STRESS-FUNCTIONS FOR THE SOLID OF
REVOLUTION

By
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1. Symmetrical strain in the solid of revolution has sometimes been met
in the theory of elasticity and in technological problems. When the solid is.
subjected to surface tractions only, stress-function has been given® ands widely
known. But so far as T am aware, nothing has "been worked out in the case
in which the solid is subjected to body-forces, together with surface tractions,
the 'solid is in the state of motion, or the solid is governed by stress-strain.
relations other than Hooke’s law.

In certain cases of these, stress-functions can be found, and they will play
an elementary role in treating problems within the range of the original
simultaneous partial differential equations. From the mathematical point of
view such stress-functions are solutions or ‘the’ solutions of the original
simultaneous equations, in the meaning that the simultanecus equations have
been reduced to a single partial differential equation which is satisfied by the
stress-function. That is to say, on having eliminated the simultaneity of the
differential equations, the problem reduces to the  attack on a single partial
differential equation. Displacements and stresses are then given by certain
operations performed on the stress-function.

2. Fundamental equations in terms of stresses referred to cylindrical co-
ordinates are
orr  orz  #r—00 oz | 0%

or + oz 7 +eR=0, or oz

+ T pZ =0 (1)

For the convenience of the succeeding calculation, we write

oU oW

pR:—af, pZ:— 2z ]

where U, W are some functions of 7, z, #; # representing time.
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Strain-components are defined by

e_au e-—ﬁ B ow e__8z5+0w
7 57 00 7 22 P ’9-2 o a7
o | ow"t

or ¥ oz’

2, w being displacements in the directions of # and z.

d=e,~+egp+en=

3. In the first place, we suppose that the solid is governed by Hocke’s
law, which is written

TT=NA+2uer,  OO=ANA+2ucs,  B=AAtY2ue.,  Fi=pe..

Then on proceeding just as Love developed?, we have, after some amount
of calculation,

LW ]
i) for the stress-components

=_J Q_QX}{ ol @
e L = R N L e ﬁ'Udr;’
2y-SE _LEX.} le_ ou_ & (... ]
0= o Px— i H{U=or D —o s frUdrf
-~ 0 22X U ?
zzzg{ (2—0) p? -g} {ZU+ @—a)r o+ (l—o) frUdr},
3 22X U PU_2U
7z= af{(l—o‘) sz—g}—f{@ U)'—*—{*(l o) sy ar—*}dz
.................. (2)
ii) for the displacémment-components:
_ 4¢P I+o
“=TTF st B O
. -
w—~1—+-—12(1 ) sz—ax}—lzif{zv+z‘(1-a)r€;q ......... (3)

+(1-20) 2y frUd/}dz, J

iii) for the differential equation satisfied by the stress-function- X

130 U 20 EW
(1—o) V4x=f{<2 o) =S+ (4=30) T 42 (i—0) 2+ 53

U ot .
+ (1— ooz st (1—o) 7 o~ fa’[/dr}dz; {4
where
1 o o2 2 1 o2
2T X 4. p2p2—f{-Y L *
V= 87'2+ 7 ar+ 022’ =y (ayz+ 7 8 a,z) .

4. To cbtain formulas expressed in terms of a single stress-function for
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the solid of revolution, in which case the solid is subjected to uniform
gravitation, it is sufficient to take

W=U and K?Z=Po=—%, pR=-—%§=O,

pg being in the positive direction of the z-axis; and then we obtain
U= —pgz.
Then equations (2), (3) and (4) reduce to:

i) for the stress-components

?_._”aw{ 2 __82X}_ o ; 4
r= %4 72 pgz, |
7R G ,__13_%}_
= 17 7 o ek s
s e e
2= e—0) rx—2% 120z, |
o @ f gy e X |
7z = a7}{(1 o) PEX— 22 | pgoT
ii) for the displacement-components
u__1+0' %X 4o vz
“TTE ooz E 7% (6)
_1i+tao - oy X 1te (1 . A
w="% {2(1 &) p2X az2}+ - pg{2 a 20-)7',.+z},
iii} for the differential equation satisfied by the stress—funcfion X
3—20
Ly — :
X 1 o BZ.  eeeeeiaeeeeannns (7)

For theépurpose of actual calculation in prescribed boundary problem, it
will be more convenient to take the function ¥ in (7) to be divided into two

parts; i.e.
N X=Xo+Xa,
in which Xo and X1 Satisfybrespectively the equations
—2
PiXo=0, and pWi=-— ?;__: P e (8)

X1 then being taken to be particular integrals of (7). Accordingly y:1 may be
found to be ,

1 3—20 .
T 8Bxi28+3y) 1—o pg (art+RBr224+vyz%) . («, B, v being constants.)

We thus obtain:

X1=

i) for the stress-components



14 (14 Benncsuke TANIMOTO No. 3

P 2 { aZx/o}'_ 08 3—Zo
22 17 X 502 | T2 8ur 28+ 3y) 1—o

X {-— (1—20) ,8+60")’}z—pg2,

=~ 0 1 3)»,’0} : pg 3—2¢0
—_ 2 [t SRS
00=—=, {”VX" 7y or | 2(8a+28+3y) l—o
X {— (1—2¢) 18+60")’V}Z—-pgz,

, - L ..(10)
= _ O e _S.YO{_ pg —20 <
Z:—az{(z TIPXT 52 | T2 Ba1268+3y) 1-o |

x 2(2—0—),8+6<1—o>n/}z+ngz,
e 21 e 2 =
P a) VX 52 [ Tg 8a+26+37) 1—o
X{S 1—0/06—63}"/ —pgo7; )
ii) for the displacement-components
14 X | 140 pg 3—2¢ 1+0 \
U=TTE ot E 2@at28+3y) 1—0 T T g P8
140 N azxo}_/l-!-qw og 3—2¢
w="g {2(1 O VX" 5 [T B 28at26+3y) 1m0 an

x{[S(l-”—o-)tx—}- 1(1 20) B12+[2(1—0) B+3(1— 20)7]22}

A+
TTE

Xo being biharmonic functiops.

pg{%*(l——Zo') 1'2+22},

5. To obtain formulas expressed in terms of a single stress-function, in
which case the solid of revolution is subjected to centrifugal force due to the
rotation about the z-axis, it is sufficient to take

oU : BU
R=ppr=— 2 YA
pR=part or’ p“ Pz

2
.« being a uniform angular velocity of the solid; we then obtain

U= 4——;~pco27'2.

Then from equations (2), (3) and (4), we have:

i) for the stress-components
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2 XY 1.
M’———a—z {0' pEx— 52 } ~3 (83—2¢) pa®?,
B9 2 l?ﬁ} _.l 2,2
6= oz {o‘ PX= 5, 5 (1—20) pw?r?, -
5 ox b e
zz=§{ (2—o) PPx— o2 }4— (3—0) po?2,
. 0 92X
7’Z=a—r‘{(1—0') rix— o> }+ (83—20) pw?rz;
ii) for the displacement-components
1+c @ 14+ 1 o
T E @z E 2”7 -
............... )
1+o %X 1+o .
w="pg {2 (1—a) p?x— o5 }'—l———E (3—20) po?siz;

iii) for the differential equation satisfied by the stress-function ¥

—20

piy=—2 3 P2, i (14

1—0o
As in the preceding article, we write
X=Xo+Xa,

in which Xo and X) satisfy the equations

3—2¢
1_
X1 thus being taken to be particular integrals! which may be found to be

7ixo=0, and pixi=—2

pe’z,

_ pe?  3—2%
4(8a+66+15y) 1—0
We then obtain:

X1= (ariz+Br2z8+v25) . (o, B, v being constants.)

i) for the stress-components

ﬁ_i 32‘\/0}_ po? 3—2¢ A
" oz or? 28a+6B+15y) 1—0 \

{a’ FZXo—

X {[——2 (3—40) 0[+3o’;8]7’2+3[— (1—20-),8+1Oa-ry]z2} -—‘;“ (3—20) po?s?,

7 2., 1 OXol pe? 3—2¢
06= oz {o— Xo 7 87'} 2Ba+66+15y) 1—a

X {[—2 (1—4o) 438177 +3[— (1—20) ,6’+100'fy]zz} —-% (1—20) pe?r?,

°

2 32X 0} pa? 3—2¢
oz

o2 10

{elo) rx—

2z =

T 2(8a+6B+15y) 1—

x{[82—0)a+3(1—) B +82 2—0) B+10 1—0) 7122} + B—0) puts?,
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— ] 92X 2 —2
2= {(1 o‘) P2 Xo— 0} L% 820 J

022/ (8a+6B8+15y) 1—0o
x[8(1—a) x—3cBlyz-+ (3——20*) pw37z; /

iii) for the displacement-components

140X 140 . pw? 3—20 .
“=TTF ooz’ E 28a+68+15y) l—o {2“"3+35”}

1 1
- 2‘62”"”3
1+o
E
_1+o pw? 3— 20-
E 2@a+68-+15y) 1—

22X 0}

w="E2 {2 (1—0) X0 s

{[16 (1—0o) a+3 1—20)B17r%=

+{4(1—5)B+10(1—20) r)/]23} +%€ (3—20) pw®72z.

6. We consider the case in which the solid is subjected to uneven tem-
perature distribution that is symmetrical about the z-axis. The stress-strain
relations in this case are assumed to be of the forms

FF=A+2uer—rxT, 00=A4+2ue—rT, ZZ=NA+2uei—rT, 72=pe,,
where T is an arbitrary temperature distribution in the solid and k= (Br+2u)c
¢ being its linear coefficient of thermal expansion.

Then we find after some calculation that the following equations hold;
ie.

i) for the stress-components

~_i{ 2 EZ_K}
Tr=— o PPX— 5 —ECT,

6=y 2x—lﬂ} _EeT
or
o R a7)
— 7] 3
Z= (2—0o) V?‘X"“Ta‘?}'i‘ECT
— 1) o2X 2
R={(—0) sz———}TEc [ 12
ii) for the displacement-components
o e X
Eoooz L (18)

w=2E2{a0-0) prx— 2% }+2(1{a) ¢ [ Taz;
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iif) f.oi- ‘the différential equatiOn satisfied by the stress-function X

szsz i i (19)

piX= ;
It w111 be more convenient to take the function X in (19) to be divided

into two parts; i.e.
X =Xo+Xa1,
in which s

P4Xo=0, and ;72x1=—1E f TdZ. e, (20)
A —C

X1 then being taken to be particular integrals, since harmonic function can

be included in Xo.

7. The general expressions cbtained in (2), (3) and (4) can be transformed
into compact forms. For this purpose we find it convenient to introduce the
integral

o= [ [orara, e, @1)
which multiplied by 27 may be taken to express the whole potential energy
due to the body force, provided the double integration be taken through the

volume of the solid.
Then after a certain amount of reduction, the system of equations (2),

(3) and (4) take the simple forms:

i) for the stress-components

- ,
Freme- {o’ Vz—ﬂ} (X—82) +25T,
o= 387{0- 72————} (X—2) +20T,
2 T (22)
@ ,
zz:?z{ 2—0o) 72—9} (X—2) +2(1—0) T,
. » &
rz=§r{(1—a) 72“—az2} (X—2) + (1—20) ——fUdz,
il) for the displacement-components
14+ 22 :
= X—a),
ord ,
. E oroe R @23)
+of e ~
w="p" 20—0) P }(x 9+ %2 (1~20) [z
iii) for the differential equation satisfied by the stress-function
' e
(1—o)rt (x—2) =— 1272 [ 0az— 22420 (24)

These are of compact forms, and therefore will be far more convenient
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for making general discussion-concérning the body-fprce stress.” Now since X
and £ have always presented themselves as the combined form (X—#) in
equétieris (22), (23, and (24), then ‘we ‘can replace it by a new functmn X’
say, and these equations are written in the forms: ) :

i) for the stress-components

3 , 21,7 P
7’r=‘§;{0' 72/(‘-—* 2}+20’U,
= 92 [ .., 12
Go=-2Ao pro =L }+2¢U
o 2]
S B e N (25)
2=-2{@—0) e —2i}t 420-0),
= ( pRL— o072 I .
P , ?EL} 9
A= {10) 7 - (1-20) 2 [vaz;.
1) for the displacement-components
yottod
E oroz SN e (26)
C ddefs. .., 2| 1ltc v
'w=—E—{2(1’——o‘)V‘2X —82}+ E 21— 2o-)fUdz
A iii) for the differential equatlon satisfied by the stress- function X’
]
(1—0)p* /= — (1—20) fUdz——U—}——a—W—.- .................. @7)

8. In the case of uniform gravitation, we may obtam another system of
equations, by taking U=W=—pgz,

i) for the stress-components

e = B

-2 o125

2= 2{ o) rx - ZE} 2000z,
=i 1—0) P —SX 3

022
'ii) for the displacement—components

14X 1+o-{
E araz

az} 1+o

2=~ —

= (1- 26) pg22

iii) for the differential equatlon satisfied by the stress- -function X’

20
pE.
—c

1—
g’ —
VX 1—
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9. 1In the case of centrifugal force with a uniform ‘angular velocity we
umay also obtain another set of equations, by taking U= W=—Epw27’2,

i) for the stress-components

ﬁ_i{ 2 ?ﬂ} 2%

7= > o V.X ort T P@Ar ]
“_i{ 2 lﬂ} 2,2
00= 52 it or opwirs,

2,

N

o ‘_}-82)(} G e
rz:va;;{ (1—0o) 172/»_— Py (1f‘20') Pﬂfz??;
ii) for the displacement-components
1+0 22X 1+0‘{ T 92 1460
u=—"p o 2(1—a) VZX o2 }' 5 (1—20) pw?r?z;

iii} for the differential equation satisfied by the stress-function X

2(1—20)

V4X=“ 1—% pwia.

10. We proceed to derive the dynamical stress-function, which is valid in
-the solid vibrating symmetrically about its axis. ‘We then put

°ou_ w4 W _ Fw
or Porr M o T Popy

Pw
o

. -
and accordingly pR= —p“gg,» and pZ=—p

Ain-this way the system of equations (1), together with Hooke’s Iaw, represents
the case :of symmetrical vibration of the solid. Using (3) and (28), equation

(27) becomes, after a simple rearrangement,
140 @2 (1+¢r) X’

— 4y’ =t 2 v/
(A—o}p*X — (3—4o) 7 Por 72X A2 (1—20) 5 Lmaﬂ =0;
or by using relations between elastic constants
- Eo _ E
T (140 01-20)° T 20+4)°

the equation just written takes the form .

134’ ’ 2 2

___&_M_a.z. VZ;(/_}_ R‘+ {52 "LV/LX/ O

ott p o

"This equation may also be written in the form

—a?:? 'PL )(atz +2,L Vz)x 0
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20 (20)
We introduce the operators ‘
D1=( 72;0258}; e ( Vz__bz%),

gty e = i bzzB,Z’}

a, b having been termed the wave-slownesses by W.R. Hamilton; and then
the above equation is written ‘
Ch02X'=0. e
Again, in virtue of (3) and (28), we have from (25) and (26) :

i) for the stress-components

e om Bl
r= = o Ja— o7 X',

—~ 2 12,
0= e o .

2 AN
Zz=a—z{a'ljz+2(1+a) I'__h——a?}x ,

7im 2 { Py,
re=—1" (1—o)[h 52 X'
ii) for the displacement-components

1 2% 1 2.,
U=——"""" w=-2;‘{2-(1—o‘)l:|1-———}x 5

2u oroz’ . 022
iii) for the dilatation and the rotation
1-20 : , 1—0o © ,
= CeX7, w=— o or ThX’.

11. The function which satisfies the above equation (29) is in general

divided into three parts; i.e.
X' =X1+X2+Xs,

each of them satisfying the equations
hiX:=0, [leX2=0, Thiexs=0.
Of these the first two functions will at once be seen to be in accordance

with those due to H. gLamb.

i) For X1 we may obtain

— o2 o2 } = { o? 1 92 }

= 2 — —— —— = 2 —— e ——

771 {o‘ (a®—02) 52 o X1, | 001="0 (a®—b?) o2 7 or X1,
= 2 P } — 32X
3, — 2_p2y L9 =—

22 {O_ (@—b?) oz oz2d 72 o070z’

1o 1o
t 2 or’ = 2u oz’
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21y 21
1—26 - 02Xy ' SRR
= ? (a2 —p2) L wo1=0. - ;
41 % (a2—b* i w1=0, : )
where, for brevity, X1 is replaced by 29X1/oz
ii) For X2 we may also obtain
A‘_'o\st A_lBZXg ,_:_a{ 0 P 82}
7 vy rorr T oz b atz o) X
A2 { P2, P, S
Tor T2 o T ozl
1 2% 1 { , il
R ur=g b at2 o 822} Xz,
' B BX2
d2=0, ) wz= 4 oroft
iii)

As for X3 if ‘we assume the product form of functions, we have
X3=13x (Harmonics) {Harmonics)

#x (Biharmonics) , and (Biharmonics)
and so these have no concern with the free vibration, but will bé useful for
the analysis of forced or tramsient system of the solid

12. This article will be devoted to the derivation of the stress-function

for the visco-elastic solid governed by Voigt’s law. The equations of motion
are as before, while the stress-strain relatlons become

77 =X+ 2+ “A+2 ’ae"

ot
Y. Oegg
09=XA+2/L609+X +2/1, o

5 —M+2,Le,;+x ~—~+2 4 Zelf"‘,

We then have the following displacement equauéns

{2+ v o) 2} (24

O (Tt )y (wrw ) o
{0+ v Sjg’; e R
{0t + v+ > (:Z;-}% +(ptw2) (%%JF%%%
{2+ ov a2 2} 2000

Now it will be onvenient to introduce the following operators:
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=~ 7\4‘-)2“{2%2 (MLzM NJ,F)ZIL 3 )(arz ‘?Er_ ::2 }

Dz-—_-{gi% (T a,L)( )

(1—!—7,;72 _.g) yr— 2“;2 ,

.................. (32)
"~ where
19 | @

2 Y 4+ Y 4 Y
4 or? + 7 o o022’

p p P P

= P=——,  g?=———, B2="
A+2u » A 420 w
Assuming a stress-function X fqr the system under consideration, we may-
put .
Y 1 | 2\ &
_.———-—— 1 ————— =wv{ -— ’ —_— ‘-'—}
“ ( Tt at ooz W, 20l = (H" ot ) 32 %

where x, «' are constants to be determined. Then on substituting 'theseg
equations into the first of (31) and rearranging the result, we have

1 2 [7\’+;L’

—) { vr2) + v 2) -~—~} 7

O Dr3zdt L\ Atp
, ’ ” o )ﬁ X"‘*“,LL
+ (=) { ki) + OV ) g (= atz]x 0.
This equation is identically satisfied if we take
s ?\.’—i—;u_'q
K=K = Nbp T e (34)

In virtue of these values of « and «’, the second equat10n of (31) can be re-
arranged, with (33) to the form h

O’ X=0, = rerieeaens (35)
and equations (33) become
1 2 ) %X 1 2
u——‘2ﬂ'(1+i€§ o7 w= ZM{Z (1—0o)[h'— (1+ azz}X
T S (36
x"l‘ﬂa,

where, for shortness, « is represented by x= o
. At

Then the stress-components can be expressed :
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77 {(1—{- 3 at)UDz (1+ I-", g") (1—!-/{ )81’2}

o= :;{(14—75)0’[!2 (1+—;—~—) (1+ o 2 4%,

zz=~,§—{(1+ ~ at)oﬂ +(1+ )2(1—(;)[;1 B - (37)
—(11—{_)# )(1+ 322}

2 (144 ; ) {a-o Dl'—(;ur,c 2) azz}
and the dilatation and rotation become:

120'8 : 10'8

Be o2 2% “’““55,7—51 x-

4=

13. This article will show that the known stress-fanction for the solid of
revolution, subjected to surface trégct'iOns only, is compatible with any given
boundary conditions. The-equations of equilibrium for the solid, referred to

the displacement-components, are

Pu 1 ou u %u’ P
— —-—2 =
2(1=a) {a 2 o 1’2} +d °f) 22 T oree = 38)
Pu 1 ou 2w 1 ow ew_ | |
87’8z+ 72z " (1= 20_) {81'2 7 ar}+2(1‘ ) 22 =0...

We know that these equations are satisfied by

__lmx o, A .
U= % o702 w= 2% 20—} p 822} X, eeieiieeeennn. (39)
where X satisfies the ‘equation . ,

1 2

X (87’2—*_1"57’—%8”2) X= 0 R .'.(4(.))

Now we take the ﬁrst equation of (39) ; and let it be taken as a differen-
tial equation. Any ‘boundary problem concerning the solid will have its
solution, and the component # will take a definite form of functions for the

boundary problem. We then may have for X
x=—2uf [ardz, o

where no arybitfary‘fun‘ctions,of integration need be added, for such functions
will have no concern vwith the elastic displacement under consideration, as
Well as with the stress distribution within the solid. " e

Tt thus follows that for completing the compatibility of ‘the Stress-func-
tion X with the given boundary condition, it is sufficient to writé
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I &#x
2,u araz

w’ being some function of 7 and z. Then the subst1tut10n of (40) into- the
fundamental equations (38)' w111 afford

B : 3 2 ) )
w=wl; {2 (1—6) 72?‘%} X-{-w', 41)

2w’ . 1 ow’ P
2, -2 {25+ L 2 200 S0, )
From the first of these equations, we at once have
wW=REA+ZE, e, (43)

R(#) and Z(z) being functions of ‘7 and z respectively. On subst1tut1ng this
into the second equation of (42), ‘we.have '
1—-20 @R 1"dR 27 -

2i=o Nar Ty dr)+dzz 0

and this equation holds only when '

1-20 2c (d*R 1 dR A
S0=0)\ar 7 ar /"% Gz __2“.’ .
o being constant. The solutions of these equat1ons are reSpectlvely
R(r) = 11 o0 ar?*+alogrtc’, - Z(2)=—a2+bztc’.
a, b, ¢/, ¢’" are all constants. Thus from (42) we have
w = (1= y2—22 —}—a log r+bz+c, e ene e, (44)
1—2¢ .

¢ being for shortness written for ¢’ ¢’

The stress-components. are in general given by the eqguations .

el ff)*““+f(u af} =22 {a-0% +a(-ai+aw J.

1—2¢ 1—2¢
a0 B+ (e Db A=l E T

and hence (44) affords the following “stress-components
7' =AztC, O=AzrC, =""2(Az+0), W =—"Zar+Z, . u5)
c 20 v

where, for convenience sake,

__Ape L o 2HT
A=—7"a, B=pa,  C= b.

Also, the displacement-components take the forms

/= ’._i (1 2. L .2 E : 1—20’ :
w=0 “ -_4#0'{. (A=)t (1_20—)2,}+ B logf—i_ 2uc Can - (4,6).

We shall examine that these functions can be derived frem - the stress-
function which satisfies the biharmonic equation (40). We know that in terms
of the stress-function. the stress-components are given by the operations
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F=-§Z-{0' [72—-—2}%, 979:*"{0' 72—7 57—} X,
O s 47)
%:»:aa—z{(z—a) P, 2}x rz_-~{(1—a> 72——2}75 7

Firstly, as to the function whose constant is . C it can easily be seen that
it is the same as the function X =22, which is a particular solution of. (40).
Secondly, as to the function whose constant is B, we have, from the
fourth of (47),
o

o2 } 1
or

{(1 o) p? —-5;2" X=—,
which will be equivalent to

1 o
1-o) (25+5 ) x=logr.

The particular solution pf this equation is
x X=-(-1—1_—) (2 log r—72),
and this is a biharmonic function as before.

Thirdly, we take the function whose constant is A. If this stress system
can be derived from the stress- funchon X, we must have from the first of
(41) ‘

X=R(N+Z(2), = (48)
R(r) and Z(2) being functions of » and z only respectively. Then from the
second equationl of (46 )‘ and that of (39), we have ‘

2(1=0) {d”R %%1; + iﬂ} (1—20) {%2;_ "z%;zz} =0,

which holds only when

d2R+__ci_Ig+i _ e V7 A _1_’2_’_ c .
R S B Y a2 2o 1-207

and the general solution of these ‘-equati:ons are
1 . e . 1 c
—- 2 ’ - A
b T T8(1—g)  FOrlog T, Z() =0 e s
c1, ¢2, ¢/, ¢’ being constant. Therefo»re“ (48) results.in

—_— 1 1 4 c 2__
X=—to "t o P tga= L 2(1 %) .

where ¢s is written for ¢’+¢”’. It is e\rldent here that in this equation the

49+622+6/’,

2240 log 7--C2 z+C3,

terms in ¢, ¢1, €2, € have no importance as to the stress distribution, since
they are included in biharmonic functions. Hence we may take, without loss

of generality,
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x= A (Laily),
and this is also a biharmonic function.

Thus it can be concluded thaf the additional function u’ given in (41)
may be ‘included ‘in the biharmoni¢ function %, and accordingly that the i’
does by no means play any significant role on the stress- and ‘displacement-
distributions within the solid; ‘and hence that equations (39), provided that
the function X in these equations satisfies the differential equation (40), is
equivalent to the original simultaneous equations (38), or in other words that
the equations (39) and (40) are the solution of the original simultaneous
equations (38).

14. As a simple application of the stress-function given in Article 5,
which is for the solid of revclution rotating about its axis with uniform
angular velocity , a rotating hollow shaft will be treated. Let the length of
the shaft be 2/, the outer radius R, and the inner radius R’; the origin of
coordinates bemg at the center of gravity of- the sohd ‘

Boundary conditions are taken to be

7z2=77=0 for 7=R and 7=R’,
I
72=0 and f ZZrdr=0 for z==l.
. R N
Fundamental equations to be referred are equations (15) and (16), in which
Xo is biharmonic. Particular solutions suitable for the present problem are
Xo=Azlog r+ Briz4C28,

and in addition we may have B8=v=0.

Then we can arrive at the following results:

=_ pw°3—Cc 2_ 3y _ P®” ?3—20 ﬁ_ .
Ti=Tg 1, B =T T R 1),
=~ pw? 1 | | pd® 23—20 of K2
G0=L 1 1 { (=20 R (4200 + 57T OR +1)
= P’ o oy L PP T s =
zz 11— (R2 27’?-}— 1 1_“(TR 3 72=0.
- pw?3—ba - (i4o) 1-20) , \
= a{R 3—50 #tr 5
00?350, [(3—20) (1+0) R? L
YeE 1 { 3—bc 2 +i}r
w= ———chzz———aR’zz !

2E 2E
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It can be seen that if we put R'=0, the above solution reduces to.the:

known one for ‘the ‘solid shHaft®. .

Summary

The present article gives stress-functions for the following respective:
cases:

1. General expressions of the stress-function for the -stress-equations (1}
are given, provided Hooke’s law holds for the stress-strain relations.

2. As the first application of the above reduction 1., a stress-function.
will at once follow, for the solid of revolution subjected to uniform gravita-
tion parallel to the z-axis.

3. As the second application of 1., stress-function is derived for the solid
of revolution rotating with aniform angular velocity so that centrifugal force:
may exert upon it.

4. 1If in equations (1) we put-

pR:—paaz—;:, pZ=—p%2;§,
the reduction made in 1. transforms to the dynamical system of eguations.,.
viz., the longitudinal vibration of the solid. In this case also a stress-function
can be derived by a slight modification of the results obtained in 1.

5. As a further development of the above item 4., stress-function for
visco-elastic solid which obeys Voigt’s law can be obtained.

6. When the solid is strained by an uneven temperature distribution in
it, stress-function is also derived.

As to the differential equations in the above two items, 5. and 6., it
would seem to call for a further scrutiny.

Several applications of the above stress-functions to elementary boundary
problems have been worked out, the results of which are of course in ac-
cordance with those- treated otherwise, when available®; but they are not

given here.
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