \Phi_{6}^{6} \Phi_{9}^{5} \Phi_{18}^{4}$ | 91 |
| 6 | $\Phi_{1}^{16} \Phi_{2}^{12} \Phi_{5}^{16} \Phi_{10}^{13}$ | 144 | 54 | $\Phi_{1}^{6} \Phi_{3}^{3} \Phi_{7}^{6} \Phi_{21}^{4}$ | 96 |
| 7 | $\Phi_{1}^{19} \Phi_{2}^{18} \Phi_{4}^{19} \Phi_{8}^{18}$ | 147 | 55 | $\Phi_{1}^{7} \Phi_{2}^{6} \Phi_{4}^{4} \Phi_{5}^{7} \Phi_{10}^{7} \Phi_{20}^{5}$ | 117 |
| 8 | $\Phi_{1}^{15} \Phi_{2}^{14} \Phi_{3}^{14} \Phi_{4}^{14} \Phi_{6}^{14} \Phi_{12}^{13}$ | 165 | 56 | $\Phi_{1}^{3} \Phi_{2}^{2} \Phi_{3}^{3} \Phi_{5}^{3} \Phi_{6}^{2} \Phi_{10}^{3} \Phi_{15}^{4} \Phi_{30}^{3}$ | 95 |
| 9 | $\Phi_{1}^{12} \Phi_{2}^{12} \Phi_{4}^{12} \Phi_{5}^{11} \Phi_{10}^{12} \Phi_{20}^{11}$ | 228 | 57 | $\Phi_{1}^{5} \Phi_{2}^{4} \Phi_{3}^{4} \Phi_{4}^{5} \Phi_{6}^{4} \Phi_{8}^{4} \Phi_{12}^{5} \Phi_{24}^{3}$ | 95 |
| 10 | $\Phi_{1}^{20} \Phi_{2}^{20} \Phi_{3}^{20} \Phi_{4}^{20} \Phi_{6}^{21} \Phi_{12}^{20}$ | 242 | 58 | $\Phi_{1}^{11} \Phi_{2}^{10} \Phi_{4}^{10} \Phi_{8}^{11} \Phi_{16}^{10}$ | 165 |
| 11 | $\Phi_{1}^{10} \Phi_{2}^{8} \Phi_{3}^{9} \Phi_{5}^{10} \Phi_{6}^{8} \Phi_{10}^{8} \Phi_{15}^{9} \Phi_{30}^{7}$ | 252 | 59 | $\Phi_{1}^{10} \Phi_{3}^{9} \Phi_{7}^{10} \Phi_{21}^{10}$ | 208 |
| 12 | $\Phi_{1}^{16} \Phi_{2}^{14} \Phi_{3}^{16} \Phi_{6}^{15} \Phi_{9}^{16} \Phi_{18}^{14}$ | 272 | 60 | $\Phi_{1}^{11} \Phi_{2}^{10} \Phi_{3}^{10} \Phi_{6}^{10} \Phi_{9}^{11} \Phi_{18}^{10}$ | 187 |
| 13 | $\Phi_{1}^{14} \Phi_{2}^{14} \Phi_{3}^{13} \Phi_{4}^{14} \Phi_{6}^{14} \Phi_{8}^{14} \Phi_{12}^{13} \Phi_{24}^{13}$ | 322 | 61 | $\Phi_{1}^{4} \Phi_{2}^{4} \Phi_{4}^{2} \Phi_{7}^{4} \Phi_{14}^{5} \Phi_{28}^{3}$ | 102 |
| 14 | $\Phi_{1}^{12} \Phi_{2}^{12} \Phi_{3}^{12} \Phi_{6}^{12} \Phi_{7}^{12} \Phi_{14}^{12} \Phi_{21}^{12} \Phi_{42}^{11}$ | 492 | 62 | $\Phi_{1}^{6} \Phi_{2}^{4} \Phi_{4}^{4} \Phi_{5}^{6} \Phi_{10}^{5} \Phi_{20}^{5}$ | 102 |
| 15 | $\Phi_{1}^{8} \Phi_{3}^{4} \Phi_{5}^{8} \Phi_{15}^{5}$ | 88 | 63 | $\Phi_{1}^{14} \Phi_{2}^{12} \Phi_{5}^{13} \Phi_{10}^{12}$ | 126 |
| 16 | $\Phi_{1}^{6} \Phi_{2}^{6} \Phi_{3}^{3} \Phi_{4}^{6} \Phi_{6}^{4} \Phi_{8}^{6} \Phi_{12}^{4} \Phi_{24}^{3}$ | 102 | 64 | $\Phi_{1}^{5} \Phi_{2}^{4} \Phi_{3}^{5} \Phi_{4}^{5} \Phi_{6}^{5} \Phi_{8}^{4} \Phi_{12}^{6} \Phi_{24}^{5}$ | 119 |
| 17 | $\Phi_{1}^{8} \Phi_{3}^{8} \Phi_{5}^{6} \Phi_{15}^{7}$ | 104 | 65 | $\Phi_{1}^{4} \Phi_{3}^{4} \Phi_{11}^{4} \Phi_{33}^{5}$ | 152 |
| 18 | $\Phi_{1}^{14} \Phi_{3}^{13} \Phi_{9}^{12}$ | 112 | 66 | $\Phi_{1}^{18} \Phi_{7}^{17}$ | 120 |
| 19 | $\Phi_{1}^{15} \Phi_{2}^{14} \Phi_{4}^{14} \Phi_{8}^{12}$ | 105 | 67 | $\Phi_{1}^{8} \Phi_{3}^{6} \Phi_{7}^{8} \Phi_{21}^{7}$ | 152 |
| 20 | $\Phi_{1}^{10} \Phi_{2}^{10} \Phi_{3}^{9} \Phi_{4}^{10} \Phi_{6}^{10} \Phi_{8}^{10} \Phi_{12}^{10} \Phi_{24}^{9}$ | 230 | 68 | $\Phi_{1}^{5} \Phi_{2}^{4} \Phi_{3}^{5} \Phi_{5}^{5} \Phi_{6}^{5} \Phi_{10}^{4} \Phi_{15}^{6} \Phi_{30}^{5}$ | 153 |
| 21 | $\Phi_{1}^{20} \Phi_{5}^{19}$ | 96 | 69 | $\Phi_{1}^{9} \Phi_{2}^{8} \Phi_{4}^{8} \Phi_{8}^{9} \Phi_{16}^{6}$ | 117 |
| 22 | $\Phi_{1}^{12} \Phi_{3}^{10} \Phi_{5}^{12} \Phi_{15}^{11}$ | 168 | 70 | $\Phi_{1}^{8} \Phi_{2}^{6} \Phi_{3}^{7} \Phi_{6}^{6} \Phi_{9}^{8} \Phi_{18}^{7}$ | 130 |
| 23 | $\Phi_{1}^{11} \Phi_{2}^{10} \Phi_{3}^{11} \Phi_{4}^{6} \Phi_{6}^{11} \Phi_{12}^{7}$ | 105 | 71 | $\Phi_{1}^{12} \Phi_{3}^{12} \Phi_{5}^{11} \Phi_{15}^{12}$ | 176 |
| 24 | $\Phi_{1}^{14} \Phi_{2}^{14} \Phi_{3}^{13} \Phi_{4}^{12} \Phi_{6}^{14} \Phi_{12}^{12}$ | 154 | 72 | $\Phi_{1}^{14} \Phi_{3}^{13} \Phi_{5}^{14} \Phi_{15}^{14}$ | 208 |
| 25 | $\Phi_{1}^{18} \Phi_{3}^{17} \Phi_{9}^{18}$ | 160 | 73 | $\Phi_{1}^{3} \Phi_{2}^{2} \Phi_{5}^{3} \Phi_{10}^{3} \Phi_{25}^{3} \Phi_{50}^{2}$ | 129 |
| 26 | $\Phi_{1}^{8} \Phi_{2}^{8} \Phi_{4}^{4} \Phi_{5}^{8} \Phi_{10}^{9} \Phi_{20}^{5}$ | 132 | 74 | $\Phi_{1}^{5} \Phi_{2}^{4} \Phi_{4}^{5} \Phi_{8}^{5} \Phi_{16}^{4} \Phi_{32}^{4}$ | 135 |
| 27 | $\Phi_{1}^{8} \Phi_{2}^{8} \Phi_{3}^{8} \Phi_{4}^{8} \Phi_{6}^{9} \Phi_{8}^{6} \Phi_{12}^{9} \Phi_{24}^{7}$ | 182 | 75 | $\Phi_{1}^{9} \Phi_{2}^{4} \Phi_{11}^{9} \Phi_{22}^{5}$ | 153 |
| 28 | $\Phi_{1}^{12} \Phi_{3}^{12} \Phi_{7}^{12} \Phi_{21}^{13}$ | 264 | 76 | $\Phi_{1}^{8} \Phi_{2}^{4} \Phi_{13}^{8} \Phi_{26}^{5}$ | 168 |
| 29 | $\Phi_{1}^{6} \Phi_{2}^{4} \Phi_{3}^{6} \Phi_{5}^{5} \Phi_{6}^{4} \Phi_{10}^{4} \Phi_{15}^{5} \Phi_{30}^{3}$ | 130 | 77 | $\Phi_{1}^{11} \Phi_{2}^{10} \Phi_{13}^{11} \Phi_{26}^{11}$ | 285 |
| 30 | $\Phi_{1}^{4} \Phi_{2}^{4} \Phi_{4}^{4} \Phi_{5}^{3} \Phi_{8}^{4} \Phi_{10}^{4} \Phi_{20}^{3} \Phi_{40}^{3}$ | 132 | 78 | $\Phi_{1}^{12} \Phi_{2}^{10} \Phi_{11}^{12} \Phi_{22}^{11}$ | 252 |
| 31 | $\Phi_{1}^{7} \Phi_{2}^{6} \Phi_{3}^{6} \Phi_{4}^{6} \Phi_{6}^{6} \Phi_{8}^{6} \Phi_{12}^{5} \Phi_{24}^{5}$ | 133 | 79 | $\Phi_{1}^{7} \Phi_{2}^{6} \Phi_{4}^{7} \Phi_{8}^{7} \Phi_{16}^{7} \Phi_{32}^{6}$ | 207 |
| 32 | $\Phi_{1}^{12} \Phi_{2}^{6} \Phi_{7}^{12} \Phi_{14}^{7}$ | 132 | 80 | $\Phi_{1}^{4} \Phi_{2}^{4} \Phi_{4}^{4} \Phi_{11}^{4} \Phi_{22}^{5} \Phi_{44}^{4}$ | 186 |
| 33 | $\Phi_{1}^{10} \Phi_{2}^{6} \Phi_{3}^{10} \Phi_{6}^{7} \Phi_{9}^{9} \Phi_{18}^{6}$ | 140 | 81 | $\Phi_{1}^{9} \Phi_{2}^{6} \Phi_{13}^{9} \Phi_{26}^{7}$ | 207 |
| 34 | $\Phi_{1}^{8} \Phi_{2}^{4} \Phi_{3}^{8} \Phi_{5}^{8} \Phi_{6}^{4} \Phi_{10}^{5} \Phi_{15}^{8} \Phi_{30}^{4}$ | 184 | 82 | $\Phi_{1}^{13} \Phi_{2}^{12} \Phi_{11}^{13} \Phi_{22}^{13}$ | 285 |
| 35 | $\Phi_{1}^{6} \Phi_{2}^{6} \Phi_{4}^{6} \Phi_{7}^{5} \Phi_{14}^{6} \Phi_{28}^{5}$ | 150 | 83 | $\Phi_{1}^{5} \Phi_{2}^{4} \Phi_{3}^{5} \Phi_{6}^{5} \Phi_{9}^{5} \Phi_{18}^{4} \Phi_{27}^{5} \Phi_{54}^{4}$ | 245 |
| 36 | $\Phi_{1}^{9} \Phi_{2}^{8} \Phi_{4}^{8} \Phi_{5}^{8} \Phi_{10}^{8} \Phi_{20}^{7}$ | 153 | 84 | $\Phi_{1}^{4} \Phi_{3}^{3} \Phi_{9}^{4} \Phi_{27}^{3}$ | 88 |
| 37 | $\Phi_{1}^{13} \Phi_{2}^{12} \Phi_{4}^{13} \Phi_{8}^{12} \Phi_{16}^{12}$ | 195 | 85 | $\Phi_{1}^{9} \Phi_{2}^{6} \Phi_{7}^{8} \Phi_{14}^{6}$ | 99 |
| 38 | $\Phi_{1}^{11} \Phi_{2}^{10} \Phi_{3}^{11} \Phi_{5}^{11} \Phi_{6}^{10} \Phi_{10}^{11} \Phi_{15}^{11} \Phi_{30}^{10}$ | 319 | 86 | $\Phi_{1}^{4} \Phi_{5}^{3} \Phi_{25}^{4}$ | 96 |
| 39 | $\Phi_{1}^{13} \Phi_{2}^{12} \Phi_{3}^{13} \Phi_{6}^{13} \Phi_{9}^{12} \Phi_{18}^{12}$ | 221 | 87 | $\Phi_{1}^{12} \Phi_{13}^{11}$ | 144 |
| 40 | $\Phi_{1}^{15} \Phi_{2}^{12} \Phi_{7}^{15} \Phi_{14}^{13}$ | 195 | 88 | $\Phi_{1}^{6} \Phi_{3}^{5} \Phi_{9}^{6} \Phi_{27}^{6}$ | 160 |
| 41 | $\Phi_{1}^{9} \Phi_{2}^{8} \Phi_{3}^{8} \Phi_{4}^{9} \Phi_{6}^{8} \Phi_{8}^{8} \Phi_{12}^{8} \Phi_{24}^{7}$ | 187 | 89 | $\Phi_{1}^{14} \Phi_{11}^{13}$ | 144 |
| 42 | $\Phi_{1}^{19} \Phi_{2}^{18} \Phi_{5}^{19} \Phi_{10}^{19}$ | 189 | 90 | $\Phi_{1}^{5} \Phi_{2}^{2} \Phi_{17}^{5} \Phi_{34}^{3}$ | 135 |
| 43 | $\Phi_{1}^{6} \Phi_{2}^{6} \Phi_{3}^{6} \Phi_{4}^{6} \Phi_{6}^{7} \Phi_{9}^{5} \Phi_{12}^{6} \Phi_{18}^{6} \Phi_{36}^{5}$ | 200 | 91 | $\Phi_{1}^{4} \Phi_{2}^{2} \Phi_{19}^{4} \Phi_{38}^{3}$ | 132 |
| 44 | $\Phi_{1}^{15} \Phi_{2}^{14} \Phi_{4}^{15} \Phi_{8}^{15} \Phi_{16}^{14}$ | 231 | 92 | $\Phi_{1}^{5} \Phi_{2}^{4} \Phi_{19}^{5} \Phi_{38}^{5}$ | 189 |
| 45 | $\Phi_{1}^{12} \Phi_{2}^{12} \Phi_{4}^{12} \Phi_{7}^{12} \Phi_{14}^{13} \Phi_{28}^{12}$ | 342 | 93 | $\Phi_{1}^{6} \Phi_{2}^{4} \Phi_{17}^{6} \Phi_{34}^{5}$ | 186 |
| 46 | $\Phi_{1}^{4} \Phi_{2}^{4} \Phi_{3}^{4} \Phi_{6}^{4} \Phi_{11}^{4} \Phi_{22}^{4} \Phi_{33}^{4} \Phi_{66}^{3}$ | 244 | 94 | $\Phi_{1}^{6} \Phi_{19}^{5}$ | 96 |
| 47 | $\Phi_{1}^{7} \Phi_{2}^{6} \Phi_{3}^{6} \Phi_{6}^{6} \Phi_{7}^{7} \Phi_{14}^{6} \Phi_{21}^{6} \Phi_{42}^{5}$ | 247 | 95 | $\Phi_{1}^{8} \Phi_{17}^{7}$ | 120 |
| 48 | $\Phi_{1}^{6} \Phi_{2}^{6} \Phi_{3}^{5} \Phi_{4}^{6} \Phi_{6}^{6} \Phi_{8}^{6} \Phi_{12}^{5} \Phi_{16}^{6} \Phi_{24}^{5} \Phi_{48}^{5}$ | 258 |  |  |  |

Table 5.1: Topological invariants

Corollary 6.3. Let $f$ and $g$ be non-degenerate semi-quasi-homogenous polynomials defining hypersurface simple $K 3$ singularities at the origin of weight-vector $\alpha(f)$ and $\alpha(g)$, respectively. If $f$ and $g$ are topologically equivalent, then $\alpha(f)=\alpha(g)$.

## References

[1] M. Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math., 84:485-496, 1962.
[2] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math., 88:129-136, 1966.
[3] C. P. Boyer, K. Galicki, and P. Matzeu, On eta-Einstein Sasakian geometry, Comm. Math. Phys., 262(1):177-208, 2006.
[4] A. Dimca, Singularities and topology of hypersurfaces, Universitext. SpringerVerlag, New York, 1992.
[5] A. Fletcher, Plurigenera of 3-folds and weighted hypersurfaces, Thesis submitted for the degree of Doctor of Philosophy at the University of Warwick, 1988.
[6] A. Fujiki, On resolutions of cyclic quotient singularities, Publ. Res. Inst. Math. Sci., 10(1):293-328, 1974/75.
[7] W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993.
[8] S. Ishil and K. Watanabe, A geometric characterization of a simple K3singularity, Tohoku Math. J. (2), 44(1):19-24, 1992.
[9] A. Katanaga and K. Nakamoto, The links of 3-dimensional singularities defined by Brieskorn polynomials, Math. Nachr., 281(12):1777-1790, 2008.
[10] Lê Dũng Tráng, Topologie des singularités des hypersurfaces complexes, In Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972), pages 171-182. Astérisque, Nos. 7 et 8. Soc. Math. France, Paris, 1973.
[11] Lê Dũng Tráng and C. P. Ramanujam, The invariance of Milnor's number implies the invariance of the topological type, Amer. J. Math., 98(1):67-78, 1976.
[12] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J., 1968.
[13] J. Milnor and P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology, 9:385-393, 1970.
[14] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer-Verlag, Berlin, 1988.
[15] M. Oka, On the resolution of the hypersurface singularities, Complex analytic singularities, 405.436, Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987.
[16] P. Orlik, On the homology of weighted homogeneous manifolds, Proceedings of the Second conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971), Part I, 260-269, Lecture Notes in Math., Vol. 298, Springer, Berlin, 1972.
[17] P. Orlik and P. Wagreich, Isolated singularities of algebraic surfaces with $\mathbb{C}^{*}$ action. Ann. of Math., 93(2):205-228, 1971.
[18] O. Saeki, Topological invariance of weights for weighted homogeneous isolated singularities in $\mathbb{C}^{3}$, Proc. Amer. Math Soc., 103(3):905-909, 1988.
[19] O. Saeki, Topological types of complex isolated hypersurface singularities, Kodai Math. J., 12(1):23-29, 1989.
[20] K. Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math., 14:123-142, 1971.
[21] I. Shimada, On normal K3 surfaces, Michigan Math. J., 55(2):395-416, 2007.
[22] S. Smale, On the structure of 5-manifolds, Ann. of Math. (2), 75:38-46, 1962.
[23] M. Tomari, The canonical filtration of higher-dimensional purely elliptic singularity of a special type, Invent. Math., 104(3):497-520, 1991.
[24] K. Ueno, On fibre spaces of normally polarized abelian varieties of dimension 2 . I. Singular fibres of the first kind. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 18:37-95, 1971.
[25] K. Watanabe, On plurigenera of normal isolated singularities. II, In Complex analytic singularities, vol. 8 of Adv. Stud. Pure Math., pages 671-685. North-Holland, Amsterdam, 1987.
[26] T. Yonemura, Hypersurface simple $K 3$ singularities, Tohoku Math. J. (2), 42(3):351-380, 1990.
[27] O. Zariski, Some open queations in the theory of singularities, Bull. Amer. Math. Soc., 77:481-491, 1971.

School of General Education
Shinshu University
3-1-1 Asahi Matsumoto-shi
Nagano 390-8621
JAPAN
E-mail address: katanaga@shinshu-u.ac.jp


[^0]:    2000 Mathematics Subject Classification. Primary 32S25; Secondary 57Q45, 14J28.
    Key words and phrases. simple $K 3$ singularity, link, normal $K 3$ surface, Orlik's Conjecture.

    * Partially supported by Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science.

