諏訪湖底泥コア試料中における有害物質の分解に関連する

微生物群集の分布

丸山智子^{1,2)}、二木功子²⁾、朴虎東¹⁾、加藤憲二²⁾ 信州大学理学部¹⁾ 信州大学医療技術短期大学部²⁾

Distribution of harmful substance degrading microbes in a core sample of Lake Suwa

Tomoko MARUYAMA ^{1,2}, Noriko FUTATSUGI² Ho-Dong PARK ¹, Kenji KATO ² ¹⁾Faculty of Science, Shinshu University, Japan, ²⁾School of Allied Medical Sciences, Shinshu University, Japan

Key words: Fluorescence in situ hybridization, microbes in sediment, biodegradation FISH 法、底泥中の微生物群集、有毒物質の分解

はじめに

水圏生態系においては、系内で生産されたもの、あ るいは系外から持ち込まれた有機物は水柱の中で微生 物分解を受け最終的には無機物となって、再び系内の 生物活動に取り込まれる。しかしながら、系の分解能 力を超えて過剰に供給されたものや、難分解性の物質 で水中では分解されなかったものは沈降し、底に堆積 物となって蓄積されていく。とりわけ、有光層に比べ て無光層が薄い、浅い水界ではこの割合が大きい。研 究対象とした諏訪湖はその典型であり、わが国の代表 的な富栄養湖である。近年、下水道の設置など浄化対 策の効果も現れ夏期のらん藻(*Microcystis* spp.)によ るアオコ現象は沈静化しつつあるが、1955 年頃から約 40 年の間、湖では夏期になると *Microcystis* 属の大増 殖がみられた。

Microcystis 属の中にはミクロシスチンと呼ばれる 肝臓毒を生産するものがあり(渡辺ら、1994)、水不 足が深刻なオーストラリアや南米では大きな社会問題 となっている。Park ら(Park et al 2001)は、この毒 素を分解するバクテリアを諏訪湖から見つけており、 その水中での生態が明らかになりつつある (Maruyama et al, 2001)。本研究はこれを受けて、諏 訪湖堆積物中のMicrocystis属とそれが生産する毒素、 そしてその毒素を分解しうるバクテリアの分布から、 大きな社会問題であった湖の汚染の負の遺産が、堆積 環境中でどのような変化を遂げているかを明らかにし ようとして行われた。特にここでは、ミクロシスチン 分解菌(Microcystin Degradating Bacteria, MCD)と それが属する a - Proteobacteria グループ、及びこれら を含むバクテリア (domain Bacteria, 真正細菌)、並 びに還元環境中に出現するメタン生成菌などを含む古 細菌 (domain Archaea) について、これらを遺伝子 プローブを用いてコアから培養することなく直接検出 する Fluorescence in situ hybridization (FISH) 法 により明らかにした結果を中間報告する。

方法

試料の採取および処理方法

底泥試料の採取は2000年10月21日の諏訪湖湖心 において行い、30cm、1mのコアサンプラーを用いた。 バクテリア試料及び pH、電気伝導度、酸化還元電位 の測定試料は、コア試料の0~3cm、3~6cm、6~10cm、 10~15cm、50cmの5層から採取した。

各層の pH、電気伝導度、酸化還元電位の測定は、 土壌標準分析・測定法(土壌標準分析・測定法委員会 編, 1986)を一部改変して用いた。コア試料の pH は、 コア試料 10g に蒸留水 25ml を加えて十分に攪拌し、 1 時間以上静置後、測定前に軽く攪拌して懸濁状態に し、pH メーター(TOA electronics Ltd., Japan)を用い て測定した。コア試料の電気伝導度は、コア試料 5g に蒸留水 25ml を加えて、pH の測定同様に、懸濁状 態にし、EC メーター(TOA electronics Ltd., Japan) を用いて測定した。酸化還元電位は、各層のコア試料 7g に蒸留水4ml を加えて懸濁し、直ちに ORP メー ター(TOA electronics Ltd., Japan)を用いて測定した。 底泥試料各層の温度は 0~10cm まで 1cm ごとに、10 ~20cm まで 5cm ごとに、20~50cm までは 10cm ご とに直接デジタル温度計(Degital hand-thermo, Sansyo, Japan)で測定した。

バクテリア用試料は、他層の底泥からの汚染部分を 避けて滅菌済スパチュラで採取した後、酸化を避ける ために GasPak Pouch(BBL Microbiology Systems Co., Ltd., USA)に入れて冷蔵して実験室に持ち帰った。 試料は濾過した燐酸緩衝液(pH 7.2; Dublecco's PBS(-), Nissui Co., Ltd., Japan) に懸濁してから3分 間超音波処理(ブランソニック卓上型超音波洗浄器 B1200, 45Hz, 30W, Branson Ultrasonics Co., Ltd., U.S.A.) を行った後に卓上遠心機 (Allegra 21R, Beckman Coulter Inc., U.S.A.)を用いて遠心(3300g、 4℃、5分間)を行い、上清液を採取した。この上清液 はバクテリア試料として用い、4%パラホルムアルデ ヒド溶液を試料の3倍量添加して固定した。パラホル ムアルデヒド溶液で固定した試料はヌクレポアフィル ター上に濃縮し、50、80、100%エタノールで脱水し、 FISH 法用フィルター試料として-20℃で保存した。

Whole cell hybridization

底泥試料中の微生物群集構造の解析は FISH 法 (Fluorescence In Situ Hybridization、Amann et al., 1995) によって行った。遺伝子プローブは、domain *Bacteria* (EUB338)、domain *Archaea* (ARC915), α subclass *Proteobacteria* (ALF1b)、さらに α subclass *Proteobacteria* に属する諏訪湖より単離、同 定したミクロシスチン分解菌 Y2 株から設計したプロ ーブ(MCD)の計7プローブを用いた(Table 1)。これ らのプローブの作成は宝酒造(Takara Biotecnology (DALIAN) Co., Ltd., Japan)において行い、プローブ は全てローダミン (tetramethyl-rhodamine isothiocyanate、またはX-rhodamine isothiocyanate) で標識したものを用いた。

ハイブリダイゼーションは、ハイブリダイゼーショ ン緩衝液 (0.9M NaCl、20mM Tris-HCl [pH 7.4]、 0.01% Sodiun Dodecyl Sulfate[SDS]、formamide [20% for EUB 338、ALF1b、CF; 35% for BET42a、 GAM42a、DEL])とプローブ (5ng/µL) を 0.2%ゼラ チンを塗布したスライドガラス上のフィルター試料の 上で直接混合し、46℃、90 分間行った。続いてそれら のフィルター試料は、洗浄溶液(NaCl [0.225M for EUB338、ALF1b; 80mM for BET42a、GAM42a、 CF]、20mM Tris-HCl [pH 7.4]、5mM 4H EDTA、 0.01% SDS) に 48℃、15 分間浸した後に蒸留水で洗 浄し、全菌数の計数のために DAPI (4,6-diamidino -2- phenylindole)で2重染色を行った。全菌数は 落射型蛍光顕微鏡(ユニバーサル落射蛍光装置 BX50-FLA)で直接計数し、バクテリア群集構造の解析 には 3CCD カメラ (C5810、浜松ホトニクス、Japan) によって取り込んだ画像について画像解析装置 (SP500F、Olympus, Co., Ltd., Japan)を用いて行った。

結果

環境データ

測定した電気伝導度、酸化還元電位、pH & Table 2に示した。底泥の各層における温度は、 $18.9 \sim 19.5$ C の範囲であり、大きな変化は見られなかった。 $pH \& 6.58 \sim 6.78$ の範囲であり、対象としたコア内では深度 による変化は見られなかった。一方、電気伝導度は深 い層で高くなり、表層 $0 \sim 3$ cm の 9.36mS/m から 50cm では 24.8 mS/m であった。酸化還元電位は深い層で低 くなる傾向が見られ、3cm 以深では還元状態が進行し ていることを示唆していた。

Table 2. 諏訪湖底泥コア試料の各深度における 酸化還元電位、pH、電気伝導度の変化

深度(cm)	$E_0(mV)$	pН	EC(mS/m)
0-3	-3	6.78	9.36
3-6	-36	6.60	16.64
6-9	-61	6.62	13.09
9-11	-73	6.73	15.52
10-15	-55	6.66	15.05
50	-100	6.58	24.80
蒸留水	573	7.62	0.72

全菌数

各層の全菌数を Fig.1 に示す。底泥表層から 0~3cm の試料では $1.2 \times 10^{\circ}$ cells/g wet soil であり、 3~6 cm では最大値 $2.4 \times 10^{\circ}$ cells/g wet soil を記録し、 50cm では値が減少し、 $7.0 \times 10^{\circ}$ cells/g wet soil であった。

各層の試料中に見出された *Microcystis* と思われる 細胞の数を Table 3 に示す。それは、6~10、10~15cm の層で 10⁶cells/wetg 存在し、他層と比較して有意に

各深度の全菌数

Table 3. 底泥コア試料の各層に含まれる

Microcystis 様の細胞数				
	底泥1gあたりの			
Depth(cm)	Microcystis細胞数			
	(cells/g wet soil)			
0-3	3.0×10 ³			
3-6	4.7×10^{3}			
6-10	1.1×10 ⁶			
10-15	1.1×10 ⁶			
50	8.1×10 ³			

多かった。

微生物の群集構造

domain Bacteria と Archaea の全菌数に占める割合 と、それぞれの細胞数を Fig. 2a, 3a に示す。domain Bacteria が占める割合は、0~3cmの層でもっとも高 く、33%を記録したが、深くなるにつれて低下する傾 向が見られ、6~10cm では 15%まで低下したが、10cm 以深では再び高くなる傾向が見られた。このように domain Bacteria において 3~6cm、6~10cm で検出 される割合が低かったことについては議論を要する。 つまり、これらの層が特にデトリタスや無機粒子を多 く含んでおり、検鏡が困難であったため、明瞭に細胞 と確認できるもののみ計数を行った。その結果、FISH 法で得られた値を過小評価している可能性がある。 domain Bacteria の細胞数は、3~6cm 層で最大値の 4.7×107 cells/g wet soil を記録した後にやや減少する 傾向が示されたが、顕著な変動は見られなかった。 domain Archaea は各層において全菌数の 5.5~9.6% を占め、底泥コア内における鉛直方向での顕著な変動 は見られなかった。domain *Archaea*の細胞数は、底 泥表層から 3~6cm の層で最も高く、1.9×10⁷cell/g wet soil を記録し、それ以深で減少する傾向が見られ、 50cm の層では 3.9×10⁶cell/g wet soil であった。 domain *Archaea*の細胞形態はほとんどが球菌であっ た。

α-Proteobacteria グループとミクロシスチン分解 菌 (MCD)の個体群が占める割合とそれぞれの細胞数 を Fig. 2b, 3b に示す。α-Proteobacteria は各層にお いて全菌数の 4.0~7.0%を占めており、底泥表層から 深さ 10cm まで相対的に増加し、6~10cm の層では最 も高い割合を占めていた。また、50cm の層では最も 低い割合であったが、40%が検出された。MCD 個体 群は全菌数の 2.5~4.5%を占め、6~10cm の層で最も 高い割合を占め、50cm の層でも 2.5%が検出された。 このように、MCD 個体群は α-Proteobacteria と同様 の鉛直変化の傾向を示していた。α-Proteobacteria グ ループ、MCD 個体群の細胞数はともに 3~6cm、6~ 10cm で最も多く、それぞれ 1.3×10⁷cells/g wet soil、 7.6×10⁶cells/g wet soil であった。

考察

今回対象としたコア試料の化学的性状については別 途グループ(信州大学理学部・公文ら)によって現在 解析を進めているので、本報告においては得られた微 生物群集の結果のみからの中間的な考察を行うにとど める。私たちは 2001 年にもう一度諏訪湖においてコ アサンプルを採取する計画であり、総合的な考察はそ の結果を併せて行いたい。

まず諏訪湖においては近年、浚渫作業が進められて おり、このことが年代に沿って考察を進める際に議論 をやや複雑にする。コア試料を採取した湖心において は 1993 年に浚渫が行われた可能性が考えられる。小 椋 (1999) は諏訪湖の 1 年間の堆積速度は 2cm とし ている。採取したコア試料に浚渫の影響がないとすれ ば、単純に 50 c mの部分は 1975 年に相当する(Fig.4, 仮説 1)。また小椋 (1999) は、諏訪湖湖心から採取 したコア試料について ¹⁸⁷Cs による年代推定を行って おり、これらから 1993 年にはおよそ 20 年間に堆積し た湖底泥を浚渫したことを示唆している。これを用い るならば、50 c mの部分は 1955 年頃にあたる(Fig.4, 仮説 2)。

一方、諏訪湖の Microcystis の発生状況の経年的な 変化について沖野、渡辺(1997)らの報告がある。そ

Table 1. 蛍光ラベルされたオリゴヌクレオチドプローブと各プローブが標的とする16SrRNA上の塩基配列						
プローブ名標的となる細菌群		プローブの塩基配列	16SrRNA 上の	文献		
		標的となる塩基配列				
EUB338 :	domain <i>Bacteria</i>	5'-GCTGCCTCCCGTAGGAGT-3',	338-355	Amann et al.,(1990)		
ARC915:	domain <i>Archaea</i>	5'-GTGCTCCCCCGCCAATTCCT-3',	934-915	Stahl et al., (1991)		
ALF1b :	a-Proteobacteria	5'-CGTTCG(C/T)TCTGAGCCAG-3'	19-35	Manz et al., (1992)		
MCD :	Microcystin degrading bacteria	5'-CGCCACCAAAGCCTAAAAGG-3'	839-858	Maruyama et al., (in preparation)		

Escherichia coli numbering (Brosius et al., 1981)

Fig.2b 諏訪湖の底泥コア試料の各保度における *Proteobacteria* (ALF1b)、microcystin degrading bacteria (MCD)が占める割合

rig. 3a 諏訪初の医ルゴノ 試科に言まれる各体後 におけるdomain Bacteria (EUB338)とdomain Archaea (ARC915)の細胞数

Fig. 3b 諏訪湖の底泥コア試料に含まれる各深度に おけるdomain *Bacteria*(EUB338), a-*Proteobacteria*(ALF1b), microcystin degrading bacteria (MCD)の細胞数

Fig. 4 諏訪湖の底泥コア試料の各層に含まれる微生物群集構造と*Microcystis* 様細胞数の変化、および予測される各層の年代と歴史的背景 (年代の予測および諏訪湖の各年代の歴史的背景は、沖野、1997;渡辺、1997;Park et al., 1998;小椋、1999を参考にして作成した。)

- 65 -

れによると、諏訪湖における *Microcystis* 属の大発生 (bloom) は 1948 年に報告があり、1955 年は富栄養 化が進みはじめた時期であると推測される。

コア試料を顕微鏡観察した結果、6cmから15cmに かけて Microcystis と思われる細胞が数多く観察され た(Table 3)。一方興味深いことに、MCD はそれより 深い 50cm 層に有意な存在が確認された。 MCD はミ クロシスチンのみを基質として増殖するのではなく、 多様な有機物を用いて培養されることがわかっている (Park et al 2001)。ミクロシスチンの残存量について は現在測定方法の検討中であるのでその値はまだ明ら かになっていないが、現場からミクロシスチンが消失 しても、MCD はその場に生残している可能性が十分 にある。可能性が高いと考えられる仮説2を採用した 場合、FISH 法を用いることによって得られた知見か ら、50cm 層に MCD が存在したことは諏訪湖の富栄 養化の進行に伴って Microcystis 属の大発生がおこり、 少なくともその数年後には、Microcystis 属が生産する 毒素であるミクロシスチンを分解しうるバクテリアが 出現していたことを示唆している。

コア試料中に見いだされた α-Proteobacteria の多 くは MCD で占められていたが、α-Proteobacteria の グループにはダイオキシンなどの有害物質分解しうる ものも含まれている(Wittich et al., 1992)。このこと から、かつて湖の外からもたらされた有害物質の湖底 泥中への残存と併せてこれらの微生物の現存量につい て考察することもできよう。

また、底泥試料中の古細菌については知見が少ない のが現状である。そのような状況下にあって、今回、 細胞形態からみてメタン生成に関わる *Methanococcus* である可能性が示唆される古細菌が 湖底泥中に有意に存在することが示唆された。

謝辞

コアサンプルの採取にあたっては信州大学理学部公 文富士夫教授に多大のお世話になった。記してお礼申 し上げる。本研究には厚生省科学研究費補助金「生物 学的ダイオキシン分解技術の開発研究」(H11-生活 -015)を受けた。

文献

Amann, R., B. J. Binder, R. J. Olson, S. W. Chrisholm, R. Devereux, and D. A. Stahl. 1990. Conbination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56:1919-1925

Amann, R. I, W. Ludwig and K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169.

Manz, W., R. Amann, W. Ludwig, M. Wagner, and K. -H. Schleifer. 1992. Phylogenetic oligooxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15:593-600

Maruyama, T., Park, H.-D., Kato, K. 2001. Direct analysis of the population dynamics regarding microcystin degradating bacteria in Lake Suwa SIL, Abstract.

Maruyama, T., H.-D. Park, K. Kato. (in preparation.) Park, H.-D., C. Iwami, M. F. Watanabe, K.-I. Harada, T. Okino, and H. Hayashi. 1998. Tempral variabilities of the Concentrations of intra- and extracellular microcystin and toxic *Microcystis* species in a hypertrophic lake, Lake Suwa, Japan (1991-1994). Environ. Toxicol. Water Qual. 13: 61-72

Park, H. D., Y. Sasaki, T. Maruyama, E. Yanagisawa, A. Hiraishi, and K. Kato. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ. Toxicol (Submitted for publication.)

Stahl, D. A., and Amann, R. 1991. in Nucleoc Acid Techniques in Bacterial systematics, eds. Stackebrandt, E. and Goofellow, M. (Wiley, New York), pp. 205-248

Wittich, R.-M., H. Wilks, V. Sinnwell, W. Francke, and P. Fortnagel, 1992. Metabolism of dibenzop-dioxin by *Sphingomonas* sp. Strain RW1. Appl. Environ. Microbiol. 58:1005-1010

小椋和子 1999: 諏訪湖産ワカサギの DDT および PCBと浚渫、月刊「水」、3月号、24-30

沖野外輝夫 1997: 生物層の変遷、URBAN KUBOTA 36、特集諏訪湖、20-41

渡辺真利代、原田健一、藤木博太編 1994:アオコー その出現と毒素、東京大学出版会

渡辺義人 1997 水質の変遷、URBAN KUBOTA 36、 特集諏訪湖、12-19