# ON THE CORRESPONDENCE OF GROUP EXTENSIONS WITH THE SECOND COHOMOLOGY CLASSES

#### Akira NISHIKAWA

## § 1 Introduction

Let G and C be multiplicative groups, and in addition, C be abelian and a left G-group, which means that there exists a function  $G \times C \longrightarrow C$  written  $(g, c) \longrightarrow c^g$  such that  $(cd)^g = c^g d^g$ ,  $(c^g)^h = c^{hg}$ ,  $c^1 = c$   $(c, d \in C, g, h \in G)$ .

For any group extension of C by G,  $i. e., \mathcal{E}: 1 \longrightarrow C \xrightarrow{\alpha} W \xrightarrow{\beta} G \longrightarrow 1$ , there exists a section  $\pi: G \longrightarrow W$   $(g \longrightarrow \pi_g)$  of W, i. e., a map  $\pi$  such that  $\beta(\pi_g) = g$ .

With this section, an operation of G on C is associated by  $c \longrightarrow \alpha^{-1} (\pi_{\mathcal{G}} \alpha(c) \pi_{\mathcal{G}}^{-1})$  being independent to the choice of  $\pi$ . We are interested in the extensions which endow C with the prescribed G-group structure.

Now for  $\mathscr E$  above, we have a 2-cocycle  $f: G \times G \longrightarrow C$  determined by  $\pi_g \pi_h = \alpha$   $(f(g,h))\pi_{gh}$   $(g,h\epsilon G)$ .

As is well-known, the 2-cocycle which is obtained with any other section of W is cohomologous to f. Moreover, for any equivalent two extensions, we can see that, by means of the compatible section, there corresponds the same 2-cocycle. In addition, any two equivalent extensions endow C with the same G-group structure.

Now we have explained that there is a mapping  $\Phi$  of  $\Sigma(G,C)$  onto  $H^2(G,C)$ , the former is the set of all equivalence classes of group extensions of C by G that endow C with the prescribed G-group structure, the latter is the second cohomology group of G with the coefficient group C.

Conversely, let  $f: G \times G \longrightarrow C$  be a 2-cocycle which represents a given cohomology class in  $H^2(G,C)$ . Then, we obtain a group  $W = \{(c,g) | c \in C, g \in G\}$  with the multiplication  $(c,g)(d,h) = (cd^g f(g,h),gh)$   $(c,d \in C,g,h \in G)$ , and a group extension  $1 \longrightarrow C \xrightarrow{\alpha} W \xrightarrow{\beta} G \longrightarrow 1$ , where  $\alpha(c) = (c,1)$  and  $\beta(c,g) = g$ , such that the induced G-group structure of C is identical with the prescribed one. Besides, it is a matter of common knowledge that the group extensions which correspond to cohomologous cocycles are equivalent to each other. Now we have explained that there is a mapping  $\Psi$  of  $H^2(G,C)$  into  $\Sigma(G,C)$ .

The fact that there exists a 1-1 correspondence between  $\Sigma(G,C)$  and  $H^{2}(G,C)$  is proved in [1] $\sim$ [5], and in [3] $\sim$ [5], the proofs of this fact are given by verifying that  $\Phi$  and  $\Psi$  are mutually inverses.  $\Sigma(G,C)$  has a group structure with the *Baer sum*, and it seems that there are no papers which explicitly point out that

 $\Phi$  is a group isomorphism, a fortiori, a natural equivalence of bifunctors with the variables C and G. In this note, we shall give an explicit proof of this fact, i. e.,

**Theorem.** Let C be an abelian group, G an arbitrary group, and suppose that C has a left G-group structure. Then the 1-1 correspondence  $\Sigma(G,C) \leftrightarrow H^2(G,C)$ , which is described in [1] $\sim$ [5], is a natural equivalence of bifunctors covariant in the variable C and contravariant in the variable G.

## § 2 Isomorphism

For two group extensions  $\mathscr{E}_1: 1 \longrightarrow C \stackrel{\alpha_1}{\longrightarrow} W_1 \stackrel{\beta_1}{\longrightarrow} G \longrightarrow 1$  and  $\mathscr{E}_2: 1 \longrightarrow C \stackrel{\alpha_2}{\longrightarrow} W_2 \stackrel{\beta_2}{\longrightarrow} G \longrightarrow 1$ , the *Baer sum*  $\mathscr{E}_1 + \mathscr{E}_2$  is obtained as the lowest row of the following commutative diagram of row exact:

where  $V = \{(w_1, w_2, g) \in W_1 \times W_2 \times G \mid \beta_I(w_1) = \beta_2(w_2) = g\}$ ,  $\Delta(g) = (g, g)$ ,  $\sigma(c_I, c_2) = (\alpha_I(c_I), \alpha_2(c_2), 1)$ ,  $\tau(w_I, w_2, g) = g(=\beta_I(w_I) = \beta_2(w_2))$ ,  $\nabla(c_I, c_2) = c_I c_2$ ,  $W = (C \times V)/N$ ,  $N = \{\nabla(c_I, c_2)^{-I}, \sigma(c_I, c_2) \mid c_I, c_2 \in C\} = \{(c_I^{-I}c_2^{-I}, (\alpha_I(c_I), \alpha_2(c_2), 1) \mid c_I, c_2 \in C\}$ ,  $\alpha(c) = (c, 1)N$ ,  $\beta((c, x)N) = \tau(x)$ ,  $\xi(w_I, w_2, g) = (w_I, w_2)$ , and  $\eta(x) = (1, x)N$ .

Let  $\pi_i: G \longrightarrow W_i$  be sections of  $W_i$ , and be written  $\pi_i(g) = \pi_{ig}(i=1,2)$ . Then, the 2-cocycles  $f_i: G \times G \longrightarrow C$ , which are determined by the following equalities, represent the cohomology casses  $\Phi((E_i))$ :

$$\pi_{ig} \pi_{ih} = \alpha_i (f_i(g,h)) \pi_{igh}(g,h\epsilon G, i=1,2).$$

Now we can naturally construct sections  $\pi'$ ,  $\pi''$ , and  $\pi$  of  $W_1 \times W_2$ , V, and W, respectively, where the diagram

$$\begin{array}{cccc} W_1 \times W_2 & \stackrel{\pi'}{\longleftarrow} G \times G \\ \uparrow \xi & \stackrel{\pi''}{\longleftarrow} & \uparrow \Delta \\ V & \stackrel{\pi}{\longleftarrow} & G \\ \downarrow \eta & & \parallel \\ W & \stackrel{\pi}{\longleftarrow} & G \end{array}$$

is commutative. Actually,  $\pi'g = \pi_{1g} \times \pi_{2g}$ ,  $\pi''g = (\pi_{1g}, \pi_{2g}, g)$ , and  $\pi_g = (1, (\pi_{1g}, \pi_{2g}, g))N$ 

 $(g \in G)$ .

Then, the mapping  $f: G \times G \longrightarrow C$ , which is determined by the equality  $\pi_g \pi_h = \alpha(f(g,h)) \pi_{gh}(g,h\epsilon G)$ , represents the cohomology class  $\Phi((\mathscr{E}_1) + (\mathscr{E}_2))$ . So we have  $(1,(\pi_{1g},\pi_{2g},g))(1,(\pi_{1g},\pi_{2g},h))N = \alpha(f(g,h))(1,(\pi_{1gh},\pi_{2gh},gh))N$ , hence  $f(g,h) = f_1(g,h)$   $f_2(g,h) = (f_1,f_2)(g,h)$   $(g,h\epsilon G)$ .

Therefore  $\Phi((\mathscr{E}_1)+(\mathscr{E}_2))=\Phi((\mathscr{E}_1))\Phi((\mathscr{E}_2))$ , proving that  $\Phi$  is a group isomorphism.

### § 3 Natural equivalence

Let  $\mathscr{C}: 1 \longrightarrow C \xrightarrow{\alpha} W \xrightarrow{\beta} G \longrightarrow 1$  be any group extension such that the induced G-group structure of C is the same as the prescribed one.

For any homomorphism  $\kappa: C \longrightarrow C'$  of abelian groups,  $\Sigma(1_G, \kappa)(\mathscr{E})$  is the lower row of the following commutative diagram:

$$1 \longrightarrow C \xrightarrow{\alpha} W \xrightarrow{\beta} G \longrightarrow 1$$

$$\downarrow \kappa \qquad \downarrow \xi \qquad \parallel$$

$$1 \longrightarrow C' \longrightarrow U \longrightarrow G \longrightarrow 1$$

where  $U=(C'\times W)/N$ ,  $N=\{(\kappa(c)^{-l}, \alpha(c))|c\epsilon C\}$ ,  $\xi(w)=(1,w)N$ ,  $\alpha'(c')=(c',1)N$ , and  $\beta'((c',w)N)=\beta(w)$ . For any section  $\pi$  of W, the section  $\pi'$  of U which is naturally obtained as in §2 turned out to be  $\xi\circ\pi$ . The 2-cocycles  $f:G\times G\longrightarrow C$  and  $f':G\times G\longrightarrow C'$  determined by the equalities  $\pi_g\pi_h=\alpha(f(g,h))$   $\pi_{gh}$  and  $\pi'g\pi'_h=\alpha'(f'(g,h))$   $\pi_{gh}(g,h\epsilon G)$  represent the cohomology classes  $\Phi((\mathscr{E}))$  and  $\Phi(\Sigma(1_G,\kappa)\mathscr{E})$ , respectively. Now with those equalities just above and  $\pi'=\xi\circ\pi$ , we obtain  $f'=\kappa\circ f$ , i. e., the commutative diagram

$$\begin{array}{ccc} \Sigma(G,\!C) \stackrel{\displaystyle \varPhi_{G,\,C}}{\longrightarrow} H^2(G,\!C) \\ \downarrow \Sigma(1_G,\,\kappa) & \downarrow H^2(1_G,\,\kappa) \\ & \stackrel{\displaystyle \varPhi_{G,\,C'}}{\longrightarrow} H^2(G,\!C'), \end{array}$$

proving the natural equivalence of  $\Phi$  in the variable C.

For any group homomorphism  $\nu: G, \longrightarrow G$ ,  $\Sigma(\nu, 1_C)(\mathscr{E})$  is the lower row of the following commutative diagram:

$$1 \longrightarrow C \xrightarrow{\alpha} W \xrightarrow{\beta} G \longrightarrow 1$$

$$\parallel \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow C \longrightarrow V \longrightarrow G' \longrightarrow 1,$$

where  $V = \{(w, g') \in W \times G' | \beta(w) = \nu(g')\}, \ \eta(w, g') = w, \ \alpha''(c) = (c, o), \ \text{and} \ \beta'(w, g') = g'.$ 

For any section  $\pi$  of W, we can naturally construct the section  $\pi''$  of V as in §2, satisfying  $\pi \circ \nu = \eta \circ \pi''$ . The 2-cocycle  $f'': G' \times G' \longrightarrow C$  determined by the equality  $\pi_g''\pi_h'' = (\alpha''(g,h))\pi''g_h$  represents the cohomology class  $\Phi(\Sigma(\nu,1_c)(\mathscr{E}))$ . With this equality,  $\pi_g\pi_h = \alpha(f(g,h))\pi_{gh}$ , and  $\pi \circ \nu = \eta \circ \pi''$ , we obtain  $f \circ (\nu \times \nu) = f''$ , i. e., the commutative diagram:

$$\Sigma(C,G) \stackrel{\Phi_{G,C}}{\longrightarrow} H^2(G,C)$$

$$\downarrow \Sigma(\nu,1_c) \qquad \downarrow H^2(\nu,1_c)$$

$$\Sigma(G',C) \stackrel{\Phi_{G',C}}{\longrightarrow} H^2(G',C),$$

proving the natural equivalence of  $\Phi$  in the variable G.

#### References

- [1] Cartan, H. & Eilenberg, S.: Homological Algebra; Princeton University Press, Princeton (1965).
- [2] Hattori, A. & Nakayama, T.: Homological Algebra (*Japanese*); Kyoritsu Press, Tokyo (1961).
  - [3] MacLane, S.: Homology; Springer-Verlag (1967).
- [4] NORTHCOTT, D. G.: An Introduction to Homological Algebra; Cambridge University Press, London (1961).
  - [5] Weiss, E.: Cohomology of Groups; Academic Press, New York (1969).