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ABSTRACT: Water hyacinth (Eichhornia crassipes (Mart.) Solms) is a perennial, herbaceous,
aquatic weed of the family Pontederiaceas. Water hyacinth is considered as a serious pest in
many part of the world in the tropical and sub-tropical regions due to its prolific growth affecting
water resources adversely by blocking canals and pumps in irrigation projects; interfering with
hydroelectricity production; wasting water in evapotranspiration; hindering boat traffic; increas-
ing waterborne disease; interfering with fishing and culture; and clogging rivers and channels so
that drainage is impossible and floods results.

A dynamic numerical model was developed to simulate the growth dynamics and production
of water hyacinth. Two state variables, shoots and roots, were considered to illustrate the growth
of the water hyacinth. The net growth of the shoots was imperative effects of photosynthesis,
respiration, mortality and allocation for root growth. Biomass data reported in literature was
used to calibrate the model. Model parameters were allowed to vary as a result of acclimation,
following experimental data reported in literature. Model simulations show a good agreement

with observed data with a similar biomass temporal dynamics.
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Introduction

Water Hyacinth (Eichchornia crassipes (Mart) Solms) is considered to be the most important aquatic
weed in the world (Center and Spencer 1981). It was first recorded in early nineties in South Africa. Since
then the weed is gaining considerable attention in tropical and subtropical part of the world due to its
rapid growth causing, clogging of rivers and lakes, incubating pest insects, depleting the oxygen in water,
and deterioration of fish habitat (Gopal, 1987). Attempts to control the weed have led to different control
options being developed, including chemical control, biological control, and harvesting.

Water hyacinth often grows as floating plants or mats, as islands of plants floating freely on the water,
or mixed with other vegetation on banks. The high specific gravity of the submerged portion and the low
specific gravity of the bulbous petioles tend to keep the shoot erect. The adventitious root system is usually
suspended in the water although the plants may become rooted if stranded in moist soil or in shallow water

(Center and Spencer 1981). Water hyacinth has also been studied for their potential in controlling water



pollution, animal feed, manure, mulch, production of biogas, pulp and paper manufacture (Gopal 1987).
Among those, water hyacinth is utilized mainly for biogas production and paper manufacture in many
countries. The phenology, growth and nutrient storage of water hyacinth have been extensively studied in
the field and in laboratories by Center and Spencer 1981, Sato and Kondo 1981, Sato and Kondo 1983,
Reedy et. al. (1989,1990, &1991).

Although many experiments have been carried out to analyze the growth dynamics of water hyacinth,
few researches have attempted to analyze the growth dynamics using numerical simulation models. Mitsch
(1976) developed an ecosystem model of water hyacinth growth on Lake Alice, Gainesville, Florida and
found that the water hyacinth population would be reduced by 50% or more if the wastewater was diverted
from the lake. Lorber et al. 1984 developed a water hyacinth biomass model to evaluate the biomass man-
agement strategies for the water hyacinth crops grown for biomass in a eutrophic lake in Central Florida
and found a harvest strategy which maximize the biomass yield.

The objectives of this study are to develop a mathematical model to simulate biomass and productivity
of water hyacinth and to use the model to test the importance of some physical and environmental factors

in biomass production.

Materials and Methods
Study Site

Field experiments were carried out in an artificial enclosure of 15 ft x 15 ft which was made using a
bamboo fences in the Bolgoda Lake, Sri Lanka. Sides were covered with strong nylon net, as shown in Fig-
ures 1 and 2, to prevent the escape of plants within the area. The enclosure was filled with healthy younger
plants of same size and allowed to grow for 14 weeks. Maintenance of the plants was best achieved in the
aquatic environment with minimum disturbance and preserving natural habitat (Fernando et. al. 2002).

A Sampler of one square meter was constructed which could be placed on the Water Hyacinth mat
delineating one square meter sample area. The plants in the sample area were removed and washed with
running water without damaging to delicate roots. The plants were then air dried for several hours and later

oven dried at 105 °C for 48 hours until constant dry weight obtained.

Fig. 1. Study site during the first week of cultivation Fig. 2. View of the study site seven weeks after cultivation



Water samples were also collected weekly from the study site and parameters such as temperature, pH,
salinity, BOD, dissolved oxygen, nitrate, total nitrogen, total reactive phosphates, total phosphorus, and

potassium were measured. Air temperature was also noted during water sampling.

Mode! Formulation

Two state variables such as biomass per square meter of shoots and roots were considered in the
model. The above-ground plant stand was divided into 1 cm thick horizontal layers in which the dry matter
budget and elongation were calculated separately. The governing equation of shoots and roots growth are

described by;
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where by,(i) is the dry weight of above-ground biomass at ith layer (g dry wt. m” per one cm height);
B,, is the root biomass (g dry wt. m""); Pg,(i) is gross growth rate of shoots at the ith layer (day'l); Ry, and
R,, are the respiration rate of shoots and roots (day"); Dy, and D,, are the mortality rate of shoots and roots
(day™); G,, is the supply of photosynthesized material for root growth (g dry wt. m” day™); H,,, and H,, are
the harvesting rates of shoots and roots (g dry wt. m” day™); and By, is the total shoot biomass (g dry wt.

m'z). Total shoots biomass is given by;
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where # is the number of layers in the plant canopy. The total biomass is equal to;
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and the total harvesting rate is equal to;

HTolal = H.s'hl + Hr'l (5)

The gross growth rate of the shoot biomass is assumed to be controlled by air temperature, water
nutrients, and irradiance. The gross daily growth rate at the ith layer is given by the Michaelis-Menthen

type equation;

F

i

—/(N)f(P) (6)

Ko +1pe"

-k,
Lp e

Pg,, (i) = Pg,, 0"

= £ Smax

where Pg,.. is the maximal photosynthetic growth rate (day"); 6 is the Arrhenius constant; T is the daily
averaged temperature; Ip is the photosynthetically active radiation (J m” day) which is about 40-45% of
daily total global radiation; . is the light extinction coefficient within the canopy; Kp,z is the half saturation

irradiance; F; is the cumulative leaf area index of the stand above the layer 7.
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A relationship of shoot biomass and LAl was established (R2=+O.97) using the measured data obtained

from Center and Spencer (1981).
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Nitrogen limitation and phosphorous limitation for the growth of the plants are given by
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where N and P are concentration of inorganic nitrogen and phosphors in water (mg m™); Ky and K are

half saturation constant for nitrogen and phosphors uptake (mg m™).
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where g, is the maximum specific growth rate of roots at 20°C; K., is the half saturation coefficient of
root age, and Age,, is the age of roots.

Respiration for shoots and roots are given by;
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where [, and f3,, are rate coefficients for respiration of shoots and roots (day"l).

Mortality of the shoots and roots are given by;
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where yy, and y,, are specific rate of mortality at 20°C.
A time step of one day was used in the model calculations. Fourth order Runge-Kutta method was used

in this model in order to solve the simultaneous differential equations representing state variables.

Results

Model was calibrated using the experimental data from Sato and Kondo (1981). Mineral composition
of the solution he used was, in mg/l; 3.5 NH¢N, 24.5 NO;-N, 7.7 P, 29.3 K, 18.2 Mg, 20.0 Ca, 2.5 Fe, 0.2
B, 0.2 Mn, 23.0 Na. The initial fresh biomass of each tank was 57.1 g. The fresh weight was converted to
dry weight using the dry weight to fresh weight ratio of 3.94 % which was estimated by Sato and Kondo

(1981). Several values of each parameter, within an expected range defined by the literature, were tested
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Fig. 3. Calibration of water hyacinth growth model using  Fig. 4. Simulation of water hyacinth growth model using
measured data from Sato and Kondo (1981) measured data from Bolgoda Lake, Sri Lanka

before arriving at growth curves which closely matched observed results as shown in Fig. 3.

The model is then used to simulate the growth of water hyacinth in Bolgoda Lake, Sri Lanka. The study
site was completely covered with plants after seventh week as shown in Figure 2 and reached the maxi-
mum biomass in the eleventh week with a total biomass of 1800 g/m’. Growth of the plant was observed to
be mainly in the vertical direction after the seventh week. Average NO;-N concentration in the water varied
from 0.176 - 0.704 g NO;-N/I with an average of 0.42 mg NOs/l. Phosphate phosphorous concentration in
water varied from 0.02-0.16 mg PO,-P /1. The The measured and simulated biomass is shown in Fig. 4.

Water hyacinth has been employed for treating sewage effluents, agricultural drainage water and
eutrophic lake water (Gopal, 1987). Therefore it is required to find an efficient way to harvest the biomass
of water hyacinth in order to attain the maximum sustainable yield. By this type of harvest strategy, it
is possible to remove maximum amount of nutrients from water and simultaneously remove the aquatic
plants to use in beneficial ways. The model was used to asses the growth of water hyacinth after harvesting
at different time interval. It was found that if water hyacinth is harvested at 30 days interval the maximum
harvest would be 348 g of dry wt./m’ and if the harvesting interval is 40 days the maximum harvest would
be 566 g dry wt./m’".

The model was then used to study the growth after harvesting to a initial weight of 50 and 100 g dry
wt./m’. If water hyacinth was harvested to a initial weight of 50 and 100 kg dry wt./m’ the maximum

harvest which could be obtain after 20 days were about 259 and 329 g dry wt/m’.

Conclusions

A growth model of water hyacinth is presented in this study. The model was calibrated using the data
from Sato and Kondo (1981) and used to simulate the water hyacinth biomass in Bolgoda Lake, Sri Lanka.
The model application shows how the model could be used to evaluate the management option for water
hyacinth biomass production for nutrient removal. These options include initial density after harvesting and
harvesting interval.

Salinity of the water and pathogen attacks can affect the growth of the plant. Mortality of the plant due



to salinity and pathogen attacks was not considered in this model.
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