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Abstract. We have systematically estimated the possible temperatures obtained from an analysis of recent
data on pt distributions observed at RHIC experiments. Using the fact that observed pt distributions cannot
be described by the original Hagedorn formula in the whole range of transverse momenta (in particular
above 6 GeV/c), we propose a modified Hagedorn formula including temperature fluctuation. We show
that by using it we can fit pt distributions in the whole range and can estimate consistently the relevant
temperatures, including their fluctuations.

PACS. 25.75.-q Relativistic heavy ion collisions – 12.40.Ee Statistical (extensive and non-extensive) models
– 02.50.Ey Stochastic models

1 Introduction

One of the characteristic features in every high energy
collision experiment is the production of large numbers
of secondaries (mostly pions). From the very beginning of
the history of the multiparticle production processes, it
was realized that a possible way to treat them was to em-
ploy some sort of statistical approach [1]. This idea found
its most mature formulation in the statistical bootstrap
model proposed by Hagedorn [2], in which the exponential
growth of the number of hadronic resonances with mass
is one of the most fundamental issues [3]. The proposed
formula is

d3σ

dp3
= C

∫

dmρ(m) exp

(

−
√

p2

l + p2
t + m2β0

)

. (1)

In Eq.(1), ρ(m) denotes the density of resonances given
by

ρ(m) =
exp(mβH)

(m2 + m2
0
)5/4

, (2)

where βH = 1/(kBTH), the inverse of the so called Hage-
dorn temperature TH , is a parameter to be deduced from
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data on resonance production [4]. The other parameter is
β0 = 1/(kBT0), with T0 explicitly governing the observed
energy distribution and therefore identified with the tem-
perature of the hadronizing system. In the followings we
put kB = 1. One of the aims in the study of multipar-
ticle production processes is therefore the best possible
estimation of this quantity. To this end we would like to
investigate the measured transverse momentum (pt) dis-
tributions integrated over longitudinal degrees of freedom.
From Eq.(1), we have

S0 ≡
d2σ

2πptdpt
= C

∫

dmρ(m)mtK1(mtβ0) , (3)

where mt =
√

p2
t + m2 is transverse mass and K1 is the

Bessel function.
However, as was recently demonstrated by us [5], this

simple formula can explain the RHIC data only in the
limited range of transverse momenta, namely for pt ≤ 6
GeV/c. For larger values of pt data exhibit a power-like
tail. There are many attempts to explain it using some
kind of nonequilibrium approach like, for example, the
flow or decay of resonances (see [6] for most recent re-
view and further references); instead of trying to exclude
them we would like to investigate the possibility that the
observed nonexponential spectra could result from some
form of equilibrium characteristic of nonextensive thermo-
dynamics. In fact, as was shown in [5], using an approach
based either on nonextensive statistics or on stochastic ap-
proach one can successfully account for the whole range of
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the observed transverse momenta. The reason for this suc-
cess is the fact that in both approaches the resultant dis-
tributions are intrinsically non-exponential, ranging from
a power-law like form (cf. Eq.(6) below) to a gaussian
in transverse rapidity [7] (which can be regarded as an-
other implementation of the effective power-law distribu-
tion)1. The fact that the proposed formulas can fit the
whole range of pt is by itself very interesting and impor-
tant observation as it shows that the power-law is present
not only in very hard scale physics but that it reflects
also a possible nontrivial property of hadronic matter in
equilibrium (like, for example, Quark Gluon Plasma) [9].

Such properties are best seen in an approach using a
nonextensive statistical model in which two parameters
are used: the action of the heat bath is described now
by the mean temperature T0 and by the nonextensivity
parameter q, which can be identified with some specific
intrinsic fluctuations of the temperature existing in the
hadronizing system under consideration [10]. In the case
when these fluctuations can be described by gamma dis-
tribution one can write exact formulas [10] telling us that
(cf. [10])

[1 − (1 − q)β0H0]
1

(1−q) =

∫

∞

0

e−βH0fΓ (β)dβ , (4)

where

fΓ (β) =
1

Γ (α)

( α

β0

)α

βα−1e−
α

β0
β , α =

1

q − 1
. (5)

In general, one refers to the concept of so called super-
statistics introduced in [11]. In our previous work [5], RHIC
data were described by the following distribution with
H0 =

√

p2

l + m2
t :

d2σ

2πptdpt
= C

∫

∞

0

dpl

[

1 −
1 − q

T0

√

p2

l + m2
t

]
1

1−q

. (6)

As is seen in [5], this formula leads to very good agreement
with all RHIC data [12,13,14].

It is important to notice that Eq. (6) has essentially
the same form as the formula proposed long time ago and
used with success in many QCD-inspired power-law fits to
experimental data [15,16,17] (recently used also by RHIC
collaborations [18]):

(

1 +
pt

p0

)

−n

−→







exp
(

− n
p0

pt

)

for pt → 0,
(

p0

pt

)n

for pt → ∞,
. (7)

However, one has also to realize the important difference
in physical pictures leading to Eq. (6) and Eq. (7). The
underlying physical picture in Eq. (7) is that the small
pt region is governed by soft physics described by some
unknown unperturbative theory or model, and the large

1 See also [8], where flow effect is included and relation be-
tween Gaussian-like distribution in transverse rapidity and
power law behavior in pt is discussed.

pt region is governed by hard physics believed to be de-
scribed by perturbative QCD. Contrary to it, the nonex-
tensive formula Eq.(6), which is valid in the whole range
of pt, does not claim to originate from any particular the-
ory. It merely offers the kind of general unifying principle,
namely the existence of some kind of complicated equi-
librium involving all scales of pt, which is described by
two parameters, T0 and q: the temperature T0 describing
its mean properties and the parameter q describing ac-
tion of the possible nontrivial long range effects believed
to be caused by fluctuations but essentially also by some
correlations or long memory effects [19] 2.

2 Calculations and results

In this paper, we would like to compare results of an analy-
sis of pt spectra measured at RHIC experiments [12,13,14]
performed by using three approaches: the original Hage-
dorn model, Eq. (3), the QCD-inspired power-like formula,
Eq. (7), and the modified Hagedorn formula including
temperature fluctuation given by :

Stot ≡
d2σ

2πptdpt
= C

∫

dy cosh y

∫

dmρ(m)mt ·

·[1 − β0(1 − q)mt cosh y]
1

1−q . (8)

It can be written also in the form of series (α = 1/(q−1)):

Stot =
4C

α − 1

∫

∞

mπ

dmρ(m)
β0m

2
t /α

(1 + β0mt/α)α
· (9)

·

∞
∑

k=0

Γ (k + 3/2)Γ (α + 1 + k)

Γ (α + k + 1/2)Γ (k + 1)

(

1 − β0mt/α

1 + β0mt/α

)k

,

or, accounting for the smallness of q−1 encountered in our
fits and of the fact that we are interested only in midra-
pidity region (i.e., for small y) one can write it also as3

Stot ≃ C

∫

dy cosh y

∫

dmρ(m)mt ·

·

[

1 +
1

2
(q − 1)β2

0
m2

t y
2

]

·

· exp

[

−β0mt cosh y +
1

2
(q − 1)β2

0m2

t

]

. (10)

Equations (9) and (10) are used to check the numerical
integration of Eq.(8).

At first the STAR data [12] were analyzed using of
Eq. (3) (which corresponds to q = 1 in Eq. (8)) and modi-
fied Hagedorn formula, Eq. (8). Results are shown in Fig. 1

2 The origin of such fluctuations and/or correlations must be
most probably traced back to the nonperturbative QCD, cf.,
for example, [20].

3 In our case, because we are integrating over the whole mass
spectrum ρ(m) in Hagedorn formula, we cannot simply expand
in (q − 1) and keep only linear term as it is done on such
occasions in the literature, cf., for example [21], because for
large masses m the series becomes divergent.
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Fig. 1. Analysis of STAR data [12] by using usual Hagedorn formula (Eq.(3), left panel) and its nonextensive generalization
(Eq. (8), right panel).

Table 1. Parameters of our analysis presented in Fig. 1 (left panel) by the use of Eq. (3) which corresponds to q − 1 = 0 in
Eq.(8). Those for right panel with q − 1 6= 1 in Eq.(8) can be found in Table 4. Other parameters are m0 = 0.5 GeV (fixed),
δTH = 0.0001-0.002 and δT0 = 0.0001-0.002. Notice that very large values of χ2are obtained for fits with q − 1 = 0.

C. C. (%) C TH (GeV) T0 (GeV) χ2/n.d.f.

0-5 816± 15 0.086 0.085 532/32
20-30 382±7 0.077 0.076 249/32
60-80 106± 2 0.037 0.037 308/32
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Fig. 2. Temperature fluctuation in STAR data (for C.C. = 0− 5 %) [12] are analyzed by the use of Eq. (3) with q − 1 = 0 (left
panel) and Eq. (8) with q − 1 6= 0 (right panel).

and Table 1. The corresponding results for BRAHMS and
PHENIX data [13,14] are very similar. As can be seen in
Fig. 1, whereas distributions in the small pt region can
be explained by simple formula (3), data including the
larger pt region can only be explained by using the modi-
fied Hagedorn formula, Eq. (8) (or Eqs. (9) and (10)). The
nonzero values of |q − 1| are then interpreted as an indi-
cation of the sizeable temperature fluctuations existing in
the hadronizing system [10,11].

In fact RHIC data allow us to investigate the fluctua-
tion of temperature in more detail, cf. Fig. 2. The central-
ity cut C.C. = 0−5 % region of STAR data [12] was fitted

by using, respectively, Eq. (3) (with q − 1 = 0, left panel)
and Eq. (8) (with q as in Table 4, right panel). Fit was per-
formed by fixing all parameters in Eqs. (3) and (8) except
β0; β(= β0) is then calculated for each of 35 data points
and it is assumed that the reciprocal of the each error
bar calculated by the fitting program MINUIT is propor-
tional to the corresponding probability of this value of β,
P (β). In this way a probability distribution for β is ob-
tained and presented in the form of a histogram in Fig.2.
The histogram in each panel is then fitted to the Gamma
distribution with α = 55000 (shown as solid curves). The
mean value 〈β〉 is also shown in each panel in Fig.2. As can
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Fig. 3. Example of the visualization of results presented in Tables 2 and 4 using STAR [12] results. Left panels show in detail
contribution of different mechanisms represented by Stot Eq. (8), by S0 Eq. (3) and by their difference denoted by Sq = Stot−S0.
Right panels show results on original Hagedorn model, Eq.(1) by dashed line, the modified the Hagedorn formula including
temperature fluctuation, Eq.(8), by solid line, and Eq.(7) by dotted line.

be seen, a good fit can be obtained only when Eq. (8) is
used and in this case the resultant distribution of temper-
atures is very narrow. This result suggests that accounting
for intrinsic fluctuations considerably narrows the distri-
bution of temperatures (actually its reverse, β = 1/T ) and
minimizes what can be regarded as a kind of systematic
error in deduction of β0 from experimental data. Therefore
it strongly suggests that the modified Hagedorn formula,
Eq. (8), should be used whenever possible.

The results of our fits to RHIC data [12,13,14] per-
formed by using Eq. (6) (as given by nonextensive statis-
tical approach), Eq. (7) (representing the QCD-inspired
power-law formula) and Eq. (8) (given by the modified

Hagedorn formula proposed by us here) are presented in,
respectively, Tables 2, 3 and 4. The results for STAR
data are then also shown in Fig.3. In particular, the left
hand panels of Fig. 3 demonstrate contribution of different
mechanism represented, respectively by Stot and S0. It is
clear that data for the larger pt region can be explained
only by Stot, which can be attributed to the intrinsic pri-
mordial temperature fluctuations in the hadronizing sys-
tem. However, at present it is difficult to treat this as
a possible signal of a Quark-Gluon Plasma. Notice that
the temperature parameter T0 = 1/β0 in Table 2 and 4
was estimated by the use of Eq. (8) from the whole re-

gion of transverse momenta, whereas T̃0 = p0/n, which



M. Biyajima et al.: Modified Hagedorn formula including temperature fluctuation 5

corresponds to temperature in Eq. (7), shown in Table 3
governs only the small pt region. RHIC data show that
we always have T̃0 > T0, i.e., that inclusion of fluctuations
and long-range correlations present in the hadronizing sys-
tem lowers the estimated value of its mean temperature.
From Table 4, we can see that both temperatures, TH

and T0, estimated by the use of Eq. (8) decrease as the
centrality cut, C.C., increases (i.e., it can be argued that
they increase with the volume of interaction; similar ef-
fect concerning TH has been also found in [22]). It should
be emphasized that when one uses the modified Hagedorn
formula, Eq. (8), then TH ∼ T0 ∼ mπ, i.e., estimated val-
ues of TH and T0 are almost equal to mπ, which we regard
as very reasonably result4.

3 Summary

We have presented a systematic analysis of RHIC data [12,
13,14] on transverse momenta distributions, which allow,
in principle, the deduction of the parameter believed to
represent the temperature T0 of the hadronizing system.
We have shown that in order to fit the whole range of pt

one has to use a nonextensive approach, which accounts
for temperature fluctuations present in the hadronizing
system. This has been compared with approach using the
old QCD-inspired power-like formulas introduced long time
ago. We have demonstrated that gradual accounting for
the intrinsic dynamical fluctuations in the hadronizing
system by switching from Eq. (6) (as given by nonexten-
sive statistical approach) to the modified Hagedorn for-
mula including temperature fluctuation, Eq. (8), substan-
tially lowers the values of parameter q−1. This is because
part of the fluctuations ascribed in Eq. (6) to q are ac-
counted for by the resonance spectrum ρ(m) present in
the Hagedorn formula. It also changes the temperature
we are looking for. Therefore one has to be very careful
when interpreting the temperature parameter obtained in
such fits, especially when attempting to address any ques-
tions concerning Quark Gluon Plasma production issues5.

4 Actually, analysis performed assuming both thermal and
chemical equilibrium and including also baryons performed by
GSI group [23] gives T = 170 MeV. In our case we are consid-
ering only pions and get T ≃ mπ. This difference is important
for the description of phase diagram and we plan to address it
elsewhere. One more remark is in order here. The T0 parame-
ters obtained by us are in a range of Tc = 170 MeV, the QCD
crossover temperature. On the other hand, traditional expo-
nential fits for the low pT part of pion spectra used to give
T = 340 MeV, pointing to a transverse flow with a Doppler
blue-shift factor of two. However, we do not claim that there
is no transverse flow in RHIC experiments, we only show that
nonextensive approach can mimic this effect as well.

5 One should be aware of the fact that there is still an on-
going discussion on the meaning of the temperature in nonex-
tensive systems. However, the small values of the parameter
q deduced from data allow us to argue that, to first approxi-
mation, T0 can be regarded as the hadronizing temperature in
such system. One must only remember that in general what we
study here is not so much the state of equilibrium but rather

If data with larger pt are available, we can further inves-
tigate whether the modified Hagedorn formula including
temperature fluctuation is really applicable or not.

Acknowledgements

This study is partially supported by Faculty of Science
at Shinshu University. One of authors (MB) would like to
thank for fruitful conversations at RITP in Kyoto Uni-
versity and RCNP in Osaka University. Partial support of
the Polish State Committee for Scientific Research (KBN)
(grant Nr 621/E-78/SPB/CERN/P-03/DWM52/2004-2006
(GW)) is also acknowledged.

References

1. W. Heisenberg, Z. Phys. 126, 569 (1949); E. Fermi, Prog.
Theor. Phys. 5, 570 (1951); I. Pomeranchuk, Dokl. Akad.
Nauk SSSR, 78, 889 (1951); L. D. Landau and S. Z. Bilenkij,
Nuovo Cim. Suppl. 3, 15 (1956).

2. Nuovo Cim. Suppl. 3, (1965) 147 and Nuovo Cim. A 52,
64 (1967). R. Hagedorn, CERN 71-12, 1971, and CERN-
TH.7190/94, 1994, and references therein.

3. K. Huang and S. Weinberg, Phys. Rev. Lett. 25, 895 (1970);
W. Nahm, Nucl. Phys. B 45, 525 (1972). For the most recent
analysis see W. Broniowski, W. Florkowski and L. Ya. Gloz-
man, Phys. Rev. 70, 117503 (2004).

4. Cf., for example, W. Broniowski and W. Florkowski, Phys.
Rev. Lett. 87, (2001) 272302 and Acta Phys. Polon. B 35,
779 (2004) and references therein.

5. M. Biyajima, M. Kaneyama, T. Mizoguchi and G. Wilk,
Eur. Phys. J. C 40, 243 (2005).

6. B. Müller and J.L. Nagle, Results from the Relativistic

Heavy Ion Collider, nucl-th/0602029; submitted to Ann. Rev.
Nuc. Part. Sci.

7. Minh Duong-van and P. Carruthers, Phys. Rev. Lett. 31,
133 (1973).

8. N. Suzuki, M. Biyajima, hep-ph/0510014, the proceedings
of the XXXV International Symposium on Multiparticle Dy-
namics 2005, Kromeriz, Czech Republic, August 9-15, 2005.

9. Cf., for example, T. Biro, G. Purcsel, G. Györgi, A,Jakovác
ans Z. Schram, Power-law tailed spectra from equilibrium,
QM2005 contribution, nucl-th/050008 and references therein.
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Table 2. Analysis of RHIC data [12,13,14] by means of nonextensive approach as given by Eq. (6). For comparison the results
for pp collisions are also shown.

Coll. & C.C. c T0 [GeV] q 1/(q − 1) χ2/n.d.f
BRAHMS 0-10% 936±68 0.227±0.005 1.0394±0.0026 25.4 10.2/23

10-20% 716±56 0.217±0.005 1.0455±0.0029 22.0 12.9/23
20-40% 468±41 0.208±0.006 1.0507±0.0033 19.7 12.8/23
40-60% 265±32 0.185±0.007 1.0607±0.0044 16.5 10.6/23
60-80% 36.2±4.2 0.165±0.005 1.0764±0.0024 13.1 2.76/23

PHENIX 0-5% 1530±359 0.195±0.012 1.0461±0.0060 21.7 5.00/29
5-15% 1200±276 0.193±0.012 1.0472±0.0057 21.2 3.56/29

15-30% 760±180 0.189±0.012 1.0503±0.0058 19.9 5.50/29
30-60% 384±96 0.170±0.011 1.0613±0.0055 16.3 2.60/29
60-80% 120±39 0.144±0.012 1.0728±0.0067 13.7 10.5/29
80-92% 59.2±32.0 0.114±0.017 1.0879±0.0106 11.4 8.99/29

STAR 0-5% 3980±186 0.164±0.002 1.0651±0.0009 15.4 172/32
5-10% 2900±148 0.169±0.002 1.0622±0.0011 16.1 64.5/32

10-20% 2340±114 0.164±0.002 1.0662±0.0011 15.1 66.4/32
20-30% 1630±81 0.162±0.002 1.0684±0.0011 14.6 40.7/32
30-40% 1170±61 0.158±0.002 1.0709±0.0011 14.1 38.9/32
40-60% 739±39 0.146±0.002 1.0772±0.0010 13.0 14.7/32
60-80% 328±19 0.130±0.002 1.0850±0.0011 11.8 9.39/32

pp (nsd) 49.9±5.5 0.111±0.003 1.0894±0.0014 11.2 10.1/29

Table 3. Analysis of RHIC data [12,13,14] by means of the QC-inspired power-like formula (7). For comparison the results for
pp collisions are also shown.

Coll. & C.C. c n p0 [GeV] T̃ = p0/n χ2/n.d.f
BRAHMS 0-10% 353±19 32.2±3.3 8.89±1.09 0.276 7.96/23

10-20% 260±15 26.4±2.5 7.05±0.83 0.267 14.7/23
20-40% 163±11 22.8±2.1 5.87±0.70 0.257 13.9/23
40-60% 83.7±7.5 17.9±1.8 4.13±0.56 0.231 11.7/23
60-80% 11.1±1.0 12.8±0.5 2.58±0.17 0.202 2.86/23

PHENIX 0-5% 536±398 23.8±34.0 5.54±31.26 0.233 4.69/29
5-15% 417±276 23.0±23.7 5.30±21.15 0.231 3.58/29

15-30% 260±149 21.3±13.2 4.84±11.01 0.227 5.54/29
30-60% 120±924 16.6±91.8 3.40±90.58 0.205 2.66/29
60-80% 32.1±38.2 13.5±31.5 2.38±30.46 0.177 10.3/29
80-92% 12.8±35.4 10.8±31.6 1.53±30.44 0.142 8.83/29

STAR 0-5% 1140±41 15.4±0.3 3.10±0.09 0.201 194/32
5-10% 843±33 16.5±0.4 3.44±0.12 0.208 68.6/32

10-20% 660±25 15.3±0.3 3.12±0.10 0.203 72.3/32
20-30% 457±18 14.7±0.3 2.94±0.09 0.200 42.8/32
30-40% 319±13 14.1±0.3 2.77±0.09 0.196 38.1/32
40-60% 190±8 12.6±0.2 2.30±0.07 0.182 13.9/32
60-80% 75.4±3.3 11.3±0.2 1.84±0.06 0.163 7.18/32

pp (nsd) 10.8±0.9 10.4±0.2 1.42±0.06 0.136 11.6/29
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Table 4. Analysis of RHIC data [12,13,14] by means of nonextensive modification of the Hagedorn formula as given by Eq. (8).
Maximum m is fixed at 70 GeV (therefore in (9) one always has (1 − β0mt/α) > 0). Numbers of divisions for y and m in
computations are given in the last column. For comparison the results for pp collisions are also shown.

Coll. & C.C. c q − 1 TH [GeV] T0 [GeV] χ2/n.d.f. no. of div.
BRAHMS 0-10% 156±3 0.00 0.192±0.000 0.178±0.000 15.4/22 6×6

10-20% 106±5 (4.76±0.62)×10−4 0.206±0.007 0.187±0.005 13.1/22 6×7
20-40% 67.7±4.9 (8.49±21.05)×10−5 0.177±0.013 0.166±0.010 11.6/22 5×3
40-60% 32.5±2.9 (2.57±0.63)×10−4 0.168±0.010 0.157±0.008 9.54/22 5×4
60-80% 5.00±0.14 (8.12±0.45)×10−5 0.124±0.000 0.120±0.000 3.19/22 6×6

PHENIX 0-5% 226±56 (1.21±2.31)×10−4 0.16±0.02 0.152±0.019 4.98/29 5×6
5-15% 157±34 (4.01±0.02)×10−4 0.183±0.023 0.167±0.017 3.32/29 6×5

15-30% 87.5±10.4 (4.26±0.80)×10−4 0.187±0.010 0.170±0.008 4.31/29 5×3
30-60% 50.3±8.7 (1.64±0.47)×10−4 0.140±0.012 0.133±0.010 2.54/29 6×7
60-80% 27.8±2.5 (1.99±0.43)×10−5 0.0731±0.0002 0.0719±0.0002 9.91/29 5×6
80-92% 10.0±1.2 (1.24±0.30×10−5 0.0565±0.0002 0.0558±0.0001 8.71/29 12×12

STAR 0-5% 477±13 (1.48±0.05)×10−4 0.140±0.001 0.132±0.001 56.6/31 6×6
5-10% 443±15 (1.08±0.06)×10−4 0.127±0.002 0.122±0.002 38.0/31 7×6

10-20% 326±17 (1.02±0.10)×10−4 0.126±0.004 0.121±0.003 33.8/31 6×5
20-30% 236±14 (8.15±1.00)×10−5 0.119±0.004 0.115±0.004 30.0/31 6×6
30-40% 169±10 (7.13±0.09)×10−4 0.113±0.004 0.109±0.004 25.5/31 6×6
40-60% 109±4 (4.40±0.22)×10−5 0.0961±0.0014 0.0937±0.0013 24.5/31 6×7
60-80% 46.0±1.0 (2.80±0.08)×10−5 0.0797±0.0001 0.0782±0.0000 23.4/31 6×7

pp (nsd) 4.98±0.15 (2.87±0.08)×10−5 0.0725±0.0000 0.0711±0.0000 38.2/28 20×22
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