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Abstract

Simple adaptive control (SAC) is a control method that maintains control performance despite perturbations of a
plant. However, there is a problem in that the vibratory output occurs in the transient response when SAC is applied
to a vibration system which includes anti-resonance modes. The occurrence of the output depends on the structure
of SAC and the output is caused by the vibratory input corresponding to the anti-resonance frequency. In order
to overcome the problem, a method using an appropriate parallel feedforward compensator (PFC) is proposed.
In the proposed method, afffective PFC is designed such that the gain of an augmented system is matched to
that of a desired model under the ASPR condition of the augmented system. A design problem is described by
LMI/BMI conditions. The problem using LyBMI conditions is solved by an iterative procedure. However, the
leading coéicient of the PFC must be given a priori in order to guarantee the ASPR property, which provides
some restrictions for applications of the proposed method. In the present paper, an improved method to overcome
the abovementioned restrictions is proposed using the stability theorem of the descriptor systeffiecliheress

of the proposed method is verified through numerical simulations and experiments.

Key words Simple Adaptive Control, Parallel Feedforward Compensator, Frequency Response Fitting, Descriptor
System, LMI, Vibration System

1. Introduction

Adaptive control is a control method that maintains control performance even if the plant properties change. In
particular, simple adaptive control (SAC) includes high robustness and can be designed easily for applications. The
effectiveness of SAC has been demonstrated experimentally in numerous plants (Hino, et al., 1992; Kyoizumi, et al.,
2001, Ohtomo, et al., 1997). However, there is a problem in that the vibratory output occurs in transient responses when
SAC is applied to a vibration system which includes anti-resonance modes (Yamashiro and Chida, 2012). The occurrence
of the output depends on the structure of SAC, and the output is generated by the vibratory input corresponding to the anti-
resonance frequency. In order to overcome the problem, a method using an appropriate parallel feedforward compensator
(PFC) has been proposed (Yamashiro and Chida, 2012), in which a solution of the problem is to increase the gain of
the PFC in the anti-resonance frequency band of the plant such that an augmented system consisting of the plant and
PFC does not include the anti-resonance frequency. In such a case, the PFC must be designed so as to guarantee the
gain property, as well as several conditions for SAC design, such as the almost strictly positive real (ASPR) conditions.
One PFC design method for such a scenario for a continuous-time LTI SISO system was proposed by Tanemura, et al.
(2013). In their method, the PFC is designed such that the gain of the augmented system is matched to that of a desired
model. The matching condition is described using IBMI conditions, and a desirable PFC is obtained by solving an
optimization problem described by LKBMI conditions. The restrictions for the ASPR property are described as the
LMI/BMI conditions and are included in the problem. In the restrictions, the minimum phase property of the augmented
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system is described by the Lyapunov inequality by Tanemura, et al. (2013). In such a case, the leéiitientoé the
numerator of the PFC is assumed to be given a priori. However, iffisult to obtain the leading céiécient in advance

in some cases. The present paper introduces descriptor systems in order to overcome the restrictions. The description of
a descriptor system possesses redundancy compared with the state space representation. Then, the stability theorem of
a descriptor system proposed by Uezato and lkeda (1998) is used in order to guarantee the minimum phase property of
the augmented system. The proposed method requires no a priori information onftimeriie of the PFC, which are
determined automatically in the proposed method because of redundancy of a descriptor system. On the other hand, a
useful design method has been proposed by Mizumoto, et al. (2010). The method employs the desired model minus the
plant as the PFC. The method can easily design the PFC without optimized calculation. However, if the order of the plant
or the desired model is high, the order of the PFC increases because it depends on the order of the plant and the desired
model. In contrast, the proposed method can design a low order PFC compared with the method proposed by Mizumoto,
et al. (2010). The féectiveness of the proposed method is verified through not only simulations but also experiments
using a mechanical vibration system. In addition, the robustness of the proposed design method is discussed in the present
paper.

2. Problem statement
2.1. Plant
The present paper investigates the following continuous-time LTI SISO plant:

Xp(t) = ApXp(t) + bpup(t)
G.(g)] %P pXp pUp
ol ){yp(t) = Gpxplt)
Ap e R»™ b, e R ¢, e R™M™

)

whereR™™ denotes am-by-mreal matrix set. The plant is assumed to Bg,(b,)-controllable and ¢, Ap)-observable.
The nominal parameters Gf,(s) are assumed to be known.

2.2. Design of the SAC
An np-th order SISO reference model, which is a design parameter, is described as follows:

Xm(t) = AmXm(t) + bmum(t)
Gn(s
ml ){ym(t) = Co()
Ap e R poe R ¢ e RXMm

)

whereAn, is a stable matrix. The control objective is for the output of the plant to follow that of the reference model. The
following are the assumptions regarding the plant and the reference model used to design the SAC.
Assumptions (Mizumoto and Iwai, 2001)

1) The plant has ASPR characteristics.
2) The plant and the reference model have command generator tracker (CGT) solutions.
3) un(t) is differentiable.

The ASPR property is defined as follows.

Definition (Mizumoto and Iwai, 2001)

Gp(s) has ASPR property when a static output feedback that a closed-loop system with the static output feedback becomes
strictly positive real exists.

Suficient conditions of the ASPR property are described at the section of 3.2. A lot of plants hardly have the ASPR
property of Assumption 1). A PFC is generally introduced in order to satisfy Assumption 1). The PFC is designed to
ensure that the augmented system

Ga(s) := Gp(9) + G1(9) 3

has ASPR characteristics. Whe@,(s) is the transfer function of the PFC. SinGg(s) is ASPR, SAC can be applied to
Ga(9). The control objective is to satisfy the following equation under the above assumptions:

lim e(t) = 0, &x(t) = ya®) - yn(t) (4)
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Fig. 1 This block diagram expresses the SAC system with the B(), G+(s), andG(s) are the plant, PFC,
and the reference model, respectivek(t) and k«(t) are adaptive feedforward gains, akdt) is an
adaptive feedback gain.

Where,y,(t) is the output of5,(9).
A block diagram of the SAC system is shown in Fig. 1. The SAC is described by the following equations:
Up(t) = k(O (1) ®)
2t) = [ Xm® Un(®]'
k) = [ke® k®T k()]

k(t) = kp(t) + ki (t) (6)
kp(t) = —I'pz(t)ea(t) (7)
ki(t) = -I Z(t)ea(t) — o (t)ki (1) ®)
o(t) = %0’1 + 02 9)

Ip =TL>0 I =I]>0, 01>0, 0,>0

wherek,(t) and ky(t) are adaptive feedforward gains, akdt) is an adaptive feedback gain. The Pl-type adaptive law
using theo-modification method is used as the adaptive adjusting law. H&rendI') are adaptive adjusting gain
matrixes.Kk; (t) stabilizes the SAC control systerkp(t) plays a role in suppressing vibration of convergence of adaptive
gains. The initial value ok (t) is a design parameter.

2.3. Vibratory input problem

The vibratory input problem is described in (Yamashiro and Chida, 2012) and (Tanemura, et al., 2015). An example
of vibratory inputs is shown in Fig. 2 (Tanemura, et al., 2015). The two responses in Fig. 2 correspond to tfteteam di
PFCs,G+1(s) andGi2(s), which are indicated in Fig. 3. As shown in Fig. 3, the gain3ag(s) is larger than that of
G1(s). The augmented systerB,1(S), for G¢1(9) includes the anti-resonance, whereas the augmented syGie(s),
for G¢2(s), does not include the anti-resonance. The anti-resonar@g (d) causes the vibratory input in Fig. 2, and the
input produces undesirable vibratory output. One method by which to avoid injecting the vibratory input is to specify the
PFC for which the gain at the anti-resonance frequencyfiscgntly high, e.g.G2(9).

2.4. PFC design problem

The design problem considered in the present paper is such that the PFC inclfiidésntly large gain in the
specified frequency band am(s), which is an augmented system derived by the PFC, satisfies the ASPR conditions.
Furthermore, the PFC is expected to be stable. The problem considered in the present paper is to design a PFC described

by

N(S) . bpS"+ bygS™+ - + by
Cdi(9 T S+ansli4--tay
The design parameters are the degre&dfs), n, m, and the cofficientsa; andb;. Both n andm are assumed to be
specified in advance, argl andb; are assumed to be determined using the proposed method. TheGyé)f.and the
augmented systera(s) := Gp(s) + G¢(s), are assumed to be given as follows:

(10)

Np(s) . Dpy, ST +bp, ST+ + by,

'_ ) 11
dp(S) S+ apnp_1§p_l + -+ Ay ( )

Gp(s) =
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Fig. 2 Time history ofup(t) for Gr1(s) andGrz(s) are Fig. 3 Bode plots 0fG41(S), Gaz2(S), Gr1(S), andGgz(s) are
expressed. Vibration afi(t) for Gr(s) can be expressed. The broken, solid, dotted, and chained lines
suppressed compared wiB},(s) because the areGa(9), Gaz2(9), Gr1(s), andGgz(s), respectively.

augmented systera,(s), for Gi,(s) does not
include the anti-resonance.

Gl = Na() . de(INp(9) + dp(Ini(s)  bay, S™ + ba S+ + by,

RN I N T N R (9 12)

3. Conventional method and associated problem
3.1. Outline

A design method of the PFC which avoids the vibratory input problem has been proposed by Tanemura, et al. (2013).
The procedure of the method consists of the following two steps.
Stepl A desired model,(s), is specified G;(s) has stficiently high gain in the anti-resonance frequency band of
the plantGp(s).
Step2  The PFCG¢(9), is designed such that the frequency respongg;,(f) matchess, (s) as closely as possible.

In Step 2,G¢(9) is obtained by solving an optimization problem using I/BMI conditions. The ASPR condition
of G,(s) and the stability condition oB¢(s) are assessed using some constraints of the problem. The problem is solved
using an iterative procedure. In one of the constraints for the ASPR conditiéhg ®f a priori information is required,
such that the cd@cient of the highest order of the numerator polynomial is known. However, this condition is strict in
some cases and must be relaxed.

3.2. Conditions of the ASPR property ofG,(s)

The suficient condition of the ASPR property 6f;(s) is described as follows (Mizumoto and Iwai, 2001):

I) Relative degree 0B(s)is0or 1, i+ ny) —my =0or 1.

I1) Ga(s) is @ minimum phase system.

[I1) The leading coéicient ofG4(s), by, , is positive.
Condition 1) is satisfied when the relative degree of the PFC is 1 and corresponds to Eq. (1@)-witk 1. Condition
) is satisfied if and only if the polynomial of the numerator@{(s),

Na(s) = ds (S)Np(s) + dp(s)ns(s) = bawasma +eeet baé + -+ by, (13)

is stable. Allbg, - - -, b, - - -, ba,, iN EQ. (13) consist of parametegs,andb;, which are design parameters in Eg. (10) and
are described adfe forg andb;. The stability condition oh,(s) can be described using the controllability canonical
form. If b, # O, the controllability canonical form of a transfer function for which the denominainy(8 is given by

Xa(t) = AaXa(t) + baua(t), (14)
[ 0 1 o - 0 | 0
0 0 1 --- 0 0
A= : : ,ba=] ¢ . (15)
0 0 e 1 0
bay Day bamafl 1
B The T T .
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The system of Eq. (14) is stable if and only if there exists a m&@giwhich satisfies
PaAq+ AP, <0, P;> 0. (16)

By finding P, and A, in Eq. (16) at the same time, condition Il) is guaranteed. In this case, Eq. (16) is not an LMI
condition but rather a BMI condition foh; and P,. If A, is a known constant matrix, Eq. (16) can be solved as LMI for
P,. On the other hand, iP, is a known constant matrix, Eq. (16) can be solved as a LMWgr Thus, the above two
procedures are executed iteratively to solve the BMI problem as LMIs. However, there is anfitbeltydin solving the
problem such that Eq. (15) is noffime for a design parameter ofld,  in A,. In order to modifyA, to be dfine, it is
assumed that,,_ is given a priori and a specified fixed constant is usedfor. Here,b, consists oby_3, as follows:

by +bna (vp=1)
b, = ) Demy ¥ D1 (p 17
& {bn_l (0p=2). 4

wherey, = n, — my is the relative degree dBp(s). bpmp is a parameter 06G,(s) and is given. Howeverp,_; is

a design parameter and so must be given a priori. Then, paranbgtewsith the exception ob, , are dfine for
ao,...»a-1,00,...,bn2. Note that, in the conventional methdal, must be specified in advance. However, since a
suitable value of the leading ceient,b,_1, cannot be given in realistic situatiors, must be determined in an appro-
priate manner. Therefore, a modified method by which to overcome this requirement is proposed in the following section.
Moreover,b,, . is specified to be positive in order to satisfy condition Iil).

3.3. Condition for frequency matching of G,(s) to G,(S)

The desired model, described@gs), which does not include the anti-resonance, is specified for fitting the frequency
responses db,(S) andG,(s). By describing the matching condition using LMI, the PFC design problem becomes a convex
optimization problem. In this cas&;(s) must be designed such that the anti-resonance is not included and the ASPR
property is maintained. An error transfer function (Chida and Nishimura, 2008) is described as follows:

E(w) := M(w)G (jw) - M(w) (Gp(jw) + Gt (jw)) (18)

whereM(w) is a frequency-dependent weighting function, &yds) andG+(s) are defined in Eq. (11) and (10). Equation
(18) shows the matching error betwedx( jw) andG; (jw), respectively. Equation (18) is, however, nfitree with respect
to parameters;, bj. Thus,M(w) is specified such tha#l(w) = d;(jw)/d(jw). Here,d(jw) is a known polynomial of the
n-th degree. Substitutinyl(w) = df(jw)/d(jw) into Eq. (18) yields

di(jw) ni(jw)

E(w) = (Gi(jw) - Gp(jw)) Wio) ~ o)
ag bo
Gi(jo) - Gy(j) il B P
riw) - Jw ; foan-1 (i, \n ; SoNN-2 (i, \n—
=g |tie o Gt Gor]l - gesltie o G e
an-1 bn-2
1 bn-1
= [Df(w) + B (w)a + Df(w)b] + j[Oh(w) + Ph(w)a+ B} (w)b]
= E'(w) + JE'(w), (19)

a:=[ag,...,an1]", b:=[bg,...,bn2]"

where®], and ®f are independent terms afand b, ®, and®,, are terms of the cdicients ofa, and®] and®| are
terms of the cofficients ofb. Assuming thak™ := [a', b"], which is a design vector, thefime equation fox is derived
as follows:
E'(w) | _ | D) |, | Pa(w) Pp(w)
. = h =+ ; ; X
Elw)] [Pplw)] |Palw) @y(w)
= B(w) + a(w)X. (20)

Equation (20) is intractable because Eq. (20) is a continuous functian. fdherefore, errors in the discrete frequency
datawyg, which are sampled at N-points, are considered. Taking the discrete frequenayi damaplifies the problem.
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The following error objective functiod:
E"(wi)
= E'(wk)
= X"H'HXx +29"Hx +¢'g (21)

109:= 3 [E@) El@n)]

is introduced usingy, where

a(w1) Blw1)
H:= : , g = : . (22)
a(wn) Blwn)
WhenH has full rank,H™H is a non-singular matrix. Thus, < y is represented by the LMI condition:
_ T T THT
y-2g Hx-gg xH|_ (23)

Hx |

by settingy and using the Schur complement. The minimization problethisfequivalent to &-minimization problem.
The LMI condition of Eq. (23) is easy to solve as a convex problem.

3.4. Procedure of PFC design in the conventional method
The PFC design procedure is shown as follows. At Step 0, parameters and initial values used in iteration are specified.
At Step 1, constants used after Step 1 are calculated by using parameters and initial values specified at Step 0. At Step 2,
a matrix, P,, of the Lyapunov inequality is derived in order to guarantee the minimum phase property of the augmented
system. At Step 3, a matriXps, of the Lyapunov inequality is derived in order to guarantee the stability of the PFC.
At Step 4, cofiicients of the PFC are derived by minimizing the objective function under the Lyapunov inequality to
guarantee the minimum phase property of the augmented system, and the Lyapunov inequality to guarantee the stability
of the PFC. At Step 5, Steps 2 through 4 are repeated until the objective function becomes small.
Step 0 The following initial parameters are specified:
(Oa) The desired modeg; (s), is specified G, (s) provides sticiently high gain in the anti-resonance frequency band of
the plantGy(s), and has the ASPR property.
(Ob) The degree dB¢(9), n, is specified. Heranis set to ben — 1.
(Oc) An initial PFC,G+o(5) = nso(9)/dso(9), is specified G¢o(s) must be a stable system and provide the ASPR property
of Gao(S) = Gp(S) + Gro(s) (Remark 1) G¢o(9) is used as an initial PFC for the iteration.
(0d) The denominator polynomial(s), of the weighting functiorM(s) is specified.
(Oe) The reference frequency datg, k = 1,-- -, N, are specified.
Stepl  (1a) Usingb, 1 of no(s), by, Of Eq. (17) is derived and is used as a constant for the following iteration.
(1b) Usingwy, H andg of Eq. (22) are derived.
Step2  Usingnso(s) andd¢o(s), na(s) of Eq. (13) is derived and the matrik, of Eq. (15) is derived. Then, by solving
the e;-minimization problem
EmiFrJ €a St PaAa+ AlPa <0, Py>0, Py—el <0, (24)

P, € R js obtained.
Step 3 The stability ofG¢(s) is guaranteed by a similar procedure for the minimum phase condition. dsj(s),

the matrixAgs,
0 1 0 -- 0
0 0 1 0
Af=| Do s (25)
0 0 1
—ay —ay - - —ani

is derived. By solving the;-minimization problem

min e st PrAf+ AlP; <0, P;>0, P;—el <0, (26)
€f, Py

P: € R™" is obtained.
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Step4  Using P, andP; obtained in Steps 2 and 3, theminimization problem
v - ZgTHX _ng XTHT

yTA Y ST Hx >0 27)
PaAa+ AP, <0 (28)
PrAf + ATP; <0 (29)

is solved forA,; and A¢, where A; and A; are variables consisting of and their structures are Eq. (15) and Eq. (25),
respectively. HereG¢(s), which consists of the obtained solution,is a stable system and gives the ASPR property of
Ga(9).

Step5  Steps 2 through 4 are repeated uptbecomes diiciently small. HereG:(s) = n¢(s)/d:(s) used in Steps 2

and 3 is an updated solution obtained in Step 4.

Remark 1: Increasing the gain of the PFC simplifies the design of the PFC which provides the ASPR prapgdy of
Remark 2: At Step 4A, and A; which minimizey for P, andPs are obtained. When the procedure is executed iteratively

by Step 5, and Eq. (24) and Eq. (26) using thAgand A; are solved in Steps 2 and3pf Eq. (27) is invariant. Thug,

does not deteriorate in Steps 2 and 3. Therefpis guaranteed to decrease monotonically by this procedure.

At (1a) of Step 1, the leading cfiient,b,_;, of the PFC is specified and is treated as a constant at the optimal problem.
However, ifb,_; cannot be specified appropriately, the result of the frequency response fitting deteriorates. In order to
treatb,_; as a design parameter of the optimal problem, a method using a descriptor system is proposed in the following
chapter.

4. Proposed method
4.1. Stability theorem of the descriptor system

A descriptor system is introduced in order to relax the requirementithatis specified in advance. A transfer
function for which the denominator ig,(s) is represented as the descriptor system (Shiotsuki, 2011)

EDXD(t) = ADXD(t) + bDUD(t), (30)
0 1 0 --- 0 0
0 0 1 --- 0 0

P S R S @
Ol><ma 0 ) ) ) .
o 0 - ... 1 0
ba0 ba1 ba% -1

whereAp is dfine for all parameters in Eq. (31). The stability of the descriptor system is defined in the following.
Definition (Uezato and Ikeda, 1998; Katayama, 1999) Itis assumed thdt,  # O. If the real part of all exponential

modes is negative, the system of Eq. (30) is stable. Here, exponential modes are rootsef de4p) = 0.

Whenb,, # 0, Eq. (30) is equivalent to the state equation of Eq. (14), and the exponential modes are equal to the modes of
the state equation (Shiotsuki, 2011). Therefore, the stability of the descriptor system is equivalent to the staki$ity of
Theorem (Uezato and lkeda, 1998) The system of Eq. (30) is stable if and only if there exifiza> 0 € RMa+Dx(Ma+1)

andsp # 0 which satisfy

Ap(PoE} +vpspup) + (EpPp + UpSpu)) Al < 0 (32)

wherevp andup are fn, + 1) x 1 vectors composed of bases of Negland NullET, respectively.
Proof Refer to the Uezato and lkeda (1998).

By using Eq. (32) as a new restriction instead of Eq. (16), the requirement;thatr b,_; is specified in advance is
relaxed, i.e., it is not required to speclfiy_; in advance.

4.2. Procedure of PFC design in the proposed method
Sinceb,,, or b,_; becomes a design parameter of the optimal problem, the proposed method eliminates procedure
(1a) of Step 1 and sefs= [ay, ..., an1, b0, ..., bn1]. Then, the objective function, Eq. (21), is modified as follows:

r i E"(wk)
2 [ E'(wk) E (wk)] [ Ei(w0) ],

TATAR + 25 HX + 34, (33)

N

I(R)

I
Xt
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whereH andg are codficient matrices corresponding o Furthermore, the stability condition of the descriptor is newly
used. The proposed PFC design replaces Steps 1, 2, and 4 in the conventional procedure in Section 3.4 with the following
Steps 1, 2, and 4, respectively.
Stepl’ (1b') Usingwy, H andg of Eq. (33) are derived.
Step 2’ Using n¢o(s) anddso(s), na(s) of Eq. (13) is derived and the matri&p of Eq. (31) is derived. Then, the
ep-minimization problem

Ed’rgrip% ep S.t. Ap(PoEL +vpspup) + (EpPp + UpSovh)AL <0, Pp >0, Pp—epl <0 (34)

is solved instead of Eq. (24), amp € RM+Dx(M+1) gndsy € Rare obtained.
Step4’ Using Pp, sp and P obtained in Steps’aand 3, they-minimization problem

y-25TA%-§"5 XTAT

y. %, Arll]iEf, Barg v st H X I >0 (35)
AD(PD EB + UDSDUE) + (ED PD + UDSDUE)AE <0 (36)
PiAf + ATP; <0 (37)
Ba,, >0 (38)

is solved, wheréAp, A¢, andb,, are variables which consist &f and their structures are Eq. (31), Eq. (25), and Eq. (17),
respectively. Eq. (38) is newly added in order to guarantee condition IlI).

5. Experiments verification
5.1. Experimental system

The experimental system is a mechanical vibration system shown in Figs. 4 and 5. The system consists of a paddle,
a 03 kg mass attached Btmm, a motor, and a rotary encoder. The approximated model of the system is shown in Fig. 6.
The equation of motion is described as follows:

Jlél + K8, — Kb, + (D1 + Dz)él - Dzéz =u, (39)
Jzéz + K92 - K91 + Dgéz - D2«.91 =0 (40)

whered;(t) andé,(t) are the rotation angles of the rotary shaft and the weight, respectiyalythe moment of inertia

of the rotary shaft, and, is the moment of inertia of the weight and the paddes the equivalent spring constant of

the vibration mode, an®; and D, are the viscosity cdicients of the motor shaft and the paddle, respectively. The
control input, u(t), is applied by the motor attached to the lower part of the rotary shaft. The control o@ifiut,s

measured by the rotary encoder. Plants are denot®d(as P,(s), andP3(s) when the attached locations of the weight

arel,, L,, andLg, respectively. HereinafteP,(s) is regarded as the nominal plant. Moreowi(s) andP;(s) are used as
perturbed systems to verify the robustness of the SAC designed using the proposed method. The parameters of the plant
and variables are shown in Table 1, and the valuds afe shown in Table 2. The frequency responseB;($), P,(s),

andP3(s) are shown in Fig. 7.

5.2. PD controller
The plants are not stable because each plant includes an integrator. Therefore, the minor PD controller, as shown

in Fig. 8, is applied to the plants, which are stabilized by the PD control, weisethe proportional gain ank} is the
derivative gain, which are specified lgs= 3.5 andky = 1, respectively. Figure 9 shows the frequency respon&s,i¢$)
(i = 1,2,3), whereG;(s) is the plant with the minor PD control fd?;(s). The closed-loop system fd#(s) = P(s),
Gp2(9), is obtained as follows:
GoalS) = 81.02(s* + 0.000925% + 137.9)

P2 T (2 + 17.38s + 4166)(S + 6.9265+ 26.81)'

Gp2(s) is not ASPR because the relative degree is 2. In addi@p(s) includes the anti-resonance mode. The PFC is
designed for the nominal pla@t,;(s). Gp1(s) andGps(s) are obtained as follows:

(41)

81.02(* + 0.0119% + 57.12)
G = 42
p(9) (2 + 2041s + 2623)(s? + 3.9285 + 17.64)’ (42)
8102(% + 0.00144Kk + 2454
Gua(9) = ( ) (43)

(s% + 14.24s + 5405)(s? + 10.07s + 36.79)
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Fig. 4 Experimental system
motor rotates the paddle equipped
the mass attached Btmm.

Table 1 Parameters of the plant

Vol.X, No.X, XXXX

b, K, D,

Fig. 5 Model of the plant is expressed. TheFig. 6 Approximated model of the plant is

expressedJ; andJ, are the moment

of inertia of the rotary shaft and the
weight, respectivelyK is the spring
constant, and equivaleB; andD;

are the viscosity cdBcients of the

motor shaft and the paddle, respectively.

Table 2 Perturbed value df

Plant | L [mm]
P1 435
P, 290
Ps 145

Moment of inertia of the rotary shaft Ji 0.0422 [kgm?
Moment of inertia of the weight and the paddle J, 0.1081 [kgm?
Equivalent spring constant of the vibration modeK 14.9[Nmyrad]
Viscosity codficient of the motor shaft D1 0.05 [Nmgrad]
Viscosity codficient of the paddle D, | 0.0001 [Nmgrad]
Control input (Torque) u -[Nm]
Rotation angle of the rotary shaft 01 -[rad]
Rotation angle of the weight 02 -[rad]

@ 50

S,

(TR

e

2 50

oy

0_109

=

-15§ . .

B 0

(9] i 1

S, i 1

() i i

] i i

© H 1

< ! Y

o i \

18100 ? 10" 10° 10'
Frequency[Hz]

Fig. 7 Bode plots oP4(s), P2(s), andP3(s) are expressed. The chained, solid, and broken lineB&gp, P»(s),

andP;(s), respectively.
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Fig. 8 Modified plant with minor feedback is expresség. Fig. 9 Bode plots 0fGp(s), Gpz(s), andGps(s) are expressed. The chained,

is the proportional gain ankj, is the derivative gain.

5.3. PFC design

solid, and broken lines a@y1(s), Gp2(s), andGps(s), respectively.

5.3.1. Design using the proposed method (Step 0): (0a) The desired model is specified as follows:

6.371s* + 4163s+ 1006

G (9) = .
() S + 24122 + 2119s + 8384

(44)
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Figure 10 shows the frequency respons&dg). The dotted and solid lines indicaBg»(s) andG; (s), respectivelyG; (s)
has large gain at the anti-resonance frequendg®(s). (Ob) We specifyn = 3. (Oc) The initial value of the PFC is
specified as follows:

No(S)  bn1(s? + 2- 20rs + (200)?)

G109 = Go(9 ~ (s+ 100 + 2-40rs+ (400’

bn1 = 20. (45)

(0d) The denominator polynomial &fi(s) is specified asl(s) = d;o(S). (Oe) Reference frequency data,, are specified
as the following nine pointsuy = 27 fy, f € {(f | 1x 104, 1x 1073, 1x1072, 05, 1, 2, 1x 107, 1x 10 1x10% [Hz].
(Step 1): (1b) Usingwy, H andg of Eq. (33) fork are derived. Steps #hrough 4 are iterated 1,000 times. The PFC by
the proposed method is obtained as follows:

6.380s” + 3591s + 247.1
3 +2255¢% + 1659s + 7701

Figure 10 shows the frequency respons&gfs) using the PFC of Eq. (46). The broken line indicaB$s). According

to Fig. 10, the frequency response@f(s) is well matched to that dB,(s). The convergence trajectory fis shown in

Fig. 11.v is reduced by the iteration.

5.3.2. Comparison with the conventional method In this section, the performances of the proposed and conven-
tional method are compared. In the conventional method (Tanemura, et al., 2013), the leaffiogebefG(S), b, ,

must be given in advance in order to modify Eq. (15) to Eeea. In other wordsb,_1 must be specified in advance
becausé,, is given by Eq. (17)b,_1 is determined such that,  is equal toG,(s). As such, condition Ill) of the ASPR
condition is satisfied. In addition, the frequency respong&,($) can fit that ofG, (s) in the high-frequency band because
the band depends on the leadingfii@ént. The PFC is designed for the following two cases.

Gi(s) =

(46)

Case 1b, 1 = 6.371 Case2b,_; = 10 (47)

An initial value of the PFC is Eq. (45) with specifiég_; in Eq. (47). Steps 2 through 4 are iterated 10 times. PFC is
obtained as follows:

6.371s% + 31575+ 1019 Case2G:(s) = 10s% + 2110s+ 5411
3+ 1851s? + 1549s + 527.4° Y~ 84127982 + 11385+ 2955

Figure 12 shows the frequency response&g), which are constituted using the PFC of Eq. (48). The solid, broken,

and dotted lines sho,(s), Ga(s) for Case 1, and,(s) for Case 2, respectively. Case 1 achieveigant fitting of

the frequency response, but the fitting for Case 2 isflisant. The convergence trajectoriesyofre shown in Fig. 13.

The broken and dotted lines indicate the results for Cases 1 and 2, respectively. The iteration of times and the fitting
rates (Adachi, 2009) in the proposed method and Cases 1 and 2 are shown Table 3. The proposed method requires many
more iterations than the conventional method. The performance of the proposed method is approximately equal to that
of Case 1 with respect to the fitting rate. In contrast, the fitting rate decreases when the leaffinogrbis specified
inappropriately, as in Case 2. Accordingly, although the proposed method requires numerous iterations, good matching
results are obtained regardless of the initial value setting of the leadifiicgaa,b,_;. In addition, if the PFC is designed

such as5¢(s) = G,(s) — Gp(s) by the method proposed by Mizumoto, et al. (2010), order of the PFC is 7-th, however, the
order of the PFC designed by the proposed method is 3-rd. The proposed method can design the specified low order PFC
compared with the method proposed by Mizumoto, et al. (2010).

Case 1G+(s) =

(48)

5.4. Simulation results

The vibration suppressionffect of the SAC designed using the proposed method is verified through numerical
simulations. The reference input,(t), is assumed to be a square wave for which the amplitude and period are 1 and 50
s, respectively. The following are used as parameters of SAC controllers:

2

— (l)n — .
Gm(S) = £ +2-0.707wnS + Wi’ wn =082 (49)
Ip =diag{10, 1, 1, 01}, I =diag{100 1 1. 1} (50)
ot) = 1 fﬁz‘g(t)al +0p, 01 =1x102%,05=1x107° (51)
WO =[-20 0 o 1] (52)
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Fig. 10 Bode plot ofGz(s), Gr(s) andGa(s) for proposed method Fig. 11 Trajectory ofy is expressedy is reduced by the iteration.
are expressed. The chained, solid, and broken lines are
Gp2(9), Gr(s), andG4(s), respectively. The frequency
response 06,(s) is well matched to that dB; (s).
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Fig. 12 Bode plots ofG;(s), Ga(s) for Case 1, an@,(s) for Case 2 Fig. 13 Trajectories ofy for Cases 1 and 2 are expressed.
are expressed. The solid, broken, and chained lines are v are reduced by the iteration.
Gi(9), Ga(s) for Case 1, an€B,(s) for Case 2, respectively.
Case 1 achieves fiicient fitting of the frequency response,
but the fitting for Case 2 is ingficient.

Table 3 Performance of the Proposed Method and Cases 1 and 2

Proposed method Casel| Case2
Iteration of times 1000 10 10
Fitting rate[%)] 96.0 98.6 | 86.8

An approximate dferentiator is used for the PD controller. Figures 14 and 15 show the controluusnd the control
output, yp(t), at P2(s). The proposed method suppresses the vibration of the input beGa(®edoes not include the
anti-resonance. As a result, the vibration does flechthe output in the proposed method.

5.5. Experimental results

5.5.1. Verification of vibration suppression  The vibration suppressiorffect of the SAC designed using the pro-

posed method is verified experimentally. HeBg,(s) andG;(s) are discretized by the zero-order hold with a sampling
period of 2 ms. The derivative of the PD controller is discretized by the bilinear transformationkAt3of Eq. (6) and

Eq. (8) is integrated using the forward Euler method. The control ingt)t,and the control outpug(t), for P(s) are

shown in Figs. 16 and 17. The proposed method suppresses the vibration of the input similarly to the simulation result.
Consequently, the vibratory output does not occur when using the proposed method.

5.5.2. Verification of the robustness  Figures 18 through 21 shou(t) andy(t) for P1(s) andP3(s). Figures 18 and

19 show the time responses®{(s), and Figs. 20 and 21 show the time response2;6f). In both cases, the proposed
method suppresses the vibration of the input. As a result, the vibratory output does not appear. The proposed method
is robust because the proposed method can suppress the vibration even if the plant is subjected to perturbation. The
experimental results reveal thffectiveness of the proposed method with the PFC design to suppress vibration.
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Fig. 14 Time history ofu(t) at Po(s) in simulation is expressed. Fig. 15 Time response af(t) at P»(s) in simulation is expressed.
The proposed method suppresses the vibratiasgtpf The proposed method suppresses the vibrationp @f.
becaus&,(s) does not include the anti-resonance.
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Fig. 16 Time history ofu(t) at Po(s) in experiment is expressed. Fig. 17 Time response aj(t) at Po(s) in experiment is expressed.

The proposed method suppresses the vibratiasftpf

The proposed method suppresses the vibratiomp @f.
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Fig. 18 Time history ofu(t) at P1(s) in experiment is expressed. Fig. 19 Time response af(t) at P1(s) in experiment is expressed.
The proposed method suppresses the vibratiasgtpf The proposed method suppresses the vibration @f.
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Fig. 20 Time history ofu(t) at P3(s) in experiment is expressed. Fig. 21 Time response af(t) at P3(s) in experiment is expressed.

The proposed method suppresses the vibratiasftpf

The proposed method suppresses the vibratigmp @f.
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6. Conclusion

The present paper proposes a PFC design method based on frequency response fitting for continuous-time SISO
systems. The conditions of frequency response fitting, the ASPR property, and the stability are derivedLA4l BMI
conditions, and the BMLMI problem is solved using an iterative procedure. The present paper introduces the description
of a descriptor system instead of the state space representation. Then, the stability theorem of a descriptor system is used
in order to guarantee the ASPR property. The proposed method can treattadlieneof the PFC as design parameters
of the optimal problem because of redundancy of a descriptor system. An SAC for a mechanical vibration system is
designed using the proposed method. The proposed method provides good frequency response fitting for PFC design.
The experimental results reveal that the SAC designed using the proposed method suppresses the vibratory input and
output, even if the plant is subjected to perturbation.
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