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Note on the exact solutions of Kronig-Penney model
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In an introduction to the band theory of solids, there is used the Kronig-Penney model which is a
one-dimensional solvable system of an electron interacting via delta-function potentials with particles
at crystal lattices arrayed in a circle. As has been pointed out? for Kittel's text?, however, the
eigen-value problem of the model is solved in ordinary space, while the band theory is discussed in
reciprocal lattice space. It is then instructive to show an introductory and consistent treatment for the
band theory in reciprocal lattice space. In this short note, we present such a treatment in the field
theoretical framework.

The Hamiltonian of our one-dimensional system with a coupling constant g, a lattice length Z, and
the number of lattice points Nis given by
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in terms of creation and annihilation operatorsa, and a, of an electron of mass m with a

momentum p = 27An/L (n=0%142---.), which are obeyed by the usual anti-commutation relations

a,a,+a,a,; =5p‘p , )

where 5p , means Kronecker’s delta, and the spin indices are saved briefly for the present one-particle

case. In (1), G denotes a reciprocal lattice momentum, G = 2nhn/a (n=0£142.--), where a is the
lattice constant and then the lattice length is given by L=Na . Furthermore ¢ indicates
27hj /L (j =0£142.---+(N —1)/2), where the number Nis assumed to be odd for convenience’ sake.

The one-particle eigen-state for the above Hamiltonian is given by the following form
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in which p, =¢; +G,, where g, is our quantum number and the eigen-energy £ is given by

E=k"/(2m).In (3), N, denotes the normalization constant and [0) indicates the vacuum state.
The straightforward calculation gives the following equations
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under which the above one-particle state in (3) satisfies the exact eigen-value equation,
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For a given quantum number g, (g, :—##(N ~1)/L.— 7#(N —3)/L.---0.---. 7a(N = 3)/L.z(N —1)/L ), the
equation (4) yields the many eigen-values which are classified by a function k, (q] N7} B) of one another
band quantum number# (70,1, 2 ,---). This is easily confirmed through the numerical calculation of

the left hand side in (4), of which the result is plotted by a oscillating curve in Fig.1, where x=ka/#,

f(x)=Psin(x)/x +cos(x)

x=2 T ak/h
Fig.1

and the dimensionless coefficient, P = mga/h?*, is taken to be3z/2 according as in the case of
Kronig-Penney paper. The region, -z < g,a/h <7 , (which is called the first Brillouin zone) for g,a/h

in the limit of an infinite AV, yields a value lying between -1 and +1 for cos(q;a/%) which is given by a
straight line parallel to the x-axis. The eigen-values

mentioned above are given by intersections between

the parallel line and the oscillating curve.

By omitting a factor (h2 / 2ma2) from the eigen-

energy, the dimensionless quantity [k( y.ngla/ h]2

is plotted in Fig.2, where the crystal momentum,
defined asy=gq,a/h, has been introduced instead

Band Energy

ofg,.
The above treatment for the band theory of solid is
natural from the field theoretical point of view, and

is instructive one as an introduction to the band

theory of solid.
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