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Introduction. The notion of c.s.s. complexes was originally introduced
by Emenserc—Zieer [4] as a precise abstract approach to the topological
spaces. In the early development, it was rather homological. However, by the
recent contributions of Mmxor [9] and Kan [6], the c.s.s. complexes
have attained the homotopical (geometrical) aspect.

The c.s.s. analogues of certain topological notions have already been
established, and the c.s.s. notions have been able to simplify the proofs of
many propositions. However, it seems that c.s.s. notions can provide us
with a direct ladder from group-theoretic concepts to geometric configurati-
ons (cf. [2] and [37]). For the solution of this problem will be required
more expositions of topological concepts in terms of the c.s.s. theory.

In the present note, we shall define the relative homotopy groups =,(X,
L; a® for the Kan-pair (K, L, a%, and then prove certain properties of them.

1. Definition of (K, L;a.

A c.s.s. complex K is a collection of elements x’s which are called
simplicies, associated with the following three functions:

(i) The dimension function D : K—>Z, = non-negative integers. A
simplex x for which D(x) = # is said to be n-dimensional, and we denote
the totality of n-simplices by K,.

(ii) The i-th face operator 9; : K,~——K, ,, 0<i<mn, n=1.

(iiiy The j-th degemneracy operator s; : K,—>K,,,, 0<j<n, n=0.

Moreover, face operators 9,’s and degeneracy operators s;’s satisfy the
following commutation laws :

0;0;=0;_,0; for i < j,
SjSi=Sju1$; for 1 < 7,
Si—10; for i < 7,
0;5;=1 identities for i=j and j+1,
80,4 for i > j+1.
An equation in the c.s.s. complex K isa set of # (n— I)-simplices x,, %,
------ » Xpety Xprns ot X, (0Lh<n) satisfying 05.,x,=0;x; for all i< j and ik
27, which is denoted by [xg, --+--- s Xpq, ¥ Kpyg, e , %, . If there exists such an
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n-simplex x as d;x=x; for all i=k, then the equation [, -+ y Xpe1s ¥ 5 Xpats
------ , %, is said to be solvable, and we call x a solvent and 9,x a solution of
this equation. A c.s.s. complex K is called a Kan—complex, provided that
all the equations in K are always solvable.

Now, if a O-simplex a° is distinguished in K, then the pair of K and
a® is called the c¢.s.s. complex with the base point a° and is denoted by
(K, av.

Two n-simplices x and y of K are to be homotopic in K (in notation
x~y), provided that

i) 9x=0y for all 0li<<n,

(ii) there exists such an (n+ I)-simplex z, which is called a homotopy
from x to y, in K as

(ila) 0;2=s, { 0,x=$,_, 3,y for 0<i<n-1,

(iib) d,2=x and 9,,,2=1.

Lemma 1. In a Kan-complex, the homotopy relation is an equivalence
relation.

A non-empty subset L of K is a subcomplex of K, provided that Lisa
c.s.s.complex in the c.s.s. structure of K. If the base point @° is chosen
mm L,then the triple K,L and «° is called the pair of c.s.s.complexes
relative to 4% and denoted by (K, L;a%. If both K and L are Kan-comp-
lexes, we call (X, L; a" the Kan-pair (relative to 4.

Let I'(K, L; a% be the collection of n-simplices in K satisfying (i) 9yxeL,
and (ii) 9;x=a"? for 0<i<m, where a"'=s, 4-+---- $0a.

Definition 1. Two n-simplices x; and x; of I, (K, L; % a re homotopic in
I' (K, L;a% (in notation xr;xz in I' (K, L;a% or simply x,~x,) provided that

(i) 9p%, and 9,x, are homotopic in L,
(ii) there exists such an (n+1)simplex y (which is called a homotopy
from %, to %) as
(iia} o0,y is a homotopy in L from d,%, to dpx,,
(iib) 0;y=a" for 0<<i<m,
(iic) 3,y=x; and 0,11y=%..
Lemma 2. x 5 %y tn I (K, L;a% implies d,x;~08gx, in L.

Lemma 3. If (K,L;a% is a Kan—pair, then the homotopy relation is an
equivalence rvelation in I' (K, L; a°).

Proof. Reflexivity. Let x be an element of I",(K, L; a®). Then, the direct
computation shows that y=s,x is a homotopy in F K, L;a® from x to x.

Symmetry and Transitivity. Suppose that x; o %, and x P X3 in
n n+i
' (K, L;a%. Let y, be a solvent of the equation [ ¥y, -+ , Yow * J, Where

yoi=a" for 0<i<n-1, %o, no1=0Y, and ¥,,—=0,Y,.;, and 2z a solution of the
equation [ ¥, -----* s Yus Yur1, * |, Where ¥, 9, and y,,, are already determined
simplices and y;=a""* for0<i<n. Then, as easily seen, x, T ¥ in ' (K, L; a®%.
In the sequel of this note, we assume that (K, L; a°) is the fixed Kan—pair.
Now, we shall define a multiplication in "X, L;a%. Let x and v be any
two simplices of [' (K, L;a% n=2), x, a solvent of the equation [a™1,------ R
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a™, oyx, #,0,y]in L, and z a solution of the equation [ x,, a*, ----- ,ak x, ®,9y].
And, we define x-y=2z, which is called a product of x and y. Obviously, z
is not unique.

Lemma 4. Any two products of x and v are homotopic in I' (K, L; a®).

Proof. If we have two solvents %, and x,’ of the equation [&"1,------ ,
a™1, 9yx, *,0,y ], let w be a solvent of the equation [x,, a&" -+ , @, x, %, Y]
and z be the solution of the same equation defined by d,w=z, and in a similar
way w' and z'. Define w, as a solvent of the equation [&”, ----+ , 4", 5, 10,%x, %,
Xy, %' ], then 8,_,w, gives a homotopy from 7, ,x%,=0,2 to 9,_,x'=0d2'. Next,
let v be a solution of the equation [wg, -+---- S W,q, ¥, Wyiy, Wuesl, Where w,
is the above defined, w,=a"* for 0<i<m-1, W, ; =$§,%, Wy, =W and W,.,
=w'. Then, v is a homotopy from z to z' in [I'(K, L; a°.

Lemma 5. Let x, x' and y be three elements in I' (K, L;a%, n=2), and
assume x~x' in I' (K, L;a%, then we have x » y~x"« y.

Proof is similar to the preceding one.

Lemma 6. Two elements x and y of 'K, L;a® are homotopic, if and only
if there exists an (n+ I)-simplex z satisfying

an n—simplex of L if i=0,

PY X if i=n-1,
y if i=n,
a otherwise.

Proof. Suppose we have an (n-+ I)-simplex z satisfying the conditions.
Define w as a solvent of the equation [&”, ------ ,a% %, S, 100Y, S,_200¥, 0,2,
then ¢, ,w is 2 homotopy from 9,y to dx. Next, let v be a solution of the
equation [w, a"1, .- , @7, %, S5,%, S, z], then v is a homotopy from
y to x. Therefore, Lemma 3 ensures our required result. The converse is
quite similar, so the proof will be omitted.

Lemma 7. If y~y', then we have xey~x+y'.

Our repeated method and Lemma 6 will give the proof.

Now, let r,(K, L;a" be the set of homotopy classes in I'(K, L;a%. The
homotopy class containing x will be denoted by x. Then, if é=x and 5=y
are any two elements of =, (K, L;a%, by virtue of Lemmas 4-7, we can define
=&y by {=2, z=xy. Moreover, Lemma 2 enables us to define a map 4:
(K, L; a®—>r,_(L; &P by 8¢ =08,x, where =X is an arbitrary element of
=, (K, L; a°.

Theorem 1. =,K,L;a"n=2) is a group.

Proof. Associativity. Let x,y and 'z be arbitrary elements in I",(K, L; av).
Define w,’s, 0<i<n+2, i>n, by the following:

w;=a"* for 0 <i<n-1,

w,,=a solvent of the equation defining xy,

1) If L is the subcomplex having only one non-degenerate simplex a°, #,/K,L;a% is
denoted by r,/K;a%, and this is the same defined by Moore [10].
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w,.;=a solvent of the equation defining (xy)z,
w,o=a solvent of the equation defining yz,
wy=a solvent of the equation [dyw,, ------ 2 OgW,_1, %, 0gW,+1, OgW,sa].

Then, the solution of the equation [w,, wy, - s Woeq, %, Wyyy, W,ts | iMplies
that (xy)z==x{yz).

Divisibility. Let x and y be arbitrary elements in ' (K, L; a®). Then, we
can easily find the elements z; and z, in I' (K, L; a°% satisfying xz;=y and
sz:y.

Definition 2. =,K,L;a% is called the n-dimensional relative homotopy
groups of the Kan-pair (K, L;a?.

Lemma 2 and the definition of 9 lead us to

Theorem 2. 0:z,(K,L;a%)——>x, ((L;a%) n=2) is a group homomor phism.
(We call @ the boundary homomorphism of the relative homotopy groups of
the Kan-pair (X, L;a%.)

2. Commutativity of =,(K, L;a"
Lemna 8. Let x,y and z be any elements of I' (K, L;a® (n=>3). If there
exists such an (n+ 1)-simplex w as

Ogwe L,
dw=a" for 0<i<mn—2 and i=n+1,
an—2w:x7
Ty W=,
J,Ww=z,
then Zex=y.
Proof. Define n+2 (n+I)simplices v/s, 0< i < n-+2, ixn, by the
following :
v, =a"! for 0 <i<m-2,
vn—.‘&:snxy
v,_;=a solvent of the equation, which asserts the existence of
u satisfying ux=y,
vn+1:w:
Un+2:sn—2x)
vs=a solvent of the equation [dgvy, +++-- s OgUpniy ¥ 5 OgUnt1y OoUnto s
Then, the solution of the equation [, -+ y Un_1, % ,U,1, U, implies
that zx~y.
Lemma 9. Let x,y and z be any elements of I' (K, L; %, m=3). If there
exists such an (n+1\-simplex w as
Ogtel,
dw=a" for 0<i<n—~2 and i=n—1,
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an——?.w =X,
0, W=,
an'i'lz'v =2z,

then we have z=x y.
Proof. Define n-+2 (n-+1)simplices v/s, 0<i<n+2, i=n+1, by the
following :

v, =a"rt for 0<i<{n—2,
Un—2:sn-—~2x
v,_y=a solvent of the equation [#g, - Sy, %, U, 4|, Where

dgteel and uj=a” for 0< j, j2= n,
Uﬂ:w?
Un+2:Snzy
vo=a solvent of the equation [84vy, -+, 0y, *, OV, 42 .

(N.B. u=8d,u,; is a representative of x! by virtue of Lemma 8.) Then,
the solution of the equation [vg, ------ ,Up, %, U,y | implies #-z =y, hence we
have x<y=2z.

Lemma 10. Let x;, x,, xy and x, be arbitrary four elements in I', (K, L; a%,
(n=3). Then, the existence of such an (n+ I-simplex y as dyyel, 8;y=a” for
0<i<n—2, 0, 29=2%, 0, Vy=2X%s, 0,y=2%3 and 0,.,y=%, implies X X3=%s%,.

Proof. Lemma 9 and the same procedure as in preceding two lemmas
lead us to the conclusion.

Theorem 3. =,K,L;a") is abelian for n = 3. ‘

Proof. Let & and #» be arbitrary two elements of =, (K, L;a", and x and
y their representatives in [ (K, L;a®, respectively. Define =n+2 (n+1)
-simplices w;’s, 0 <i<n-+2, i=n—1 by the following :

w;=a"*! for 0<i<n—2,
W,—2-=35,%,

Wy =W,=S5,41Y,

w,2=a solvent of the equation [#,a”, ------ ,a', x, at, a* =],
where u<L is a solvent of the equation [a™1, ... ,a™l, Ogx, @™, @'l w7,
wo=a solvent of the equation [dyw,, -+ + , Oy, %y 0l g -

Then, '6,,+1w,1+2 represents & by Lemma 9. Therefore, the solution of the
equation [wq, -+---- , W, %, W,s] and Lemma 10 yield &op=n-&.

3. Homotopy addition theorem.
Theorem 4. Let &, ----+- , 411 D€ the elements of r,. (K, L; a%), n=2, k=0), and

x/s their representatives in I,y (K,L;a%. If there exists such an (n+k+1)
—simplex y as OyyeL, 0;y=a"t* for 0 <i< k and 0y jy=x; for 1< j< n+1,
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then we have

n
-1
_H E( ) . =¢ (the unit element of m,ip).

Proof. We shall proceed on the induction on #n. Obviously, our theorem
is valid for n=2. Therefore, we can assume that the theorem is wvalid
for n <N (N> 2). But, we shall need the following

Lemma 11. If &yyi=<, our theorem holds for n=N.
Lemma 12. If & =¢, our theorem holds for n=N.
Lemma 13. If &y_1=¢, our theorem holds for n=N.
These three lemmas will be proved by the consideration of appropriate
equations.

Now, define N+k+2 (N+k+ I)-simplices w;’s, 0 <i<n+2, ixN-+k+1,
by the following :

w;=alN+k+1 for 0 <i<k.
wyrj=a solvent of the equation [vj, aV+k, ... , aN+k % agN+k
aN+k x;7], where v; e L is a solvent of the equation [aN+k-1 ...... , aN+E=1 %

aN+k=1 9oxi], for 1< 7 N—2. Then, #j = OyirratUet+; represents & by
Lemma 10.

Wesn-1=a solvent of the equation [vn—1, ANtk -=--ee-- » ANtk
gy oveenenes , UN-2, Qy-i, ¥, Xy_1], where vy_,e L is a solvent of the equation
[aN+k=1 ...... , aNFE=L Qg eeee , Ogly_z, @N+R=Y % Qoxy.i). Then, #uy_i=

N-—1 (_1)1‘4.1

OnsrUyss_1 Tepresents F €y_; by Lemma 13. (N.B. zya (K, L;a" is
abelian for N> 2.)

Wb =Sn+sXN-

Wrtr+2=).

wy=a solvent of the equation [dgw,, - , OoWysk, %, OgWxinss .

Then, the solution of the equation [w,,, Wxyr, *, Wyires| implies Ey.q

Eny_iya= ¢, Le., fart ](\:l)_l =,

4. Further properties.

Definition 3. Let (K,L;a% and (K',L'; 5% be c.s.s. pairs. A function f:
(K,L; a®—>(K',L'; 8°) is a c. s. s. map (or simply map), provided that it satisfies
i) fIK) c K,', (ii} 9;,/of=f00; for all i, and (iii) s,"of=fos; for all j.

Proposition 1. Let f:(K,L;a®)—>(K',L';b% be a c.s.s. map of Kan-pairs.
Then, we can define the homowmor phisms fy: = (K, L; a%) —> =,(K', L"; b% for all
nz2. (fy's are called the induced homomor phisms.) Moreover, we have the
Sfollowing commutative diagram:
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f
7K, L; > (K', L'; bY)
a l’ f *I a
Tun(Ls @) > 1 (L3 B9)

where f.' is the homomorphism induced by the resiriction f|L : (L;a®)—>
(L'; 59,

Proposition 2. Let f: (K,L;a®—>K', L';b and g :(K', L'; b°—>
(K'', L';c" be the c.s.s.maps of Kan—pairs. Then, we have (gof),=gy of s

Proposition 3. Let 1 : (K,L;a%—— (K, L; a2 be the identity map. Then
1,=1

Definition 4. Let i : (L;a%)—>(K;a% and j : (K, a% a®»—>K, L; 2% be the
inclusion maps. Then, the following sequence is called the homotopy sequence
of the Kan-pair (X, L;a"%:

0 Ty Js

''''' 7K, L; @) —>a,(L; a7, (K &) —>

a
(K, L; %) —>m,o(L; a%—>--+---
a .
oK, L a%)—>mi(L; ao)-i*—ml(K ; a0

Proposition 4. The howotopy sequence of the Kan—pair is exact.
Proposition 5. Let K be the c.s.s.complex which has only one non-dege-
nerate simplex a®. Then, =, (K;a%=c for all n=0.
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