ON THE MECHANICAL CUBATURE

‘Bennosuke TANIMOTO*

(Institute of Civil Engineering, Faculty of Engineering)

Synopsis. From interpolation formulas for the function of two argu-
ments, general expressions for the double definite integral or mechanical
cubature are derived. Various rules for the mechanical cubature can be
formulated from these expressions, and they will be useful for practical
evaluation of the double integral even when this is difficult or impossible
to evaluate. The procedure can easily be extended to the evaluation of
triple integral and so on.

§ 1. We have sometimes met with the evaluation of the definite in-
tegral :

1= (s ax,

a and o’ being constants. When this integral is difficult to evaluate
by means of analytical process, we have to rely on the numerical method
which is known as mechanical quadrature.

Elementary rules for the mechanical quadrature that have widely
been used are: ' |

Trapezoidal rule, of the form: 1= %( Yo + ¥,
Simﬁéon’s rule, of the form: I = %( Vo1 + 4y + ),
and so on.

§ 2. We also encounter -with the double definite integral

a ry
7 =[ j F(x 9) dxdy,
‘a b . R

where @, @/, b and ¥ are constants, and the integrand f(x, y) is for the
time being supposed to have no singularities within the domain con-
sidered. Numerical mathematical method for the integral last written is
called mechanical cubature. In this regard, duplicate use of known rules
in the mechanical quadrature have sometimes been employed, almost no
further developments have been made, and no systematic process of

* Professor of Shinshu University.
1) An elementary treatment of the preblem may be found for 1nstance, in
Steffenson’s ‘Interpelation.’ :
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the mechanical cubature seems to have been proposed.

The present work is in deducing general expressions of the me-
chanical cubature, by beginning with Stirling interpolation formula, and
Bessel interpolation formula for the function f(x, y).

Furthermore, general expressions for the ‘mechanical biquadrature’
can also be written down; and . in addition, general expressions for
multiple integral of higher order may be written down if required.

"My temporary necessity to work out general deduction in the me-
chanical cubature has its origin in the evaluation of a series of double
definite integrals such as

’ dad
J( ! (1+172) cos ax cos-By sin aq sin pb e~ 7> aﬁﬁ N

j f {2(1—0o) -+ 1z } cos ax cos By sin ag sin B e~7? d;gf» etc.,

where

_ = ad + B
and a, b, 0, x, y and z are here supposed to be constant. These integrals
presented themselves as the solution of a Boussinesq’s problem of simple
character?. It would not be so easy to evaluate these integrals by

2) The problem treated was that a semi-infinite elastic solid is pressed by a
uniferm lead, @, within a rectangular area "2a¢x2b. Ths procedure of selving it
has been proposed by me, and it is

1 08 1{@, @@‘g} 1(0 By
—ﬂ@Jrzﬂ é}V'“L(l_")(ay“Laz)V x+2#<3y—az>¢, ------ ,

g (G R R =Y
X axg'f‘ < n+az "T(l—(f)ayaz v axay I By oreee- )
S P B 1 O A 2 ey @
Y. "‘6y@z+ ayaz + 2 % 6’x+6y+6z 4 }x+2<6x6y 6y~+oz- 6‘xoz>¢" ......
other components of displacement and stress being given by means of cyclical

interchange of %, ¥, z; and #, ¥ and ¢ satisfy the equations
P=0, yix=0 and p2=0,

where

0% & e, 0 8 0%
- P emtatee VP =5y T 520x T 5x5y"
The boundary coenditien may be expressed

(Z:)zmo= AQ S 0 S cos.ax cos By sinaa sin Bb ZZB ;

and the stress distribution results in

Zy = —%r?s S (1+712)coes ax.cos By sin ax sin Bb e- Vz@—dé,
Y. = —% S : S :cos ax sin By sin aa sin Rb ef“/zggdﬁ,

L o {03 d
Zm=_4gzgo 80 sin ax cos By sin aasmﬁb e=~7zda, lf’
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means of analytical method. To such cases the theory here developed
will serve effectively. In fact, it is not so laborious to secure two
effective figures of results by means of mechanical cubature.
Torsion-problem of a prism also requires similar evaluation as to the
torsion-function, an example of which will be given elsewhere®.

A. ON THE MECHANICAL CUBATURE OF STIRLING TYPE
§ 3. We take the double definite integral

o’ 1%
I=L L FC% 3) A% Ay, wweveere e eeeressesnensenineen(1)

where a, a/, b and & are constants, and
a < x < o, b <Ly <P
For convenience sake, the integrand f(x, y) is here supposed to have
no singularities within the domain considered.
Now the central interpolation formula of Stirling type for the function
7 (x, ¥) may be written in the form

48

no o7 1
(2, 9) =31 SiLe(u, 7) ¢, 5) 4o ost+d(u, ) (v, 3)54 (er+1) 25

+8=08=0

1 . - .
+o(u, 1) (v, SD’Q’Azr e+ T (e, 7’) “¢(o, 9 ’4'4(27‘-!71)(234-1)]’

where .- o o 4
X% Y=
w=" v B |
N OE DD (=TT (1) (0P 4) - (025D
o(l, v)= IQV ., (0, v)= - »{ GO ,
X =—4;g S:& :<1+26{};—rz>cos ax cos By sin ag sin @b 3“7’[;;2 dadp,
Yy =”—%t'§* S : g :<1 +2"Z:°J —7z>cos ax cos By sin aa sin Bh e—YZEBT—,_, ‘dadB,
,_4QS”SW, . . . in 8b g7 L
v =2 ), 0d—?a—rz)smaxsmBysmaasmB [ i dadp,

and it would be of some interest to note that the appsarance of these expressions
is much similar to that derived from Boussinesq’s potentials.

The vertical displacement is given by
2@ S :J S :{2(1~a)-ffrz}cos ax cos By sin aa sin b e—yzi%iﬁ.

Recently, with the aid of two students at the Shinshu University, I have
worked out the general solution of Boussinesq’s problem, in which any distri-

w=">;
n2p

butions of the normal pressure and the shearing forces within the rectangular
form of loaded arza ars.assumed on the top surface -of the semi-infinite elastic
solid. The solution is again made up of a considerable number of double Fourier’s
integrals. ’

3) B. Tanimeto, ‘Difference Methed for Partial Differential Equations, Part
1I,” Transactions of the Japan Society of Civil Engineers, September 1953.
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and differences are here written in brief form.
Let the intervals (¢/—a) and (&’—b6) of the integral (1) be both
divided into 2vh><2vk -small divisions of equal distance, so that
a — a = 9vh, — b = 9vk.
We then have
a = x, — vh, a’ = x, + vh, b=y, — vk ¥ =y, + vk
Then the integral (1) in question transforms to

14

a’ (b v
I =S S f(x, ¥y)dxdy = hkj g F(u, v)du dv,
a Jb v J -y

where F(u, v) is represented by the  right side of (2). Since the ¢-

functions are polynomials of odd powers so that integrations of them

between —» and v vanish, the equation last written simply becomes
I=hk é TZ Ahrzs SD‘ (0(’14, y)duj (0(1), S)d?). (3)

r+§=0 =0

© We take the function qo(ﬁ v), and on expanding this we may write

(B, v) = o 2u E"'o( )¢t At (y 1)6w -2, (4_)
where e
A(»)=1, A () =1+2+3+-+V

A (9) SRS o V)2 (E 4o 492 o b (V1)
A =1HP @+ L+ -+ V) +H3 @+ YD+ +(u—1)”u”}
22{32(42_'_ VD) 425 A V) e (v — 1) ETRIRN ()]
+ - +(V 2) (v=105

s

AV(V) 129732 . : /

§ 4. TFor actual evaluation of these coefficients, the followmg recur-
rence formula is useful: o=
CA (V) =A (v—1)Fvr A (v— 1) i ()
On integrating both sides of (4) between —v-and v, and subst1tutmg
the result into (3), we have o
noTES o e

1= 4hkr+$:0?‘J21’ |2$

A, (7 oty o A (5=1) 400
% - o git1 (2t—:i g ‘2‘;‘—“(‘2}11%”“ @)
which is the requlred general expression. It is to be noted, in the right
side of this result, that, when # formally takes —1 thch occurs in cases
of =0 and s=0, we understand that

A, (7’ 1) per—2 At (3 1) y2—2
Y erose | ¢ g5zt | —1 -
o L( Vst ., (C R == s
for in this.case we have ¢(0, 0)=1, and then

5| ewna=g0] =
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For the convenience of practical use, some numerical values of the
coefficient A, (v) are given here (Table 1):

Table 1 Numerical values of coefficient A4: (v).

~I o 1 2 3 4 | s 6 7
Q 1 ’ )
T T T
2 1] 5| 4
3 1| 14| 4 36
4 1] 30| o3 820 576
5 1| s |10 | 7,645 | 2,076 | 14,400 ]
6 1| o | 3,008 | asars | 206,206 | 773,13 | 518,400 |
7| 1] 140 |7.62 191,620 | 2,475,473)15,201,640]38,402, 06425, 401,600

§ 5. -As a simple example of the general expression (7), we take
v=1 and retain terms in 4%; :
and shall obtain a rule, which may be called Simpson’s rule of the ﬁrst
kind in the mechanical cubature.
In this case we first have o
1 1 7
I—4hk[(00)+1 dooxg-i—izdoqxg
or on rearranging
I = 4hk —é—{fz(oo) + (10) + (10D + (O1) + (0T Fererereereeesvenseenns(8)

This rule is illustrated in the following figures (Fig. 1).

Fig. 1 Simpson’s rule of the first kind.
(Domain ‘of integration=2kx2k)

la. Lattice arrangement. 1b. Weight table.
(o) 1 0 ‘ 1 0
|
2{’? C10) | C00) | o : 1 2 1
! i
(o ‘ ( 0 1 ¢
e A———> —~—37
[ 20 =55 I

This rule is in accordance with that which is obtained by means of
a more elementary method, in which a quadric surface of the form
f(% ) =a+bx+cy+dx* + exy + fy*
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.is assumed. In fact, on the assumption that the quadric-surface, having
six unknown coefficients, can be determined s0 as to pass six points
which are marked.in the following figure (Fig. 2). .

Fig. 2 _ Fig. 3
o
2k ‘L 2k -1 j_——
i T
| ! ‘\l
l 1] 1 0—

pe—— 2h [——

In this way we: can obtain the weight table . given in Fig. 3. Then a
duplicate use of this welght tab]e at once glves us the weight table of
'F1g 1" (right, 1b). : :

When the above rule (8) tends to one dimension, it will reduce to
the: wellknown Simpson’s rule in one dimension. In fact, if we take
the limit ]im I/(® —b), we then have :

7
b>b b br>d

lim 57— b = lim 5~ ;,J j F(x, y)dx dy —J J(x) dx..
On the other hand, the rule (8) in this case becomes -
lim & 7 —l1m 2k4hk {2(00)+(10)+(10)+(01)+(01)}— A (1)+4(0)+(1)},

k>o 2k
which is the 0ne—d1mens1onal Slmpsons 1ule

§6. If in addltlon to the above rule (8) we retam term 1n 449, then
(7) becomes

I= 4hk [16(00) +4{(10) + (10) +(01) +(0 D+ £+ (11) + (1) +TDY, ---(9)
or briefly
1 =" 16000) + 4500 + =1

This rule is illustrated in the following figure (Fig. 4).

Fig. 4 Weight table.
(Domain of integration=2/X2k.)

1[4.‘1

N
—
»
[
0

:kaI_
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It can easily be proved that this rule (9) may also be derived by
duplicate use of the known Simpson™s rule in mechanical quadrature.
The rule is customarily used in naval engineering in computmg the
displacement due to a vessel ﬂoatmg on the Water _
i o
§ 7. If in addition we take terms in 4,, and 4, into account, we
obtain S I S

I="2 { 68C00) + 2422(10) + 53‘(11) 2(20) 3o (10)

This rule is illustrated in the following figure (Fig. 5).

Fig. 5 Weight table for mechanical cubature:
(Domain of integration= 2hx2E)"

=

- 5 ] 24. \ 5 ~
SR ( -1 24 ‘ 68 | . 24 =1 = gl
5 | 24" 5
~1 S

As a simple example of the above rule (10), let us take the ele-
mentary integral

o _
I = j { cosxcosydxdy;

¢ Jo
the result of which is at once evaluated as unity. From the integrand
f(x,9)=cos x cos y, we have lattice valiles as follows (Fig. 6):

Fig. 6 Lattice values of integrand f(x, ¥)=ces x cos y.

)—.500,000

{ .500,000] .707,107] .500,000 , O© ‘~.500,000

1.000,00G| .707,107 Y \

1 .500,000]

Here we have to take
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T
h =%k = T
We thus obtain
—(FY 1 , ~
I—(4) 4:5{68><0.500,OOO—I~24><1.414,214+5><1.100,000 0}

=0.999,860,
the error entailed being

E = w;l = —0.000,140 = —0.014 %.

§ 8. In the second place, we take
v=9 and retain terms up to 4%;

No.

4

and shall obtain a more accurate rtule for the mechanical cubature.
From the general expression (7), we then can obtain, after rearrange-

ment,

I=16hk——=—31,99851000) +4, 16053(10) +4, 7685(11) + 71253(20)

56,700

12,048 51(21) — 6453(30) -+ 3435(22) — 80 (3L) +1853(40) . (1)

This rule may be expressed in the schematic from as follows (Fig. 7).

Fig. 7 Weight table in case of y=2, n=4.
(Domain of integration = 4% 4k.)

13

—80 —64 —80

343 2,048 712 2,048 343

—8&0 2,048 | 4,768 | 4,160 | 4,768 | 2,048 | —80

\ 13 —64 712 4,160 | 1,228 | 4,160 712 —64

13

} ~80 2,048 | 4,768 | 4,160 | 4,768 | 2,048} -—80

343 2,048 712 2,048 343

—80 | —~64 | —80

13

_ 86,700,
~  16kk
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§ 9. As a simple numerical example of the above rule (11), we take,
as before,

z::!ﬂ

J = j jz cos x cos y dx dy.
0 0 '

Then we have to take h=k=x/8, and the corresponding lattice values
become as follows (Fig. 8).

Fig. 8 Lattice values of integrand f(x, y)=cos x cos y.

--500,000,

-.383, 553:-.270,598 -.146,446

0 0 0 0 0
.353,553/. 382,683/, 353,553|.270,598|. 146,446 0 -.146,446
.500,0005 .663,2821.707,107].653,282. 500, 000]. 270,598 0 -.270,598 --500,000}
.853,554/.923,880/|.853,554|.653,282/. 353,553 0 -.353,553
1.000,000/.223,880,.707,1G7!.382,683) 0
|
.853,554,.653,2821. 353,553
.500,000
Then we have the result
7 \? .
= (42~> 56*—177)6[1,228XO.5OO,OOO+4,160><1.847,760+4,768><1.707,106

FT12X 1. 414,214+ 2,048 X 2. 615, 126 4-345 % 1.000,000— 64X 0. 765, 368
—80><1.414,216+13><O]=1.000,000,

which shows a perfect accordance with the true value.
An alternative form of the present rule, which is written in the
form of respective differences, will give the numerical result

I:(%)ZX[0.500,000-—0.101,493 + 0.006,952 —0.000,175+0.000,001]

=1.000,001,
in which we clearly see the convergence of respective differences. From
the standpoint of practical calculation, the discrepancy between the
above two results would be of no importance, since the significant
figures here employed are six in number throughout the calculation.
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11§ 10, In what follows,; attention will. be confined-toithe case | °

YV = ..?)j,_ ““”".:«:“"?.”““”“““““-“'”“‘.”":“..(]:1)

From theoretical standpoint, it is- widefy aéc‘epted to be desirable that
the arguments % and 2 in the 1nterpolat10n formula should be as small
as possible, and’ that theéy do not exceed unity. “The least value of v
in this case is 1/2 so that the 1ntegrat10n may take the form

ta{?‘

This integration affords the rtesult eXtend’ing over one division whose
area is hk, and the sum of such elementary 1ntegrat10ns will afford the
required result of the 1ntegrat1on in quest1on '

§ 11. The- general expression (7) is then written

Iz w5 dess g A (r=1) 1 sz =5 A (s—1) 1
N T RCE ==~ grrm D (=) g5 gpy 1 gre e (13

If we write

po1 At(? 1)

Cp = f‘o =y op—of 41 o =3
then the equanon just written.takes the simple form

1. ;1 T; C. C. ‘Azrzs_‘ﬂ, .

Ml.T i T |27 125" .

For first values of p, the coefficients (p’s are computed in the following.
We first can write down

CO = 1:
A0 1
Go= 3() 2>
Co = A,(1) 1 ‘_,A(l) 1
T gE T T gt
=A@ 1. A2 1 A()_l
8T Ty gE 5 2 3 2
Co=A® L A® L A1 AG L
* 28 7 2° 5 9 3 ¥
c - ,_Ng_(@L A1 AW 1 AW 1 AW 1
S A I A A A
Then we have, on rearranging, IR o
- _ 1 _ T _ 367 -y
CO =1, C1 = 12’ C2 = 240° C'; ,044 ;‘." W e
Z 21,859 o _ 1,295, 803 e
G = =I5 - & = 35,799
Now the above equatlon is ertten o : T
i CCs GGy GG

1’78 = COCOAUO + \QM" (4o + Ao") + T T ‘4 ‘0 4y + Ao4) + l” ‘2 Aéz
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CC C.C

B (dey + o) + (e + 4y) + (dso + dog)
16 0 4 ]2 12 18 |0

CCCy GG, CsC,

+r6 12 (Asn"f‘ﬁzs)“f ‘4 l4 444‘* Jl() [O (AIOO+AOIO)

C,C CsC
+J_§f1 (AB‘,+AWS)+,6 [4(454+A4G>+

Then the subst1tut1on of Cp’ s 1nto the above equatlon gives us

.l'fk = dyy + (Azo + on) 5, 76-0 (dyo + 4o + = 576
+ 963%86 (oo dyy) — 1381 Sag (dus + 42) 4?5,74’*88% Cdoo + dug)
+ S (e + 40 + B0
* fﬁ% <Am °+A° 1) = H‘,% (ABZ’+ 4s)
5572—-%%——% (46, +“44‘6) + (14)

§ 12. As a simple result from (14), we take differeaces up to the
second order into account and neglect hlgher differences. We then can
write down : - :

1 ,
= oy 4 Pyl (4dqy + 4y) + O(4Y),
or

24 pp = 24 dog + (Lo + 4o) + 0(44) st (15).
This. equation can be expresséd in-the schmatic form (Fig. 9):

Fig.' 9 Weight table for mechanical cubature <y:~év> .
(Domain of integration=hk.) ‘

1

I
1 20 1 = 2457 + 049

It will appear that the rule just written is recommended for ordinary use.
A criterion for the error of this rule can be obtained as follows. The
above rule, Fig. 9, or equation (15), is written

I
= (00) + ;4 (h"D,u + kuDoz)f‘*‘ Ch4D40 -+ B Do4)f + - ]

Where

288
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YD . ar+sfﬂ_ i . . t
- Dnf =52 2 at (00) lattice-point.
On the other hand the true integral (12) nges the expansxon
k 13 )
fo=g kg ,Lf(xa+$, Yo+ ) dédy
g _71

= j‘zv j 7 {f(xl)) yo) + (E Dno +77Dnn)f+ 4(E4D04 +662 nD"‘" T’?D(M)f

9

+ } dg dny

_hk[coo>+ WDy 2D+t

On subtractmg we have

Do+ Do)+ R Do - ]

1, 920 576

E=I-I,= W (Dt KDy~ 5 ST DT -

= k| 0.002,951 X (7D + F* Do) ~0.001, 786 X WRDyf -+ |,

which will afford a criterion for the evaluation of error. In comparison
with this, the rule (8), which is a Simpson’s rule, has as its error’
N I ’
B =y — I, = 1k {0.011,805- X (5 Dy + Do) f 4+ |,

so that we might see the superiority of the rule given in Fig. 9.
§ 13. Furthermore, if in equation (14) differences of the fourth
order are taken into account, we may obtain
I
5,760 7,7 =55760 4o + 240 (4o + 4ox) — 17 (dyo + 4og) + 10 4oy + O (4°)..
This equation can be expressed in the schematic form (Fig. 10):

Fig. 10 Weight table for mechanical cubature (v=1/2).
(Demain of integration=1/%k.)

~17
10 288 16
I 6
—17 288 4,636 288 —17 = 5,760 ;5 + O
10 288 10
—17
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§ 14. Sometimes .lattice values are connected one another with a
certain differential equation. In such a case higher differences in
equation (14) can be lowered by taking advantage of the differential
equation considered. The device has been originated by Mr. Nishimura,
assistant professor of Nagoya University, in case of the solving of
partial differential equations.

In the following we assume that lattlce values are related with the
differential equation

V'f 4+ ¢ = Q. (C being constant.) (16)
In the subsequent calculation, frequent referemces may be made to
‘Relations between Differences and Der1vat1ves———-Der1vat1ves in terms of
Differences, and vice versa®. ‘

§ 15. From (14) we take

I
hk = dyo + (Aﬂu + do) — (dyo + dog) + 757 dos

5 760 576
367 17 o
+ 967,680 (dgo + 4os) — 138,940 (4, + 4.,) + OC48). woevrne an

This equation, as it stands, extends over seven lattices in both direc-
tions of x and y. But the extension can be reduced to 3 X 3-lattice
distribution by taking advantage of the differential equation (16). We
now have, with Z=k,

<A40 -+ Ao4> =nt (D«m + Dn4)f+ (—Dso + Dos)f"‘ O (hs)

(Aso + Aos) =h (—Dso + Doe)f + O (hs),

Cd‘;z =+ AM) = ht <D42 + D24)f +0 Chs);
but we have, with the differential equation (16),

Dy + D) F=p*f—2Dnf = —2D,F,

Do+ D) f=p°f— 8D, p*f=0,

Dy + Do )f =Dy p*f=0.
Then the differences just written become respectively

(dso + 40)=—2h* Dy, f+ O®), (g + dys) = (4ag + 45) = OW®) ;
and furthermore

1
W Daf = dyy = 55 (dus + 40) + O (%) = Ay + O (),

%)
(3

so that we have .
dyp + 4oy = —2 422 + O (7°).
Thus (17) becomes

I
1,440];% =1,440 Aoo + 60 (Azo + ADZ) + 11 Az‘z +0 Chs)- (18)

This equation can be expressed in the schematic from (Fig. 11):

4) These tables will be published elsewhere.
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- Fig. 11. Weight table fer mechanical cubature, provided p¥f+cé=

(Domain: of integration =/k.)

11 38 11
38 1,244 | 38 = 1,440 pp + O (19
11 38 11

If the whole c\iomain‘ of integfation cbnéisfs of 2XZ-divisions, we
aggregate weights.of the .four adjacent schemes, each of which is due
to Fig. 11. We then obtain the following scheme (Fig. 12):

Fig. 12 Weight table for mechanical cubature, provided p*f+c=0.
(Domain of integration=4kk.)

11 49 | a9 1
49 | t,es1( 1,831 | 49 ;
- = 1,440 jp + O (B
49 | 1,831 1,331 49
1 49 49 11

It is noted that a seeming restriction that z=Fk is imposed on the
process of the above reduction, but this is in reality not. the case, the
reason of which will be clear from the above reduction.

§ 16. When in equation (14) differences up to the tenth order are
taken into account, the lattice distribution will be of 5X5- -extent with
reference to the differential equation (16), and a galculatlon‘mmﬂar to
§15 will afford the following result (Fig. 13):

Flg 13 Welght table for mechamcal cubature, pr0v1ded V"f—!—c G.
(Domain of integration=~k.)

21,728 “—144,'032;1 ~1;126,272 - —144,032 21,728
—144,032 1,611,008 21,903,168’ 1,611,008 ~—144,082
—1,126,272] 21,903,168 576",000,128} 21,903,168 —1,126,272 | -
—144,032] 1,611,008 21,003,168 1,611,008 —144,032

21,728 —144,032 —1,126,272 —144,032 21,728

I
= 464,486,400 j;; + O ()
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B. ON THE MECHANICAL CUBATURE OF MODIFIED BESSEL TYPE

§ 17. We shall derlve anotner genera] expressmn for the mechamcal
cubature of the defihite mtegra]

I = jj jb, fii(x J’) dx dy - v (19)

by using the interpolation formula of modified Bessel type, where .
a <L x < d, b<y<V;
and shall obtain some of useful rules for the méchanical cubature. S

§ 18. The interpolation formula is written in the form
n r+8

I, y)=§= = Lo(u, 7) o(v, 5) 4Aems +aluw, #) (v, s) A("r+1)°s

-FP—(”;‘ ) o(v, S)‘éﬁzr “(‘2>>s+1)'+-0'C”,'7") :0'(7), $)daren (2;+1)}7‘ (20)

where S : Pl
g = 2% 1 g =27 % 1
TR Ty VTR T e
: .9 =1ty
orplo-Bo- DT, e

AN BN i
o0, »)= \2V+10(0'“2)@“"4)'"(62" 4 )

and differences, which are written in brief form, may be converted to
linear combmatlon of lattice values multlphed by We1ghts

e § 19. Now let the intervals (@~a) and : (8 —b) of the integration
(19) be both divided  into 27 small divisions of equal distance.: We then
have

S T
Cp = 0—<n—~—)k b’=yo+(n“+%)k.‘

On transformmg the variables x and y to another set of varxables u
and v, we can-write the 1ntegral (19) in the form

n

e Y j:fsb’f(x ) dx dy = hkj j F (u,0) dudv;------~----'(22)

where F(u,v) is represented by the right Slde of (20). ‘Since we in
general have

; | 21)‘; ._ » ‘2V\‘ .‘L’V»+1 ‘V ’ kSﬂ ‘2‘1-’:{-1 , _.
R ‘S.:_,.ﬁ b =5 3" o dﬂ_o,
and since the o-function defined in (21) is polynomials ‘of odd powers,

the above integral (922) simply reduces to
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hk m  ris n n . X
I= 2 = Azrsz o (e, ) du o (v, $)dv. »-eemee(23)
rt8=0 §=0 - —-n o
The function ¢ (6,v) is expanded in the form
[2v 0(0, =3 (=) B: (6% (v=0,1, 2 - iév),‘ SIRIRN )
) t=0
where '
B,(v)=1,

B,(»)=_, [1 +8%4-5 4+ (2~ 1) J
B,(v)= [1 {82452 f e+ (2v—1)% + 3HBF+T+ -+ (w—1)%
ot - -1
B,,(u)=§;;~[12(32{52+72+~--+(2u—1)2} + BT+ -+ (2 —1)%
o (82— 1)@ —1)*) 48 (5 T 9
+ (21}—1)2}‘+72 {9* -+ (2r~ 10} + -+ (2v—3)*
(2u~—1)2)+"""'"'"+(2V—5)2 (2v—3)* (21/—1)2},

ey

B, () =g51'8%"% (0 —1)"

For the actual evaluation of coefficients B (v)'s, it is to be noted that
the following recurrence formula holds:

» B, (w)=B:(v—1)+ @i%th—l (v —1). e (95)

Now on integrating both members of (24) between the limits —#
and #, we have

|9y j‘ n v B (v)
= = S‘! e e YL IR TR

) (0, v)do p () oy 2f—l—1n .
Then on taking v=v and y=s, and subst1tut1ng the results into (23), we

obtain

[ P B, () S B, (S)
SY (L) SN 2r-23 1 ST O ) o8- °t+1

I= hkﬁ‘?o SZOIZZ 12_5:0( ) or—9t+1" :o( ) 25— 2t+1
--(26)

which is the required general expression.
From (26) we can get the simplest rule, which is of the form

I= Z{(oo} + (10) + oD + (1D } s (97)

This is sometimes employed in civil engineering in computing cut or
bank extending over a broad area.



Table 2. Numerical values of coefficient By (v) ({=Sv).
1 2 3 4 5 6 7
1
4
10 9
4 16
35 259 225
4 16 64
84 1,974 12,916 11,025
4 16 64 256
165 8,778 172,810 1,057,221 893,025
4 16 64 256 1,024
286 28,743 1,234,948 21,967,231 128,816,766 108,056,025
4 16 64 256 1,024 4,096
[
455 77,077 6,092,515 280,673,443 13,841,278,805 21,878,089,479118,261,468,225
4 16 T 64 256 1,024 4,096 16,384

1(g olqe]) sny3 pere[ngel oie s,(«) ’g SIUSIOUJO0D oU1 JO son[ea

[eolIOWNU ‘(GZ) BINUIIO] ©OUOIINOSI Y3 . JO pIB oyl YHM 07 §

¥ "ON

HINLVIAD TVOINVHOEAN HHI NO

21(68)
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~$:21; The least vdluerof # in the genera] expressmn (26) must be
1 ‘

so that the 'integral (19) takes the form

I
. T‘O
and the general expression (26) is written

n—~2—,

+h 0 TE
I= S f(x, ¥)dxdy,
Yo

r+38 A"T"s
SN 2 GG
hkr+s 0 s=0 [2 ‘25 ’ <28)
where )
B: (p 1
= ST —
o V' CP t:) ( )t 2]5—2t+1 22;0—2t+1'
Some of first values of Cp are written down as follows:
By(0) 1
Co=—5"
c B 1 B 1
T3 T 1 9
e B@1 B@®1 B@1
s 2 5 2 1 27
B B®1 B®1_B®1 ‘
T T s 9 3 2 1 2’
or, on rearranging,
c =L _ 1 _ 1 _ 11
CO_‘Er Cl_‘ '—127 C2_60: 3_—168:
Thus equation (28) becomes
.1
hk = Z“ Aoo - (A"o =+ Aoz) -+ 9, 880 <A4n -+ Am) + =z 576
191 11
~ 541,990 Ao + 4oe) = 51 5pp (A + d3) + - --(29)
§ 22. From -equation (29), we can successively obtain the follow-

ing (Fig. 14).
Fig. 14 Weight table for mechanical cubature.
(Domain of integration=7k.)

14a. O(4%)-type.

1 1
1 1
- hkz + O

14b. O(4%-type.

-1 | -1

=

14 14

e

14 14

-1

hkz + 04y
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14c. O(4%-type.

11 1
5 —98 | —98 | 5 -
l 11 —98 | 89 | 889 | —9e8 | 11 l
‘ 11 —98 | 8o | 889 | —e8 | 1 \
5 —08 | —o8 5
14d. O(d4%)-type.
11 11
—1e1| —101

‘ I
= 2,880 53 + O : .
=77 | 1,956 | 1,956 | =77

~77 | 882 |—10,336—10,336 882 |. —77

—191 | 1,956 |—10,336| 76,894 | 76,884 |—10,336] 1,956 | +—121

=191 | 1,956 [—10,336|-76,894 | 76,894 |—10,336| 1,956 | —191

=77 | 882 |—10,336—10,33 882 | —77

—77 1,956 | 1,956 | —77

=191 | —191

. I : :
= 241,920 pp + O@%) -

§23. If we consider the integral of thé_“ form
1= rananay,
0 0
in which the integrand f (x,y) is supposed to be of rapid convergence,
then the evaluation of this integral may be performed by repeated ap-

plication of the above rules.
For instance, ‘14b’ is adopted, and then the aggregate rule for the

integration becomes (Fig. 15):
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Fig. 15 Aggregate rule for mechanical cubature of O(4%)-type.
(Domain of integration=o0Xxco.)

v
48" | -
48" | 48 | -
g
48" | 48 | 48 | ---
52 | 50| 50 | 50 | ---
X
127 25 |2a |24 | 24 |- o>
I
=48~ +0(4*
1 |-2|-2|-2|-2]-- =484 TOUY

In this diagram, lattice weights in the upper half are not written, and
these are at once written down from their symmetrical distribution
with respect to the diagonal

§ 24. A simple application of one of rules obtained above will be
given to the evaluation of the integral

2 o 0
— KL L= j S f(a, B; X, 9, z) dadﬁ, (30)
4Q 0 0
where ‘
1472 . X
f(a,B; %92 ab)= a5 COSox cos By sin aa sin f& =¥z, -~ (31)
provided
@ + B =R

This is a stress-component in the solution of a Boussinesq’s problem, in
which a uniform load, its intensity per unit of area being ©Q, is applied
over a rectangular area 2aX2b, which is shown in. Fig. 16.

Fig. 16 Configuration of Boussinesq’s preblem.

P00

2¥



Ne. 4 ON THE MECHANICAL CUBATURE (93)21,

We suppose that
— ’b — 1 .
and shall find the value of Z. /Q at a coordinate pomt Where x= O y 0,
z=1. Then the integrand (31) reduces to -

f(a, 8;0,0,1) = —BT sinasin 8 e,

The followmg lattice values of the mtegrand will then be obtained
(Fig. 17).

Fig. 17 Lattice values of_ the integrand f (a,,ﬁ);,,,‘%z sinasin g e".
(Pitch b=k = —’3.)
4
B
0 0
0 0 0
L
" 1 g S 0
0 0 0 0 0
14 0 -3 =2 ] -1] 0 |
141, | 43 0 -9 ] 6 |-210
568 | 272 | 78 0 |~15] -9 | _3 0
ool 732 | 340 | 96 | 0 |—18 | —11 | -4 0 -2
732 | 568 | 272 | 78 0 |~15] —9 | —3 0

In this diagram also, lattice values in the upper half are not written;
but these at once follow from symmetry, since we have
f(a, B) = F(8, o).
Thus by multiplying corresponding values in Figs. 15 and 17, and
adding the results, we have .
Z 4 hk 134.956
QT TrpTr ="y v
This value is in accordance with that from the alternative -solution,
whose mathematical reduction was due to Love?, its numerical calcula-
tion being due to the late Jiro Kimura.

= —0.699 = —0.70.

§ 25. To save labours in calculation, we may take

5) A. E. H. Love, Phil. Trans., A, vol. 228 (1929).



22(94) B. TANIMOTO B No. 4

In this case lattices to be computed reduce a great deal in number, and
the following lattice values are sufficient (Fig. 18).

Fig. 18 Lattice values of the integrand f (a, B)= 1t7 sinasinp e 7.

af

o

(Pitch h= k= %)

0 0

0 0 0

41| o | -6 | 0

L,000| 340 | O | —11] o
GO || o | (=6)] o

Then the mechanical cubature in question amounts, with Figs. 15 and
17, to
- %-z ; 1= 7-1_42—2%825(7’3) = 3~3—4§—8é =0.708 = 0.7L
We see that the result obtained is fairly good, in spite of the com-
putation at only four lattices.
In this way, we can obtain the following result (Fig. 19).
This result is in accordance with that of Love’s solution, the

numerical evaluation of which was worked out by the late J. Kimura®.

§ 26. It can be inferred from the foregoing results that the general
expression for the mechanical biquadrature of the form

o/ 124 !
I= j- j s‘ f(x, 9 2)dxdydz
a b c

in terms of the interpolation formula of Stirling type for the function
f(x, », 2), will take the form
n r+§ s+ Cr Cs Ct
= S S S 5 er Ao ass
T =8k = F, R oo (o drew
in which
= A: (p—-1)
= S (o) e
G=2 ) o1
The above expression may be developed as was done in the mechan-

2p-2¢+1

6) J. Kimura, ‘Stresses in Soil Leaded with a Square Block on its Surface,’
Bulletin ef the Geotechnical Commitiee, Government Railways of Japan, June,
1931. '
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Fig. 19 Values of ~Z:z /@ in the plane x = (.

)
l
Q
, l :
1.00 0 0 T
0.70 0.40 0.06 0.01
0.34 0.23 0.11 0.02
0.18 0.15 0. 09 0.04
0.11 6. 10 0.07 0. 04
0.07 0.07 0.05 0.04
z

ical cubature. General expressions of different type may also be deriv-
ed from other interpolation formulas for the function f(x, ¥, z). Further-
more, general expressions for the integration of higher order can also be
written down if wanted.
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