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Abstract. Let k be an algebraically closed field of characteristic p. We shall discuss the
cohomology algebras of a block ideal B of the group algebra kG of a finite group G and a block
ideal C of the block ideal of kH of a subgroup H of G which are in Brauer correspondence
and have a common defect group, continuing [4]. We shall define a (B,C)-bimodule L. The
k-dual L∗ induces the transfer map between the Hochschild cohomology algebras of B and
C, which restricts to the inclusion map of the cohomology algebras of B into that of C under
some condition. Moreover the module L induces a kind of refinement of Green correspondence
between indecomposable modules lying in the blocks B and C; the block varieties of modules
lying in B and C which are in Green correspondence will also be discussed.
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1. Introduction

Throughout this paper we let k be an algebraically closed field of prime
characteristic p.

Let G be a finite group of order divisible by p. Proposition 2.3 of Kessar,
Linckelmann and Robinson [5] says that the cohomology algebra H∗(G, B)
of a block ideal B of the group algebra kG is contained in the cohomology
algebra H∗(H,C) of a suitably taken block ideal C, which satisfies CG = B,
of a suitably chosen subgroup H of G.

To understand such an inclusion via transfer map between the Hochschild
cohomology algebras of the block ideals B and C we discussed in [4] under
the following situation. Namely a block ideal B of kG has D as a defect group;
H is a subgroup of G and C is a block ideal of kH such that the Brauer
correspondent CG is defined and CG = B and D is also a defect group of
C. We considered the (C, B)-bimodule M = CB and gave a necessary and
sufficient condition for M to induce the transfer map from HH∗(B) to HH∗(C)
which restricts to the inclusion map of H∗(G, B) into H∗(H,C).

In this paper we shall discuss under the following situation:
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Situation (BC). Let B be a block ideal of kG with a defect group D; let H
be a subgroup of G containing DCG(D) and C a block ideal of kH such that
CG = B. Assume that C has D as a defect group.

We shall denote by Gop the opposite group of the group G and consider
the group algebra kG as a k[G × Gop]-module through (x, y)α = xαy for
x, y ∈ G and α ∈ kG. The stabilizer of 1 ∈ G under the action of G × Gop

on G is the diagonal set ∆G = { (g, g−1) | g ∈ G }; hence we have a k[G ×
Gop]-isomorphism kG ' k[G ×Gop] ⊗∆G k.

Definition 1 Under Situation (BC), because the block ideal C has, as an
indecomposable k[H × Hop]-module, ∆D as a vertex and NG×Hop(∆D) =

∆NH(D)
(
CG(D)×1

)
6 H×Hop, the Green correspondent of C to G×Hop is

defined, which turns out to be a (B,C)-bimodule; we denote it by L(B,C).

The module L(B,C) will play crucial role in this paper, depending on the
following fact, which will be proved in Section 2.

Theorem 1.1 Under Situation (BC) let L = L(B,C). The relatively L-projective
element πL ∈ Z(B) and the relatively L∗-projective element πL∗ ∈ Z(C)
are both invertible. In particular, A being an arbitrary symmetric algebra
over k of finite dimension, every finitely generated (B, A)-module is rela-
tively L-projective and every finitely generated (C, A)-module is relatively
L∗-projective.

For the theory of projectivity relative to bimodules over symmetric algebras,
see Section 5 Appendix, where we shall quote some definitions and results
from Broué’s lecture notes [3] for the convenience of the readers. We shall
also state some facts which we shall use frequently.

Here we fix a symbol. For a subgroup S of a finite group T and a kT -
module W we shall write S W for the restriction of W to kS .

Following Alperin, Linckelmann and Rouquier [1], we recall the definition
of source modules of block ideals.

Definition 2 ([1, Definition 2]) Since, as an indecomposable k[G × Gop]-
module, B has ∆D as a vertex and G×Dop > ∆D, there exists an indecom-
posable direct summand X of the k[G × Dop]-module G×Dop B having ∆D as
a vertex. The k[G × Dop]-module X is called a source module of the block
B. The source module X is written as kGi, where i is a source idempotent.
If X and X′ are source modules of B, then they are conjugate under NG(D),
namely X ' X′ ⊗ t as k[G × Dop]-module for an element t ∈ NG(D).

We shall write H∗(G, B; X) for the block cohomology of B with respect to the
defect group D and the source idempotent i such that X = kGi.
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Under Situation (BC) we can take a source module X of the block B and
a source module Y of the block C in order that X and Y are in the Green
correspondence with respect to (G × Dop,∆D,H × Dop). Then the (B,C)-
bimodule L = L(B,C) links the source modules X and Y in a similar way to
induction and restriction of modules (Theorem 2.9). We should mention that
the (B,C)-module L(B,C) has already appeared in some works. In particular,
in Alperin, Linckelmann and Rouquier [1] the case of H = NG(D, bD), where
(D, bD) is a Sylow B-subpair, was treated. Theorem 5 in [1] corresponds to
our Theorem 2.9; our proof of Theorem 2.9 is partly due to the argument of
the proof of [1, Theorem 5].

One of our ingredients to prove Theorem 1.2 below is that the bimodule
L is splendid with respect to X and Y , namely L is a direct summand of
the tensor product X ⊗kD Y∗ (Theorem 2.10). Another important property is
that the relatively projective elements associated with tensor products of the
bimodules L, X and Y and their duals, including such as X∗ ⊗B L⊗C Y , are all
invertible (Theorem 2.11).

The following is one of our main theorems.

Theorem 1.2 Let B be a block ideal of kG and D 6 G a defect group of B.
Assume that a subgroup H of G containing DCG(D) normalizes a subgroup
Q of D and contains QCG(Q). Let (D, bD) be a Sylow B-subpair and let
(Q, bQ) 6 (D, bD). Let C be a unique block ideal of kH covering the block
ideal bQ of kQCG(Q). Then CG = B and D is a defect group of C; hence
(D, bD) is also a Sylow C-subpair.

Let j be a source idempotent of C such that BrD( j)eD = BrD( j), where
eD ∈ kCG(D) is the block idempotent of the block bD; let Y = kH j. Let X be
a source module of B which is the Green correspondent of Y with respect to
(G × Dop,∆D,H × Dop). We let L = L(B,C).

Then we have the following commutative diagram:

H∗(G, B; X) //
δD //

� _

��

HH∗X∗⊗BL⊗CY (kD) //
RX // //

� _

��

HH∗L⊗CY (B)
��

RL∗

��

oo
RX∗

oooo

H∗(H,C; Y) //
δD

// HH∗Y∗(kD) //
RY // // HH∗Y (C)oo
RY∗

oooo .

The theorem above will be proved in Section 3.
In Section 4 we shall discuss block varieties of modules which are in

Green correspondence.
If the cohomology algebra H∗(G, B; X) is contained in the cohomology

algebra H∗(H,C; Y), then Kawai and Sasaki [4, Theorem 1.3 (i)] says that
the inclusion map ι : H∗(G, B; X) ↪→ H∗(H,C; Y) induces a surjective map
ι∗ : VH,C → VG,B of varieties; this generalizes to varieties of modules as
follows.
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Theorem 1.3 Under Situation (BC) let L = L(B,C). Let X and Y be source
modules of the blocks B and C, respectively. Assume that X and Y are in
the Green correspondence with respect to (G × Dop,∆D,H × Dop). We let
moreover P 6 D and assume that the subgroup H contains NG(P).

Assume that H∗(G, B; X) ⊂ H∗(H,C; Y).

(i) Assume that an indecomposable B-module U has an X-vertex belonging
to A (G, P,H). Then the Green correspondent V of U to H with respect
to (G, P,H) lies in the block C and the following holds:

VG,B(U) = ι∗VH,C(V).

(ii) Assume that an indecomposable C-module V has a Y-vertex belonging to
A (G, P,H). Then the Green correspondent U of V to G with respect to
(G, P,H) lies in the block B and the following holds:

VG,B(U) = ι∗VH,C(V).

Benson and Linckelmann [2] showed that the block variety of an indecom-
posable kG-module lying in a block is determined by a particular vertex and a
source that are compatible with a source modules of the block ideal. We have
to state more precisely.

Definition 3 ([2, Proposition 2.5]) Let X be a source module of a block ideal
B. Let U be an indecomposable kG-module lying in B. There exists a vertex
Q of U such that

Q 6 D, U
∣∣∣ X ⊗kQ X∗ ⊗B U.

We would like to call such a vertex Q of U an X-vertex. For an X-vertex Q of
U we can take a Q-source S such that

U
∣∣∣ X ⊗kQ S , S

∣∣∣ QX∗ ⊗B U.

We would like to call such a source a (Q, X)-source.

[2, Theorem 1.1] says that the block variety VG,B(U) in the block cohomology
H∗(G, B; X) is the pull back of the variety VQ(S ) of S , where Q is an X-
vertex and S is a (Q, X)-source of U. Depending on this fact, [2, Corollary
1.4] says that the Green correspondents have the same block varieties for a
particular case. We would like to understand this phenomenon from more
general context.

Under Situation (BC) and the assumption that the source modules X and
Y of the block ideals B and C are in Green correspondence, our bimodule
L = L(B,C) gives rise to a kind of refinement of Green correspondence
(Proposition 4.1). The theorem above depends on the fact that Green cor-
respondents have a common vertex and a common source compatible with
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source modules of the block ideals; see Proposition 4.4, which will be proved
by using the bimodule L.

2. Brauer Correspondence

First of all we state a couple of lemmas concerning source modules of block
ideals. Let X = kGi be a source module of the block B. Let eD ∈ kCG(D) be
the block idempotent such that BrD(i)eD , 0. The following are well known.

Lemma 2.1 The k[DCG(D)×Dop]-module k[DCG(D)] BrD(i) is a source mod-
ule of the block ideal k[DCG(D)]eD.

Since kGi is a direct summand of kG BrD(i) as k[G × Dop]-modules, we have

Lemma 2.2 The source module X = kGi is the Green correspondent of the
source module k[DCG(D)] BrD(i) of the block k[DCG(D)]eD with respect to
(G × Dop,∆D,DCG(D) × Dop).

In the rest of this section we argue under Situation (BC) and we let L =

L(B,C).
Since NG×Dop(∆D) = ∆D

(
CG(D)×1

)
6 H×Dop, the Green correspondence

between the indecomposable k[G × Dop]-modules with vertices in A (G ×
Dop,∆D,H×Dop) and the indecomposable k[H×Dop]-modules with vertices
in A (G × Dop,∆D,H × Dop) makes sense.

Proposition 2.3 Let Y be a source module of the block ideal C and let X be
the Green correspondent of Y with respect to (G × Dop,∆D,H × Dop). Then
the following hold.

(i) The k[G × Dop]-module X is a source module of the block B = CG.

(ii) The Brauer constructions X(D) and Y(D) are isomorphic as kCG(D)-
modules.

Hence if (D, bD) is a Sylow C-subpair such that bDY(D) , 0, then (D, bD) is
a Sylow B-subpair and bDX(D) , 0.

Proof. (i) Because

H×Dop B = H×Dop
(
H×Hop B

)
= H×Dop

(
C ⊕C′

)
= Y ⊕ · · ·

and H×Dop B = H×Dop
(
G×Dop B

)
, there exists an indecomposable direct sum-

mand X′ of G×Dop B such that Y
∣∣∣ H×Dop X′. Theorem of Burry, Carlson and

Puig (Nagao and Tsushima [8, Theorem 4.4.6]) implies that X′ is the Green



6 H. Sasaki

correspondent of Y; therefore it follows that X ' X′
∣∣∣ G×Dop B. Namely X is a

source module of B.
(ii) Since B = CG =

(
bD

H
)

G = bD
G, we see that (D, bD) is a Sylow B-

subpair. Because H×Dop X ' Y ⊕ Y0, where Y0 is projective relative to Y (G ×
Dop,∆D,H × Dop), the k[∆D]-module ∆DY0 is projective relative to {∆Q |
Q < D }. Therefore we see that Y0(D) = 0, hence X(D) ' Y(D) as kCG(D)-
modules.

Proposition 2.4 Let X be a source module of B and Y a source module of
C. If the Brauer constructions X(D) and Y(D) are isomorphic as kCG(D)-
modules, then the modules X and Y are in the Green correspondence with
respect to (G × Dop,∆D,H × Dop).

Proof. We write X = kGi and Y = kH j, where i and j are source idem-
potents of B and C, respectively. Let X̂(D) = k[DCG(D)] BrD(i) and Ŷ(D) =

k[DCH(D)] BrD( j). Then a kCG(D)-isomorphism from X(D) to Y(D) lifts to a
k[DCG(D)]-isomorphism from X̂(D) to Ŷ(D), which is also an isomorphism
of k[DCG(D) × Dop]-modules. We see from Lemma 2.2 that

− the source module X of B is the Green correspondent of X̂(D) with
respect to (G × Dop,∆D,DCG(D) × Dop),

− the source module Y of C is the Green correspondent of Ŷ(D) with
respect to (H × Dop,∆D,DCG(D) × Dop).

Thus the modules X and Y correspond under the Green correspondence with
respect to (G × Dop,∆D,H × Dop).

Lemma 2.5 The following holds.

B ⊗kH C ≡ L ⊕ O(X (G × Hop,∆D,H × Hop)).

In particular, the module L is a (B,C)-bimodule.

Proof. Put M = B ⊗kH C. We first show that L is a direct summand of
M as k[G × Hop]-modules. Notice that the block ideal C is a direct sum-
mand of H×Hop M. Let M = L1 ⊕ · · · ⊕ Ln be a direct sum decomposition
into indecomposable k[G × Hop]-modules. Then the block ideal C is a direct
summand of H×Hop Li for some Li. Theorem of Burry, Carlson and Puig says
that Li is the Green correspondent of C. Thus we obtain that L ' Li and
that L

∣∣∣ M. This together with the fact that M
∣∣∣ k[G × Hop] ⊗k[H×Hop] C =

L ⊕ O(X (G × Hop,∆D,H × Hop)) gives rise to our assertion.
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Proposition 2.6 Since L is isomorphic with a direct summand of G×Hop B, we
can take a source module X of the block ideal B as a direct summand of
G×Dop L. Then the Green correspondent Y of X to H × Dop with respect to
(G × Dop,∆D,H × Dop) is a source module of the block ideal C.

Proof. Let us write H×Hop L = C ⊕ C0, where C0 ≡ O(Y (G × Hop,∆D,
H × Hop)). Then the k[H × Hop]-module C0 has no indecomposable direct
summands with vertex ∆D; so does the k[H × Dop]-module H×DopC0.

The direct sum decomposition H×Dop X
∣∣∣ H×Dop L ' H×DopC ⊕ H×DopC0

implies that the k[H × Dop]-module Y is a direct summand of H×DopC; thus
the Green correspondent Y is a source module of the block C.

Before proving Theorem 1.1, we prepare the following lemma, which de-
pends on the theory of projectivity relative to bimodules over symmetric
algebras. A brief account of the theory is in Appendix.

Lemma 2.7 Let B be a block ideal of kG and D a defect group of B. Let
H 6 G and C a block ideal of kH. Assume that D is a defect group of C.
Suppose that an indecomposable (B,C)-bimodule S has a trivial source and
a vertex which is a proper subgroup of ∆D. Then the relatively projective
elements πS ∈ Z(B) and πS ∗ ∈ Z(C) are both nilpotent.

Proof. Let ∆Q, Q < D, be a vertex of S . Because S has a trivial source, it
follows that

S
∣∣∣ k[G × Hop] ⊗k[∆Q] k = kG ⊗kQ kH.

Namely, being X = BkGkQ and Y = kQkHC , we have that S
∣∣∣ X ⊗kQ Y . Then

Theorem 5.4 implies that

π̂S ∈ Im
[XTr : kQ(X∗, X∗)→ B(B, B)

]
,

π̂S ∗ ∈ Im
[Y∗Tr : kQ(Y,Y)→ C(C,C)

]
.

Thus we see that the relatively S -projective element πS = π̂S (1) ∈ Z(B)
belongs to the image of the relative trace map trG

Q : BQ → Z(B) and that the
relatively S ∗-projective element πS ∗ = π̂S ∗(1) ∈ Z(C) belongs to the image of
the relative trace map trH

Q : CQ → Z(C). Because the blocks B and C have D
as a defect group and Q < D, we have that

trG
Q(BQ) ⊂ J(Z(B)), trH

Q(CQ) ⊂ J(Z(C))

so that the elements πS and πS ∗ are nilpotent.

Proof of Theorem 1.1. Let M = B⊗kH C. Then, by Lemma 2.5, the (B,C)-
bimodule M decomposes as follows:

M = L ⊕ L0, L0 ≡ O(X (G × Hop,∆D,H × Hop)).
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We know from Kawai and Sasaki [4, Proposition 3.3 (b)] that the relatively
projective elements πM ∈ Z(B) and πM∗ ∈ Z(C) are invertible. Every inde-
composable direct summand of L0 has a proper subgroup of ∆D as a vertex
and a trivial source; so does every indecomposable direct summand of L∗0. We
see from [6, Proposition 2.12 (iv)] that

πM = πL + πL0 , πM∗ = πL∗ + πL∗0 .

Since the elements πL0 and πL∗0 are nilpotent by Lemma 2.7, we have

πL ≡ πM (mod J(Z(B))), πL∗ ≡ πM∗ (mod J(Z(C)))

so that the elements πL ∈ Z(B) and πL∗ ∈ Z(C) are invertible.
The last assertion follows from Theorem 5.6.

Proposition 2.8 (i) The (B, B)-bimodule B is isomorphic to a direct sum-
mand of L ⊗C L∗.

(ii) As a k[H × Hop]-module

L∗ ⊗B L ≡ C ⊕ O(Y (G × Hop,∆D,H × Hop)).

Proof. Theorems 1.1 and 5.3 imply that the block ideal B is a direct sum-
mand of L ⊗C L∗ as a (B, B)-bimodule; the block ideal C is a direct summand
of L∗ ⊗B L as a (C,C)-bimodule. The assertion (ii) follows from the fact that

L∗ ⊗B L
∣∣∣ H×Hop L ≡ C ⊕ O(Y (G × Hop,∆D,H × Hop)).

Our (B,C)-bimodule L(B,C) links source modules of the blocks B and C as
follows.

Theorem 2.9 Assume that a source module X of the block B and a source
module Y of the block C are in the Green correspondence with respect to
(G × Dop,∆D,H × Dop). Then the following hold.

(i) L∗ ⊗B X ≡ Y ⊕ O(Y (G × Dop,∆D,H × Dop)).

(ii) L ⊗C Y ≡ X ⊕ O(X (G × Dop,∆D,H × Dop)).

(iii) If D C H, then L ⊗C Y ' X.

Proof. Let X = X (G × Dop,∆D,H × Dop) and Y = Y (G × Dop,∆D,
H×Dop). Notice that the source module X is isomorphic to a direct summand
of the tensor product L ⊗C L∗ ⊗B X and the source module Y is isomorphic to
a direct summand of the tensor product L∗ ⊗B L ⊗C Y because of Theorems
1.1 and 5.3.
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(i) The tensor product L∗ ⊗B X is a direct summand of the restriction
H×Dop X ≡ Y ⊕O(Y ). If L∗ ⊗B X is relatively Y -projective, then L⊗C L∗ ⊗B X
is, as a direct summand of kG ⊗kH L∗ ⊗B X, relatively Y -projective; hence
so is X

∣∣∣ L ⊗C L∗ ⊗B X, a contradiction. Therefore L∗ ⊗B X is not relatively
Y -projective so that the assertion holds.

(ii) The tensor product L⊗C Y is a direct summand of the induced module
k[G × Dop] ⊗C Y ≡ X ⊕ O(X ). If L ⊗C Y is relatively X -projective, then
L∗⊗B L⊗C Y is, as a direct summand of the restriction H×Dop L⊗C Y , relatively
Y -projective; hence so is Y

∣∣∣ L∗ ⊗B L⊗C Y , a contradiction. Therefore L⊗C Y
is not relatively X -projective so that the assertion holds.

(iii) From the fact (ii) we can write

L ⊗C Y ' X ⊕ X0, X0 ≡ O(X ).

Since L has ∆D as a vertex and a trivial source, there exists an indecom-
posable direct summand W of the induced module k[G × Dop] ⊗k∆D k with
vertex ∆D such that L is a direct summand of the induced module k[G ×
Hop] ⊗k[G×Dop] W. Then we obtain

X ⊕ X0 ' L ⊗kH Y
∣∣∣ k[G × Hop] ⊗k[G×Dop] W ⊗kH Y∣∣∣ W ⊗kD kHkD =

⊕
t∈D\H

(1,t)W

This implies that X0 = 0 because the module (1,t)W has a vertex conjugate to
∆D.

The (B,C)-bimodule L is splendid with respect to source modules of B
and C which are in Green correspondence. Namely

Theorem 2.10 Let X and Y be as in Theorem 2.9. Then the (B,C)-bimodule
L(B,C) is isomorphic with a direct summand of the tensor product X ⊗kD Y∗.

Proof. We argue with the same notation as in the proof of Theorem 2.9.
Tensoring Y∗ to the both sides of L ⊗C Y ' X ⊕ X0 on the right, we obtain

L
∣∣∣ L ⊗C Y ⊗kD Y∗ ' X ⊗kD Y∗ ⊕ X0 ⊗kD Y∗

since C
∣∣∣ Y ⊗kD Y∗. Note that X0 ⊗kD Y∗ is a direct summand of X0 ⊗kD kH =

k[G × Hop] ⊗k[G×Dop] X0. If L
∣∣∣ X0 ⊗kD Y∗, then L is also projective relative

to X . However, this contradicts to the fact the module L has ∆D as a vertex.
Therefore we conclude that L

∣∣∣ X ⊗kD Y∗.

Relatively projective elements associated with the tensor products of the
bimodules L, X and Y and their duals are all invertible if X and Y are in Green
correspondence.
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Theorem 2.11 Let X and Y be as in Theorem 2.9.

(i) Relatively projective elements πL⊗CY ∈ Z(B) and πY∗⊗C L∗ ∈ Z(kD) are
invertible.

(ii) Relatively projective elements πX∗⊗BL⊗CY ∈ Z(kD) and πX∗⊗BL ∈ Z(kD)
are invertible.

(iii) Relatively projective elements πY∗⊗C L∗⊗BX ∈ Z(kD) and πL∗⊗BX ∈ Z(C)
are invertible.

Proof. Again we argue with the same notation as in the proof of Theorem
2.9.

(i) We see from Lemma 2.7 that the relatively projective elements πX0 ∈

Z(B) and πX∗0 ∈ Z(kD) are nilpotent. Therefore, a similar argument in the
proof of Theorem 1.1 shows that t πX⊕X0 and πX∗⊕X∗0 are invertible; hence so
are the elements πL⊗CY and πY∗⊗C L∗ .

(ii) Let tX∗ : HH∗(B) → HH∗(kD) be the transfer map associated with
the (kD, B)-bimodule X∗. Then, since πX∗⊗BL⊗CY = tX∗(πL⊗CY ) and the ele-
ment πL⊗CY is invertible, Kawai and Sasaki [4, Proposition 3.5] implies that
πX∗⊗BL⊗CY is invertible. We also have that πX∗⊗BL = tX∗(πL) and the element πL
is invertible; hence again [4, Proposition 3.5] implies that the element πX∗⊗BL
is invertible.

(iii) In the direct sum decomposition Y∗ ⊗C L∗ ⊗B X ' X∗ ⊗B X ⊕ X∗0 ⊗B X,
every indecomposable direct summand of X∗0 ⊗B X has a proper subgroup of
∆D as a vertex and a trivial source. Therefore the element πX∗0⊗BX ∈ Z(kD)
is nilpotent; hence we see that πY∗⊗C L∗⊗BX ≡ πX∗⊗BX (mod J(Z(kD))) and
that the element πY∗⊗C L∗⊗BX is invertible. Furthermore, since πY∗⊗C L∗⊗BX =

tY∗(πL∗⊗BX), where tY∗ : HH∗(kD) → HH∗(C) is the transfer map associ-
ated with Y∗, again [4, Proposition 3.5] implies that the element πL∗⊗BX is
invertible.

3. Cohomology Algebras of Block Ideals

We continue our argument under Situation (BC); let L = L(B,C). We assume
that a source module X of B and a source module Y of C are in the Green
correspondence with respect to (G × Dop,∆D,H × Dop). Let us take a Sylow
C-subpair (D, bD) satisfying bDY(D) , 0. Then Proposition 2.3 says that
(D, bD) is also a Sylow B-subpair and that bDX(D) , 0. The cohomology
algebras of blocks B and C with respect to the Sylow subpair (D, bD) satisfy

H∗(G, B; X)
δD
� HH∗X∗(kD), H∗(H,C; Y)

δD
� HH∗Y∗(kD).
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We know from Theorems 1.1 and 2.11 that the relatively projective ele-
ments are invertible; hence we obtain from Kawai and Sasaki [4, Proposition
2.2] the following commutative diagram:

HH∗Y∗⊗C L∗(kD) //
RY // //

��

RL⊗C Y
����

HH∗L∗(C) ∩ HH∗Y (C)oo
RY∗

oooo

��

RL
����

HH∗L⊗CY (B)
OO

RY∗⊗C L∗

OOOO

HH∗L⊗CY (B)
OO

RL∗

OOOO

.

The diagram above together with Theorem 2.11, [4, Lemma 4.4] and Linck-
elmann [6, Corollary 3.8] yields the following.

Lemma 3.1 The following diagram commutes:

H∗(G, B; X) //
δD // HH∗X∗(kD) //

RX // // HH∗X(B)oo
RX∗

oooo

HH∗Y∗⊗C L∗(kD)
?�

OO

//
RL⊗C Y

// // HH∗L⊗CY (B) � � //
?�

OO

oo
RY∗⊗C L∗
oooo

��

RL∗
����

HH∗L(B)
��

RL∗
����

HH∗Y∗⊗C L∗(kD)
� _

��

//
RY // // HH∗L∗(C) ∩ HH∗Y (C) � � //

� _

��

oo
RY∗
oooo

OO

RL

OOOO

HH∗L∗(C)
OO

RL

OOOO

H∗(H,C; Y) //
δD

// HH∗Y∗(kD) //
RY // // HH∗Y (C)oo
RY∗

oooo .

In particular

Corollary 3.2 If D is normal in H, then we have the following commutative
diagram

H∗(G, B; X) //
δD //

� _

��

HH∗X∗(kD)
� _

��

//
RX // // HH∗X(B)

��

RL∗

��

H∗(H,C; Y) //
δD

// HH∗Y∗(kD) //
RY

// // HH∗Y (C) .

Namely, the inclusion map H∗(G, B; X) ↪→ H∗(H,C; Y) is the restriction of
the normalized transfer map RL∗ .

Proof. Theorem 2.9 and [5, Proposition 2.3] and Lemma 3.1 gives rise to
the diagram.
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We generalize this to the case that D is not necessarily normal in H. In
Kawai and Sasaki [4] we discussed under the following situation:

Let b ∈ Z(kG) and c ∈ Z(kH) be block idempotents and assume that
the Brauer correspondent cG is defined and cG = b and moreover that
the blocks b and c have a common defect group D. Let X = ckGb. Let
Y = kGi be a source module of b and let Z = kH j be a source module of
c such that

Y = kGi
∣∣∣ X∗ ⊗kGb Z = bkG j.

We considered bimodules

ckGi = X ⊗kGb Y, ikGc = Y∗ ⊗kGb X∗,
bkG j = X∗ ⊗kHc Z, jkGb = Z∗ ⊗kHc X,
ikG j = Y∗ ⊗kGb X∗ ⊗kHc Z, jkGi = Z∗ ⊗kHc X ⊗kGb Y.

We showed in [4, Theorem 1.1] that the relatively projective elements associ-
ated with the bimodules above are all invertible.

In this paper we take L∗ instead of X = ckGb above; we have gotten the
corresponding facts to the above in Theorem 2.11; hence the conclusions in
[4, Section 4] and [4, Theorem 1.2] hold by replacing ckGb there with our
(C, B)-bimodule L∗.

Thus the argument in [4, Proof of Theorem 1.2] yields

Lemma 3.3 We have the following commutative diagram:

HH∗X∗⊗BL⊗CY (kD) //
RX // //

Id

HH∗L⊗CY (B)
��

RL∗
����

oo
RX∗

oooo

HH∗Y∗⊗C L∗⊗BX(kD) //
RY // // HH∗Y (C) ∩ HH∗L∗(C)oo
RY∗

oooo

OO

RL

OOOO

.

We obtain from Lemmas 3.1 and 3.3 that

HH∗Y∗⊗C L∗⊗BX(kD) = HH∗X∗⊗BL⊗CY (kD)

= RX∗(HH∗L⊗CY (B)) = HH∗Y∗⊗C L∗(kD).

Consequently we have

Proposition 3.4 Under Situation (BC) assume that a source module X of B
and a source module Y of C are in the Green correspondence with respect to
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(G × Dop,∆D,H × Dop). Then we have the following commutative diagram

H∗(G, B; X) //
δD // HH∗X∗(kD) //

RX // // HH∗X(B)oo
RX∗

oooo

HH∗X∗⊗BL⊗CY (kD)
?�

OO

//
RX // // HH∗L⊗CY (B) � � //

?�

OO

oo
RX∗

oooo
��

RL∗

����

HH∗L(B)
��

RL∗

����

HH∗Y∗⊗C L∗⊗BX(kD)
� _

��

//
RY // // HH∗L∗(C) ∩ HH∗Y (C) � � //

� _

��

oo
RY∗
oooo

OO

RL

OOOO

HH∗L∗(C)
OO

RL

OOOO

H∗(H,C; Y) //
δD

// HH∗Y∗(kD) //
RY // // HH∗Y (C)oo
RY∗

oooo .

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. We know from Theorem 2.10 that L
∣∣∣ X ⊗kD Y∗ =

kGi⊗kD jkH. For a subgroup R 6 D we let (R, bR) 6 (D, bD) be the B-subpair
and let (R, cR) 6 (D, bD) be the C-subpair. Then Kessar, Linckelmann and
Robinson [5, Proposition 2.3] implies for R 6 D that

EH((R, cR), (D, bD)) ⊆ EG((R, bR), (D, bD)).

Therefore we have from Linckelmann [6, Theorem 5.7] that H∗(G, B; X) ⊆
H∗(H,C; Y) and that δDH∗(G, B; X) ⊆ HH∗X∗⊗BL⊗CY (kD). Then [4, Proof of
Theorem 1.2] gives the left rectangle of the diagram; we get from the diagram
just before the theorem the right rectangle of the diagram.

4. Green Correspondence and Block Varieties of Modules

In this section we investigate relationship between the Green correspondence
of indecomposable modules and the Brauer correspondence of blocks.

We argue under Situation (BC); let L = L(B,C). We let moreover P 6 D
and assume that the subgroup H contains NG(P).

Proposition 4.1 Assume that an indecomposable B-module U and an inde-
composable C-module V have vertices in A (G, P,H) and are in the Green
correspondence with respect to (G, P,H). Then the followings hold:

L ⊗C V ≡ U ⊕ O(X (G, P,H)), L∗ ⊗B U ≡ V ⊕ O(Y (G, P,H)).
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Proof. Since the module V lies in the block C, we have

L ⊗C V
∣∣∣ kG ⊗kH V ≡ U ⊕ O(X (G, P,H)).

If L ⊗C V is relatively X (G, P,H)-projective, then we would have

V
∣∣∣ L∗ ⊗B L ⊗C V

∣∣∣ HL ⊗C V ≡ O(Y (G, P,H)),

a contradiction. Thus L ⊗C V is not relatively X (G, P,H)-projective; hence
we have that L ⊗C V ≡ U ⊕ O(X (G, P,H)). Let us write

L ⊗C V ' U ⊕ U0, U0 ≡ O(X (G, P,H)).

Tensor with L∗ ⊗B − to obtain

V
∣∣∣ L∗ ⊗B L ⊗C V ' L∗ ⊗B U ⊕ L∗ ⊗B U0.

Because L∗ ⊗B U0
∣∣∣ HU0 ≡ O(Y (G, P,H)), we see that V

∣∣∣ L∗ ⊗B U. This
together with the fact that L∗ ⊗B U

∣∣∣ HU ≡ V ⊕ O(Y (G, P,H)) implies that
L∗ ⊗B U ≡ V ⊕ O(Y (G, P,H)), as required.

Here we recall a general fact. For a family F of subgroups of a finite
group G and a subgroup H of G we set

H ∧G F = {H ∩ gF | g ∈ G, F ∈ F }.

Mackey double coset formula yields

Lemma 4.2 Let F be a family of subgroups of a finite group G. If a kG-
module U is relatively F -projective, then for a subgroup H of G the kH-
module HU is relatively H ∧G F -projective.

Lemma 4.3 (i) Assume that a direct summand W of the k[H × Dop]-module
kH is relatively Y (G × Dop,∆D,H × Dop)-projective. Then for a sub-
group Q ∈ A (G, P,H) and a kQ-module S , the kQ-module QW ⊗kQ S is
relatively {Q ∩ gQ | g ∈ G r H }-projective.

(ii) Assume that a direct summand Z of the k[G × Dop]-module kG is rela-
tively X (G × Dop,∆D,H × Dop)-projective. Then for a subgroup Q ∈
A (G, P,H) and a kQ-module S , the kQ-module QZ ⊗kQ S is relatively
{Q ∩ gQ | g ∈ G r H }-projective.

Proof. Let T = {T 6 Q × Qop ∩ (s,a)∆D | (s, a) ∈ G × Dop r H × Dop }.
(i) Let Y = Y (G × Dop,∆D,H × Dop). The k[Q × Qop]-module Q×QopW

is relatively Q × Qop ∧H×Dop Y -projective. We show that

Q × Qop ∧H×Dop Y ⊆ T .
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Take a subgroup R ∈ Y . There exists an element (s′, a′) ∈ G×Dop rH ×Dop

for which R 6 H×Dop∩(s′,a′)∆D. Then we have for an element (t, b) ∈ H×Dop

that
Q × Qop ∩ (t,b)R 6 Q × Qop ∩ (t,b)(s′,a′)∆D.

Since (t, b)(s′, a′) ∈ G × Dop r H × Dop, we obtain for some element (s, a) ∈
G × Dop r H × Dop that

Q × Qop ∩ (t,b)R 6 Q × Qop ∩ (s,a)∆D.

Thus we see that Q × Qop ∧H×Dop Y ⊆ T .
Notice for an element (s, a) ∈ G × Dop r H × Dop that

Q × Qop ∩ (s,a)∆D = (s,a)∆(Qs ∩ aQ).

Now an indecomposable direct summand W′ of the k[Q × Qop]-module
Q×QopW is isomorphic for some element x ∈ H to k[QxQ], which has (1,x)∆(Q ∩ xQ)
as a vertex. Because W′ is relatively T -projective, there exists an element
(s, a) ∈ G × Dop r H × Dop for which

(1,x)∆(Q ∩ xQ) 6Q×Qop Q × Qop ∩ (s,a)∆D = (s,a)∆(Qs ∩ aQ).

Hence we have that Q ∩ xQ 6Q Q ∩ saQ. Since sa ∈ G r H, we have that

Q ∩ xQ 6Q Q ∩ gQ

for some element g ∈ G r H.
Now, because W′ ⊗kQ S ' k[QxQ] ⊗kQ S ' kQ ⊗k[Q∩xQ] x ⊗ S , the kQ-

module W′⊗kQS is relatively Q∩xQ-projective. Thus we conclude that W′⊗kQ
S is relatively Q ∩ gQ-projective for some element g ∈ G r H.

(ii) We set X = X (G × Dop,∆D,H × Dop). The k[Q × Qop]-module
Q×QopZ is relatively Q × Qop ∧G×Dop X -projective. Take a subgroup R ∈ X .
Then there exists an element (s′, a′) ∈ G × Dop r H × Dop for which R 6
∆D ∩ (s′,a′)∆D. For an element (t, b) ∈ H × Dop, we have

Q × Qop ∩ (t,b)R 6 Q × Qop ∩ (t,b)∆D ∩ (t,b)(s′,a′)∆D.

Either (t, b) or (t, b)(s′, a′) does not belong to H × Dop so that we have for
some element (s, a) ∈ G × Dop r H × Dop that

Q × Qop ∩ (t,b)R 6 Q × Qop ∩ (s,a)∆D.

Namely we see that Q × Qop ∧G×Dop X ⊆ T .
Now an indecomposable direct summand Z′ of Q×QopZ is isomorphic for

some element x ∈ G to k[QxQ], which has (1,x)∆(Q ∩ xQ) as a vertex. The
module Z′ is relatively T -projective; hence we have that

(1,x)∆(Q ∩ xQ) 6Q×Qop Q × Qop ∩ (s,a)∆D = (s,a)∆(Qs ∩ aQ)
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for some element (s, a) ∈ G × Dop r H × Dop. Therefore, it follows that
Q ∩ xQ 6Q Q ∩ saQ. Since sa ∈ G r H, we see that

Q ∩ xQ 6Q Q ∩ gQ

for some element g ∈ G r H.
Now, because Z′ ⊗kQ S ' k[QxQ] ⊗kQ S = kQ ⊗k[Q∩xQ] x ⊗ S , the tensor

product Z′ ⊗kQ S is relatively Q ∩ xQ-projective. Consequently the tensor
product Z′ ⊗kQ S is relatively Q∩ gQ-projective for some element g ∈ G rH.

Proposition 4.4 We let a source module X of the block ideal B and a source
module Y of the block ideal C be in the Green correspondence with respect
to (G × Dop,∆D,H × Dop). Assume that an indecomposable kG-module U
lying in B and an indecomposable kH-module V lying in C have vertices in
A (G, P,H) and are in the Green correspondence with respect to (G, P,H).
Then the following hold.

(i) If Q ∈ A (G, P,H) is a Y-vertex of V and S is a (Q,Y)-source of V, then
Q is an X-vertex of U and S is a (Q, X)-source of U.

(ii) If Q ∈ A (G, P,H) is an X-vertex of U and S is a (Q, X)-source of U,
then Q is a Y-vertex of V and S is a (Q,Y)-source of V.

Proof. We first note for any g ∈ G rH that Q∩ gQ is a proper subgroup of
Q.

Now we let

L∗ ⊗B X ' Y ⊕ Y0, Y0 ≡ O(Y (G × Dop,∆D,H × Dop)),
L ⊗C Y ' X ⊕ X0, X0 ≡ O(X (G × Dop,∆D,H × Dop)),

L∗ ⊗B U ' V ⊕ V0, V0 ≡ O(Y (G, P,H)),
L ⊗C V ' U ⊕ U0, U0 ≡ O(X (G, P,H)).

(i) Let us show that S
∣∣∣ QX∗ ⊗B U. Because

X∗ ⊗B L ⊗C V ' X∗ ⊗B U ⊕ X∗ ⊗B U0,

X∗ ⊗B L ⊗C V ' Y∗ ⊗C V ⊕ Y∗0 ⊗C V

and S
∣∣∣ QY∗⊗C V , the module S is isomorphic with an indecomposable direct

summand of either QX∗ ⊗B U or QX∗ ⊗B U0. The kQ-module QX∗ ⊗B U0
is a direct summand of the kQ-module QU0, which is projective relative to
the family Q ∧G X (G, P,H). We see for an element g ∈ G and an element
t ∈ G r H that Q ∩ g(P ∩ tP) 6 Q ∩ gtP 6 P ∩ gtP so that the kQ-module
QX∗ ⊗B U0 has no indecomposable direct summand having Q as a vertex.
Therefore we obtain that S

∣∣∣ QX∗ ⊗B U, as claimed.
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Next we show that Q is an X-vertex of U. It follows that

U
∣∣∣ L ⊗C V

∣∣∣ L ⊗C Y ⊗kQ S ' X ⊗kQ S ⊕ X0 ⊗kQ S .

If U
∣∣∣ X0 ⊗kQ S , then we would have

S
∣∣∣ QX∗ ⊗B U

∣∣∣ QU
∣∣∣ QX0 ⊗kQ S .

However, Lemma 4.3 (ii) says that QX0 ⊗kQ S is projective relative to the
family {Q ∩ gQ | g ∈ G r H }, a contradiction.

(ii) We show that S
∣∣∣ kQY∗ ⊗C V . Because

Y∗ ⊗C L∗ ⊗B U ' Y∗ ⊗C V ⊕ Y∗ ⊗C V0,

Y∗ ⊗C L∗ ⊗B U ' X∗ ⊗B U ⊕ X∗0 ⊗B U

and S
∣∣∣ QX∗ ⊗B U, the kQ-module S is isomorphic to a direct summand of

either QY∗⊗C V or QY∗⊗C V0. The kQ-module QY∗⊗C V0 is projective relative
to the family Q ∧H Y (G, P,H). We see for an element s ∈ H and an element
t ∈ G r H that Q ∩ s(H ∩ tP) 6 Q ∩ stP 6 P ∩ stP so that the kQ-module
QY∗ ⊗C V0 has no indecomposable direct summand having Q as a vertex.
Therefore we see that S

∣∣∣ QY∗ ⊗C V , as desired.
Next we prove that Q is a Y-vertex of V . Because

V
∣∣∣ L∗ ⊗B U

∣∣∣ L∗ ⊗B X ⊗kQ S ' Y ⊗kQ S ⊕ Y0 ⊗kQ S

the kH-module V is a direct summand of either Y ⊗kQ S or Y0 ⊗kQ S . If
V

∣∣∣ Y0 ⊗kQ S , then we would have

S
∣∣∣ QY∗ ⊗C V

∣∣∣ QV
∣∣∣ QY0 ⊗kQ S .

However, Lemma 4.3 (i) says that QY0⊗kQS is projective relative to the family
{Q ∩ gQ | g ∈ G r H }, a contradiction.

Since L
∣∣∣ G×Hop B and L has ∆D as a vertex, an indecomposable direct sum-

mand of G×Dop L has ∆D as a vertex, which is a source module of the block
B.

Proposition 4.5 We take a source module X of the block ideal B as a direct
summand of the k[G × Dop]-module G×Dop L. Assume that an indecompos-
able B-module U has an X-vertex belonging to A (G, P,H). Then the Green
correspondent V of U to H with respect to (G, P,H) lies in the block C.

Proof. Let Q ∈ A (G, P,H) be an X-vertex of U and S a (Q, X)-source of
U. Our choice of the source module X implies that

S
∣∣∣ QX∗ ⊗B U

∣∣∣ QL∗ ⊗B U.
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Therefore an indecomposable direct summand V ′ of L∗⊗B U has Q as vertex,
which must be isomorphic with V by Green correspondence:

V ' V ′
∣∣∣ L∗ ⊗B U

and that the Green correspondent V lies in the block C.

Proof of Theorem 1.3. (i) Let Q ∈ A (G, P,H) be an X-vertex of U. Then
Proposition 4.5 says that the Green correspondent V lies in the block C.
Proposition 4.4 says that Q is a Y-vertex of V and we can take a common
(Q, X)-source of U and (Q,Y)-source of V , which we denote by S . We write
the restrictions of resD

Q : H∗(D, k)→ H∗(Q, k) to H∗(G, B; X) and H∗(H,C; Y)
as follows:

rB,Q : H∗(G, B; X)→ H∗(Q, k), rC,Q : H∗(H,C; Y)→ H∗(Q, k).

Then Benson and Linckelmann [2, Theorem 1.1] implies that

VG,B(U) = rB,Q
∗(VQ(S )), VH,C(V) = rC,Q

∗(VQ(S )).

Since rB,Q
∗ = ι∗ ◦ rC,Q

∗, we obtain that

VG,B(U) = ι∗VH,C(V).

(ii) It is well known that the Green correspondent U of V lies in the block
B = CG without any assumption on Y-vertices. Let Q ∈ A (G, P,H) be a Y-
vertex of V . Then Proposition 4.4 says that Q is an X-vertex of U and we can
take a common (Q, X)-source of U and (Q,Y)-source of V . Thus the same
argument as in the above applies.

Example. (cf Benson and Linckelmann [2, Corollary 1.4]) Let B be a
block ideal of kG and D 6 G a defect group of B. Let X = kGi be a source
module of B. Let U be an indecomposable B-module and Q an X-vertex of U
and S a (Q, X)-source of U.

Assume that Q is normal in D. Let H = NG(Q). Let P 6 D and assume
that H contains NG(P) and that Q ∈ A (G, P,H).

Let (D, bD) be a Sylow B-subpair such that bDX(D) = X(D) and let
(Q, bQ) 6 (D, bD). Let C be a unique block ideal of kH covering the block
ideal bQ of kQCG(Q).

Because Q is normal in D, we see that H = NG(Q) > DCG(D). We also
know that CG = B and D is a defect group of the block C and (D, bD) is a
Sylow C-subpair.

We let K = DCG(D). The k[K × Dop]-module Z = kK BrD(i) is a source
module of bD and the source module X of B is the Green correspondent of Z
with respect to (G × Dop,∆D,K × Dop). Let Y be the Green correspondent of
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Z with respect to (H × Dop,∆D,K × Dop); Y is a source module of the block
C = bD

H by Proposition 2.3; X and Y are in the Green correspondence with
respect to (G × Dop,∆D,H × Dop).

Theorem 1.2 (ii) implies that H∗(G, B; X) ⊆ H∗(H,C; Y).
Let V be the Green correspondent of U with respect to (G, P,H). Then we

have from Theorem 1.3 that

VG,B(U) = ι∗VH,C(V).

5. Appendix–relative projectivity

In this appendix, following Broué [3], we shall state briefly the theory on
projectivity relative to bimodules over symmetric algebras. We also add some
facts.

Let A, B and C be symmetric k-algebras of finite dimension. We let denote
by AmodC the category of finitely generated (A,C)-bimodules whose left and
right k-module structures coincide. For L, L′ ∈ AmodC we shall denote by
A(L, L′)C the set of (A,C)-homomorphisms from L to L′. Similarly, the sym-
bol A(L, L′) means the set of A-homomorphisms from the left A-module AL
to the left A-module AL′.

Let X be an (A, B)-bimodule such that the left A-module AX and the right
B-module XB are both finitely generated and projecive. Then the functors

XS : BmodC → AmodC; M 7→ X ⊗B M,

XT : AmodC → BmodC; L 7→ X∗ ⊗A L

are biadjoint pair. Namely, for arbitrary M ∈ BmodC and L ∈ AmodC , we
have natural transformations

ϕL,M : A(X⊗BM, L)C ∼→ B(M, X∗⊗AL)C

ψM,L : B(X∗⊗AL,M)C ∼→ A(L, X⊗BM)C .

We should notice that the natural transformations above depend on the choice
of symmetrizing forms of the algebras A and B.

We define ηX∗,X : B→ X∗⊗AX and εX∗,X : X∗⊗AX → B by the following:

ϕX,B : A(X, X)B ∼→ B(B, X∗⊗AX)B

IdX 7→ ηX∗,X ,

ψB,X : B(X∗⊗AX, B)B ∼→ A(X, X)B

εX∗,X 7→ IdX .
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Similary, considering the k-dual X∗, we define

ϕX∗,A : B(X∗, X∗)A ∼→ A(A, X⊗BX∗)A

IdX∗ 7→ ηX,X∗ ,

ψA,X∗ : A(X⊗BX∗, A)A ∼→ B(X∗, X∗)A

εX,X∗ 7→ IdX∗ .

The maps ηX∗,X and εX,X∗ represent the unit IdBmodC → XT ◦ XS and the
counit XS ◦ XT → IdAmodC of an adjunction for the adjoint pair (XS , XT ); the
maps ηX,X∗ and εX∗,X represent the unit IdAmodC → XS ◦ XT and the counit
XT ◦ XS → IdBmodC of an adjunction for the adjoint pair (XT, XS ). Hereafter
we shall denote by ηX , ηX∗ , εX∗ and εX the maps ηX∗,X , ηX,X∗ , εX∗,X and εX,X∗ ,
respectively.

For the (A, B)-bimodule X the relative trace map, which we would like to
denote by XTr, is defined as follows: for L, L′ ∈ AmodC

XTr : B(X∗⊗AL, X∗⊗AL′)C → A(L, L′)C;α 7→ εX ◦ (IdX⊗α) ◦ ηX∗ .

Proposition 5.1 We have for homomorphisms β : X∗ ⊗A L → X∗ ⊗A L′,
α : L1 → L and α′ : L′ → L′1 that

α′ ◦ XTr(β) ◦ α = XTr
(
(IdX∗ ⊗ α

′) ◦ β ◦ (IdX∗ ⊗ α)
)
.

Proposition 5.2 Let X be an (A, B)-bimodule and assume that AX and XB are
finitely generated and projective.

(i) Let Y be a (B,C)-bimodule and assume that BY and YC are finitely gen-
erated and projective. Then we obtain X⊗BYTr = XTr ◦ YTr.

(ii) Let X′ be an (A, B)-bimodule and assume that AX′ and X′B are finitely
generated and projective. Then we have Im X⊕X′Tr = Im XTr + Im X′Tr.

Theorem 5.3 Let X be an (A, B)-bimodule such that AX and XB are finitely
generated and projecive. For L ∈ AmodC the followings are equivalent to
each other.

(i) There exist (A,C)-homomorphisms i : L → X ⊗B X∗ ⊗A L and q : X ⊗B
X∗ ⊗A L→ L such that q ◦ i = IdL.

(ii) There exists a module M ∈ BmodC and (A,C)-homomorphisms i : L →
X ⊗B M and q : X ⊗B M → L such that q ◦ i = IdL.

(iii) There exists a (B,C)-homomorphism β : X∗ ⊗A L → X∗ ⊗A L such that
XTr(β) = IdL.
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(iv) There exist an (A,C)-homomorphism q : X ⊗B X∗ ⊗A L → L such that
q ◦ (ηX∗ ⊗ IdL) = IdL.

(v) There exist an (A,C)-homomorphism i : L → X ⊗B X∗ ⊗A L such that
(εX∗ ⊗ IdL) ◦ i = IdL.

(v’) (relative projectivity of L) For (A,C)-homomorphisms α : L → L′ and
π : L′′ → L′, if there exists a (B,C)-homomorphism β : X∗ ⊗A L′ →
X∗ ⊗A L′′ such that (IdX∗ ⊗ π) ◦ β = IdX∗⊗AL′ , then there exists an (A,C)-
homomorphism α̂ : L→ L′′ such that π ◦ α̂ = α.

(iv’) (relative injectivity of L) For (A,C)-homomorphisms α : L′ → L and
ι : L′ → L′′, if there exists a (B,C)-homomorphism β : X∗ ⊗A L′′ →
X∗ ⊗A L′ such that β ◦ (IdX∗ ⊗ ι) = IdX∗⊗AL′ , then there exists an (A,C)-
homomorphism α̂ : L′′ → L such that α̂ ◦ ι = α.

A module L ∈ AmodC satisfying one (and then all) of the conditions in
Theorem 5.3 is said to be relatively XS -projective or simply relatively X-
projective.

A homomorphism α : L → L′, where L, L′ ∈ AmodC is said to be
relatively XS -projective or simply relatively X-projective if it factors through
X ⊗B T for some T ∈ BmodC . Theorem 5.3 implies that a homomorphism
α : L → L′ is relatively X-projective if and only if it is the image under the
relative trace map XTr : B(X∗⊗AL, X∗⊗AL′)C → A(L, L′)C .

Remark. Although in [3] a relatively X-projective module is said to be
XS -split and relatively X-projective homomorphism is said to be XS -split, we
would like to use the term "relatively projective".

By definition we have
XTr(IdX∗) = εX ◦ ηX∗ : A→ A,

which we denote by π̂X . The homomorphism π̂X is relatively X-projective.
The element πX = π̂X(1A) ∈ Z(A) is called a relatively X-projecive element

and the element πX∗ = π̂X∗(1B) ∈ Z(B) is called a relatively X∗-projective
element. The map π̂X : A → A is given by multiplication by the element
πX ∈ Z(A) and the map π̂X∗ : B → B is given by multiplication by the
element πX∗ ∈ Z(B).

Theorem 5.4 Let X be an (A, B)-bimodule and assume that AX and XB are
finitely generated and projective. Let Y be a (B,C)-bimodule and assume
that BY and YC are finitely generated and projective. Assume that an (A,C)-
bimodule L is isomorphic to a direct summand of the tensor product X ⊗B Y.
Then the modules AL and LC are finitely generated and projective, respec-
tively, and the following hold.
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(i) The module L is relatively X-projective and the homomorphism π̂L : A→
A is relatively X-projective.

(ii) The module L∗ is relatively Y∗-projective and the homomorphism π̂L∗ :
C → C is relatively Y∗-projective.

Proof. By definition the module L is relatively X-projective and the homo-
morphism π̂L factors through X⊗B Y ⊗L∗. Taking duals we have the assertion
(ii).

By Proposition 5.1 we see

Proposition 5.5 Let X be an (A, B)-bimodule and assume that AX and XB are
finitely generated and projective. For modules L, L′ ∈ AmodC we let

X∗Res : A(L, L′)C → B(X∗ ⊗A L, X∗ ⊗A L′)C; f 7→ IdX∗ ⊗ f .

Then we have
XTr ◦ X∗Res = π̂X(= multiplication by πX).

Theorem 5.6 Let X be an (A, B)-bimodule and assume that AX and XB are
finitely generated and projective. If the relatively projective element πX ∈

Z(A) is invertible, then arbitrary L ∈ AmodC is relatively X-projective.

Proof. The assumption that πX ∈ Z(A) is invertible implies that the relative
trace map XTr : B(X∗ ⊗A L, X∗ ⊗A L)C → A(L, L)C is epimoriphic because of
the previous proposition.
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