ON STIELTJES INTEGRAL IN SEMI ORDERED
LINEAR SPACE(“

By
Toshi IINUMA

H. Nakano defined Stieitiés integral in a semi-ordered linear space as
follow in his book.® ) ’

Let R be a continuous semi-ordered lirear space, if ax(@=M=B) are
monotone increasing and @ (\) is o continuous function in [, B], then the
limit

lim Z @ (1) (ar,—ax,_,)

£} VY=
exists for every partition of the interval [«, 8]:

aA=hg< A< we o <LAn=0; A=Ay =€ (v=1,2, -, m

Xv—;éﬂéxv

This limiting value is written as f qu (\)dax and called the Stieltjés integral
of {A) in [, BI. *

When the semi-ordered linear space is regularly complete,® we can extend.
the definition of Stieltjés integral for a totally additive class of functions
containing continuous functions, by the method used by H. Nakano in his
book.® This is the purpose of my paper. ’

§1 Almost continuous functions
A function @(\) is defined in a pont set M. Let aa€ R(@=SA<f3) be 2
monotone increasing system. For an interval 7= («, B), we define its length

[I, to mean lI‘—as_]—aa,.pg Where ag-1=lim ax—UaA and agss =lim ax=ax
;. A-B=d AL, A=a+0 oo

For a function @(A), if we can find a double sequence of intervals L.,
(w.u=1,2, --) such that c

by={ L1 |-+ T - flo
-

and @ (\) is continuous in M(Iv41+1,;g+ N for: evef}? v=1,2, -, then (A} is
said to be almost confinuous in M. o
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Definition.» .If for any au, ] O(u=1,2,-) there exists v,LT +oo such
v=l sl
that @uy, (#=1,2, ---) have an upper bound, then R. is said to be regularly

complete. .
Lemma 1. If R is regularly complete, then for any ..l 10 (u=1,2,--)
v=

we can find »,(u=1,2,.--) for which Zla,;,v“ is convergent.
=

Proof. As ap, J,w . 0(x=1,2, ---}) by assumption, we have
Y=

wummf 0 (u=1,2,-)

Smce R is regularly complete. we obtain hence

2¢q,v, =1 that is, O<aM11uS _",2'

Therefore ila“.vn is convergent, because i 1%;1 =].

M= = .
LZemma I1. If R is regularly complete, then for any a.. ; l0 (u=1.2;---)

=
we can find v (u.0=1,2, ---) such that 3 auv.’ ,Lml 0
v w=1 v op=
Proof. As au, lml 0 (x=1,2,--) by assumption we have
Y-

2°ay., l“'l 0 (p.p=1,2,--)
Yo

and by lemma I, we can find »u* for which X 2P, ».* is convergent. Thus

w.p
we can find an element m such that
m=2° 2 a., v for every p=1,2, -
we have then D v = 1 ml G
fres) 20 "%

Lemma 111, If bu,ylc" l0 (v=1,2, ---), and ibl,v is convergent, then we
=

V=1

have 3 Dyy I o
v=1 =1

Proof. Putting c=lm >, b,y We have
prroo y=1
A1 oo
0 :;(325;:: bwv%‘}i va
v=L V=A
For fixed A, making pu—c0, we obtain by assumption

ogcgimm

On the other hand 2 b.., is convergent by assumption and hence lim 5_‘;.\ b:.,=0,
V=1 A-»eay =

conseqguently we obtain ¢=0.
Theorem 1. 1f a function @(\) is upper semi-continuous or lower semi-
continuous in a point set M, then @A) ‘is almost continuous in M.
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Proof. 1In the first place, we consider the case where M is bounded, that
is, the interval (a, B) includes M, and ¢ (A) is upper semi-continuous in M.
As the whole rational numbers #dre countable, they may be written as a1, s,
---. The point set {A: @A) <an)y #=1,2,---) is an open set with regard to-
M, that is, it is the intersection of M and an open set.

While on a'straight‘line, an open set is sum of at most countable inter-
vals, they may be written as L+l LuZ,=0 (u3p) and since they
are included by («, B), sum of their lengthes is con\?ergent because

an = | Lia) + s+ < ap—aa
and for a point A of M which is not included by any of Z.i, ,2, -~ we have
gX)Za, for AEMZ,+1,2+--)" and '

jLG’[ + iln.n”—x-lj +"' \L” 0

el

For In.p.':— (aII.M’B‘IZ-,.L) (u,—_—-l, 2, ), if we define
];Lp:InI.p"—_‘_]n.‘.’.p:"'zln.p.p (P=1’ 2’ "')
n. dn‘
and Zywp= (. s Clnp+ Bgf_bh‘“p ), ]n.‘u.p_‘: (187141 BQL-—p+L /3n o) (v>p) (p=1,2,--}

- vl -
then, putting bzw=ZlIn.T.K1 + ZJ]n.«uAK;T, we obtain bn,vi 0 by lemima III. In

the set M, which excludes Z Inm-l- Z Jnoext Z Lo, from M, if we consider

KeD

a point A, which satisfies @{Ao)= s, then for any point of M. in the in-

Bi?..p—an.p‘

terval (Ag—0, Ao+98), we have always @ (A} =dn, where d=min SropL

p=1.2;-+0

If we apply the same method to =1, 2, ---, then we have

Busd O (u=12)

oo

By lemma II 3 buno = 3 3 (lused L0 (*)
= P

p=1 k=1 =1

In M, which excludes (*) from M, for any rational number «, if we:
consider a point A, which satisfies @ (xy) >« and choose suitable positive.
number &, then a point of M, in the interval (Ay—38, Ao+0) satisfies (X)) >«.
Theérefore, for any point X, of M, if we consider a rational number «a which
satisfies @ (Ao) >, then we obtain the same conclusion. Conseduently in M.
Iim yop(n)=a. Hence for the Hmit ‘a—@(h) hm e (N Z @ (Ro) With regard

A=rAg ~Ao
to M. '

’lherefore go(x) is lower sem1 continuous in My, and @{\) is upper semi--
contmuous n- M therefore gv()n) is almost continuous in M. If <p(x) is lower
Semi- contmuous, then =@ (X) is upper semi-continuous, and so by the same:
method, @(\) is almost continuous in M.
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Next we consider the case where M is not bounded, if we suppose Mpg is
the intersection of M and .an interval [-B, 8], then Mg is a bounded set, and
@(\) is upper Semi- -continuous in Mg, therefore in a set My’ which excludes

o= oot + Vpoal +- {0 (=12, )

from Mp, @(\) is continuous, if we consider every natural number G, then

o 0 (u=1,2,2)
And by lemma II ilcp.v,f f ; 0 (%)
= p=

consequently @ (\) is continuous in a set which excludes points of at most
countable intervals (%) from M, that is, @ () is almost continuous in M.

We obtain at once by definition. ‘

Theorem 1I. If @(x) and +(A) are almost continuous in a point set M4,
then () =P (N, @A) -y (A), max [}, v (A)] and min [@(R), Y (A)] are
almost continuous, and if ¢»(A)} =0 in M, then the same conclusion holds for
@MW) [N . _

Theorem II1. If all functions @1 (A), @z(\), --- are almost continuous in

a point set M, and @ (A) —hm@a (A, ga(X) —hm@n( A) are finite functions, then

oo

@) and @A) are almost continuous in M.

Proof. Before the proof of the general case we consider firstly the
kfollowing special case. @1 (M) @ (W) =< -, if we put @, (M) _—-%1_52 @n(\), then
by assumption @y(A) is a finite function, and @.(A) is almost continuous in
M, and hence we can find fn..(#.2.£=1,2, ---) such that

)

Do = {’In.’n.li + ‘-g':zul} = [ D) ,, ¢
k=1

=1

and @« (A} is continuous in M (FreiiLeiet- )’. By virtue of lemma II, we
can find »,2 such that

b= 2} bw‘up.p =3 X JIF"’Up.P-'C;,‘L 0
=1 p=l k=t p=1
and all functions @i1(A), @:2(0), -- are continuous in the set Mi=Mx

&}; szllﬂ,ﬂ“p.k)’. Thus oo(A) is lower semi-continuous in Mi, and consequently
almost continuous in M) by theorem I. Therefore ¢y()) is continuous in Me
which excludes at most countable intervals, the sum of whose lengthes is
decreasing and tends: to zero.

After all, (M) is contmuous in Mz Wthh excludes at most countable
mtervals, the sum of Whose lengthes tends t0.zero, that is, almost contmuous
in M.
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o= @p.(0)=-- then —@,(A)=—@,(\)= ---.. and therefore
@o(\) = lim@ge(\) = —lm (—@u(A)) is almost continuous in M.
Next we prove the general case. As

Timen (V) = inf [sup{@n(\), @ue1(A), -3 if we put

=—>oo .
@Prom () = max [@x (\), @rs1(X)s e, @u(X) ] (m2>0),
then by theorem II, @um(\) is almost continuous in M, and

Dn.n (7\4) = @ﬁ-n-ﬁ-l (7\') =---
im D 0\) = Sup {@n (7\.) y Pasl 0\4) PR }

M~rco

therefore sup {@=(\), @ns1(A), -~} is almost continuous in M.
“If we put go(\) = sup{@a(\), @uer(X), -}
then ;i(M) = L2(0) = -

and limg:(\) = Hm gu(\) = (V)

>0 T2—>00

and therefore @ (X} is almost continuous in M, and as

@) = 1im g (\) = —Tim (—gn (\))

N—>oo

and —@n{)) is-almost continuous in M, and so g(h) is alsc continuous in

§2. The integral of bounded almost continuous functions

If a function @(A) is bounded and almost continuous in a closed interval
la, B1, that is, agsng glp =7, and ¢V is continuous in the closed
intervals which exclude at most countable intervals Z,1, L., ---, the sum of
whose lengthes b, is decreasing and converges to zero, then there exists
bounded continuous function @, (A) whick satisfies @ (X)) =@u, (X)), g, (A) [ =y
in [et, B] (Latdozt--) .

The above function ¢, (M) is called v bounded b, approximated continuous
function of @(A).

@v,(A) and @, () are continuous in [, B8] and the set of A

o e ) F e, (), aSAZB)

" are covered with at most countable intervals, the sum of whose lengthes
tends to zero. v

But the function |@s, (X) —@e,(\)| is continuous in [«, B], for any positive
number 3, the set of A » -
{2t @, (V) —@e, (V)| 28, asA=<8}
is a closed set. (with respect to [@, B8], aad I, B] ‘,isé cloéed set, hence the
above set is a closed set).
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Therefore by Heine-Borel’s covering theorem, the above sst are covered:
with finite intervals, the sum of whose lengthes b,+c,] 0.°
LESS

This union of finite intervals may be written as °
(o, B) + (az, B2) + -+ (A, Bn) where a1<Bi<a<Bo< - <n<Bn
therefore by the property of Stieltjés integral of contmuous function

f s (M) dax— f Pen (X Ydar | < f

7 fﬁ" @il
i=lv @i

n @'+l
+3 fﬁ T 8da=2y 3 (ay—aa:) + Blasa)

@y (M) = e, (A i ) | dan

P — e (V) | dn =3, [ 2y

() — e () |dart 3, I

where By=a, tns1 = G, hence
| rB 8
f f @r, (N) dar— f @ew (N) dan
& a
as 8 is any positive number
8 ‘ B
| [[ontdai— [(puth) dax
& &

Therefore by the generalized Cauchy’s convergent theorem,® for any -
bounded, &, approximated continuous function ¢, (A\), the finite limiting value-

<% (Butc) + v (@5—a)

£

<2 (botcCs) 1 10

o=

8
lirr% f @v, (\)da,  exists, this limiting value is defined as the Stieltjés integral
by —> @ .
of bounded almost continuous function @A) in [«, B] and is denoted by~
2 .
) f @(\)dax similar to continuous function.
a

If functions are bounded and almost continuous in [a, B8], then we can

prove the following properties.

Lomda= [‘omdnt [Tptdn  (@sv=s
[ +voida= [Tomdant w0 da

B 8
3° 1If v is a constant, then f Yo (\)dax =y f @ (\) dan
o a&

Definition. A point set, which can be covered with at most countable -
intervals, the sum of whose lengthes is decreasing and tends to zero, is said:
to be a set of measure zero. » o

4° If p(N) = (V) in [, B] except at most. set of measure zero, then

[owanz [yoyda
[fomda]= [lpoida 8> |

We also can prove by usual method.
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Theorem. If function @, (\) is almost continuous and uniformly bounded
in the closed interval [«, 8] then

8 8 B PR
[ timg. () day <lim [ gn(0) dons Tim [ pnnydarns [ Timpn(n) dax
@ e Y @ oo ¥ @ @ N0

“1—reo

hence if specialy lim @»(A) =@ (\) then

B 8
lim fw peNdar = [ () dar

§ 3 Integral of positive and almost continuous functions
@(A) is positive and almost continuous in a closed interval [, 8], For
any v>0, if we put
@y(Z) =min [pA), ¥] (=A=0)
then @y(A) is upper bounded, positive and almost continuous, and if the
limiting value
. 8
lim [ gy () das
Yoo Ve

exists, then @(\) is said to be infegrable, and the above value is defined as

f f‘? (\) dan

If such a limit does not exist, then we define this integral as + o.

Properties of the Stieltjés integral of positive and almost continuous
function hold similarly to bounded function, and we have the following
theorems.

Theorem 1. Integral of positive and almost continucus function g(A) is

8
equal to lim f @s, (M) dax where ¢, (M) is any positive b, approximated con-
T ¥

tinuous function. ,
Theorem 1I. For a sequence of positive and almost continuous functions.

P1=ge=---, if we put @ (A) =lim @.(A}, then we have
n—>co

8 8
(o0 day = 1im [ pu(n)dan
& N—>co &
(corresponds to Lebesgue’s theorem)
Theorem 111. If a sequence of positive functions @.(\) (#=1,2, ) are
almost continuous in a closed interval [«, 8], then we have

B B
lim [ pa)daz [ lim @ () dey
@ @&

nN—>o0 T~roo

(corresponds to Fatou’s theorem)
§ 4. Absolutely convergent integral.
@ () is not necessarily bounded and almost continuous in [&, B8], if we-
put
@t (M =max[p), 0]; @~ (A) = max[-@}), 0]
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then .@* (A) and @~ (A) are positive and almost continuous, and
pM) =@ (N —p~ ()
M=t + e~ (V) :
If both @™ (A) and'¢'” (n) are integrable in [«, 8], then @ (A) is said to
be integrable, and its integral is defined by

g B B i
[otda= [ P OV dar— [ o~ vda
We have the following theorems.
Theorem 1. The necessary and sufficient condition of integrability of
élmost continuous function @A) in [«, £] is that the positi{re and almost

continuous function |@(A)| is integrable, and in this case we have the follow-
ing relation.

\Lﬁ(f’mdﬂx < f o0V dax

Theorem II. If @(A\) is integrable in [«, 8], then for any positive number
T, there exists such ¢, as

[Tompoda

for T" bounded almost continuous function «r(}) which satisfies

<c.l O
w=1

A “ ®
[vwlda=al o

Lastly we have the theorem which corresponds to Lebesgue’s theorem.
Theorem IH. If a sequence of functions @»(A) (#=1,2,---) are almost
continuous in [«r, 8] and converge to ¢, (A}, and when

fon(M) =00 (n=1,2,-)

where @ (\) is a proper integrable and positive function in [, 8], then @»(A)

and g (A) are integrable and

B B
lim [ (N dar = f o (\) datx

Tt—ro0 @
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