
VOL. E98-A NO. 6
JUNE 2015

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.6 JUNE 2015
1189

PAPER Special Section on Discrete Mathematics and Its Applications

The Huffman Tree Problem with Unit Step Functions∗

Hiroshi FUJIWARA†a), Takuya NAKAMURA††, Nonmembers, and Toshihiro FUJITO††, Member

SUMMARY A binary tree is regarded as a prefix-free binary code, in
which the weighted sum of the lengths of root-leaf paths is equal to the
expected codeword length. Huffman’s algorithm computes an optimal tree
in O(n log n) time, where n is the number of leaves. The problem was
later generalized by allowing each leaf to have its own function of its depth
and setting the sum of the function values as the objective function. The
generalized problem was proved to be NP-hard. In this paper we study the
case where every function is a unit step function, that is, a function that
takes a lower constant value if the depth does not exceed a threshold, and
a higher constant value otherwise. We show that for this case, the problem
can be solved in O(n log n) time, by reducing it to the Coin Collector’s
problem.
key words: combinatorial optimization, polynomial-time algorithm, bi-
nary tree, optimal tree, Huffman coding

1. Introduction

In the Huffman tree problem [1] we are given a sequence of
n weights, and asked to construct a binary tree of minimum
weighted sum of the lengths of root-leaf paths. A solution
stands for a prefix-free binary code of minimum expected
codeword length for a given sequence of probabilities, in
which each root-leaf path represents a codeword.

The generalized Huffman tree problem [2] is an exten-
sion of the Huffman tree problem. In this problem we are
given a sequence of n functions, each of which is associated
with a leaf and maps the depth of the leaf to a cost value.
The goal is to construct a binary tree of minimum sum of
the function values.

A typical application of the generalized Huffman tree
problem can be found in the structural design of a website.
Suppose that we are going to design a website for an orga-
nization consisting of many groups. Each group has a pref-
erence to the arrangement of their page in the website. A
group may strongly insist that their page should be accessed
in one or two clicks from the front page. Another group
may simply wish that their page is placed as closer to the
front page as possible. By formulating such preferences as
an instance and solving it, we can get a total optimal struc-

Manuscript received September 17, 2014.
Manuscript revised December 10, 2014.
†The author is with the Department of Computer Science &

Engineering, Shinshu University, Nagano-shi, 380-8553 Japan.
††The authors are with the Department of Computer Science

and Engineering, Toyohashi University of Technology, Toyohashi-
shi, 441-8580 Japan.

∗This work was supported by KAKENHI (23700014,
23500014, and 26330010).

a) E-mail: fujiwara@cs.shinshu-u.ac.jp
DOI: 10.1587/transfun.E98.A.1189

ture.
The original Huffman tree problem can be seen as a

special case of the generalized problem where each function
is linear, and can be solved in O(n log n) time by Huffman’s
algorithm [3]. On the other hand, the generalized Huffman
tree problem is known to be NP-hard even if every function
is a zero-one function, that is, a function whose image is the
set {0, 1} [2]. It has been open whether the generalized Huff-
man tree problem for zero-one functions with some good
property can be solved in polynomial time.

1.1 Our Contribution

In this paper we give an affirmative answer to the question
by presenting an algorithm for the case where every function
is a non-decreasing zero-one function. More specifically, we
establish a stronger result: Our algorithm can deal with the
case where each function is a unit step function, that is, a
function that takes a lower constant value if the depth of the
leaf does not exceed a threshold, and a higher constant value
otherwise.

In the context of designing a website, this case corre-
sponds to a situation that: Each group has an upper limit
on the number of clicks needed to reach their page from the
front page. And the penalty of breaking the limit is differ-
ent between groups, which may represent the power balance
among groups in the organization.

The main idea of our algorithm is to find a set of leaves
that each take their lower constant values, by reduction to
the Coin Collector’s problem. The running time remains
O(n log n) as the same as Huffman’s algorithm for the orig-
inal problem. Table 1 summarizes the previous and our re-
sults.

1.2 Related Work

We have already mentioned that Huffman’s algorithm [3]
solves the original Huffman tree problem in O(n log n) time.
Fujiwara and Jacobs [2] gave an O(n2 log n)-time algo-
rithm for the generalized Huffman tree problem with non-

Table 1 Complexity results for the generalized Huffman tree problem.

class of cost functions time complexity
linear O(n log n) [3]
unit step O(n log n) [this paper]
non-decreasing convex O(n2 log n) [2]
general NP-hard [2]

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

1190
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.6 JUNE 2015

decreasing convex functions. Their idea was to extend the
O(nL)-time algorithm of Larmore and Hirschberg [1] that
solves a version of the original Huffman tree problem with
a maximum height of L. Unfortunately, as we will discuss
in Sect. 4, it seems difficult to apply Fujiwara and Jacobs’s
technique to our case. In their paper [2] it is also proved
that the generalized Huffman tree problem is NP-hard even
for zero-one functions. Another version of the generalized
tree problem in which the order of leaves is given as an ad-
ditional input has also been intensively studied [2], [4].

2. Generalized Huffman Tree Problem with Unit Step
Functions

Throughout this paper we assume that any binary tree has
a root r even when it is not explicitly specified. Also, we
discuss only undirected binary trees. For vertices v and w
in a binary tree, we denote the path from v to w simply by
the path v-w. The distance between the vertices v and w,
denoted by dist(v, w), is the number of edges along the path
v-w, which we sometimes call the length of the path v-w. A
leaf in a binary tree is a vertex that is of degree one and is
not the root. The depth of leaf l in a binary tree T is defined
as dist(r, l), which we denote depth(l, T). A full binary tree
is a binary tree such that all the non-leaf vertices have two
children. We denote the set of vertices and the set of edges
in a binary tree T by V(T) and E(T), respectively. Let N
denote the set of positive integers.

The generalized Huffman tree problem, called GHT
hereafter, is formulated as below.

GHT
Input: A sequence of functions f1, f2, . . . , fn : N→ Q.
Output: A binary tree having leaves l1, l2, . . . , ln.
Objective: Minimize f (T) :=

∑n
i=1 fi(depth(li, T)).

Note that if we apply

fi(x) = wi x

with 0 < wi < 1 for all 1 ≤ i ≤ n, GHT is equivalent to the
original Huffman tree problem.

In this paper we focus on functions defined as

fi(x) =

⎧⎪⎪⎨⎪⎪⎩
ai, x ≤ ti;

bi, otherwise

with ti ∈ N and ai, bi(> ai) ∈ Q for all 1 ≤ i ≤ n. We refer
to such a function as a unit step function. Without loss of
generality, we consider unit step functions that satisfy the
two conditions as follows:

(a) Each function fi takes value 0 or ri(> 0) ∈ Q.
(b) For each i, ti ≤ n − 1 holds.

The condition (a) would be immediately acceptable without
any arguments; one can redefine the objective function by
subtracting a constant of

∑n
i=1(bi − ai). This enables us to

characterize the functions just by ti’s and ri’s. The reason
why we can assume the condition (b) is clarified below. We

thus deal with GHT with unit step functions in the following
normalized form:

Problem (P)
Input: A sequence of tuples I = ((t1, r1), (t2, r2), . . . , (tn,

rn)) ∈ (N × Q)n with ti ≤ n − 1 and ri > 0 for all
1 ≤ i ≤ n.

Output: A binary tree T having leaves l1, l2, . . . , ln.
Objective: Minimize f (T) :=

∑n
i=1 fi(depth(li, T)), where

fi(x) = 0 if x ≤ ti and ri otherwise.

Let (P′) denote the problem (P) without the condition (b).
The validity of the condition (b) is achieved by repeatedly
applying Lemma 2.

Lemma 1: Let T be a non-full binary tree that is feasible to
an instance of the problem (P′). Suppose that T has leaves
l1, l2, . . . , ln. Then, there exists a full binary tree T ′ with
leaves l′1, l

′
2, . . . , l

′
n such that depth(l′i , T

′) ≤ depth(li, T) for
each i, and f (T ′) ≤ f (T) hold true.

Proof: Since T is not full, there is a non-root vertex v of de-
gree two. Contract either of the two edges incident to v. The
depth of every leaf that is a descendant of v decreases by one.
Then, the contribution of such a leaf to the objective func-
tion decreases or remains the same. Repeat this while the
tree is not full, and rename li to l′i for each i. Finally we ob-
tain a full binary tree T ′ such that depth(l′i , T

′) ≤ depth(li, T)
for each i, and f (T ′) ≤ f (T). �

Lemma 2: Let I = ((t1, r1), (t2, r2), . . . , (tn, rn)) be an in-
stance of the problem (P′) such that for some j, t j ≥ n.
Also, let I′ be the same instance as I except that t j = n − 1.
Suppose that a binary tree T0 is optimal for the instance I′.
Then, T0 is optimal also for the instance I.

Proof: We write the objective function with respect to the
instance I as f , and that with respect to the instance I′ as f ′.

We first show depth(l j, T0) ≤ n − 1. Assume that
depth(l j, T0) ≥ n. Then, T0 is not a full binary tree, since
in a full binary tree with n leaves, any leaf has a depth no
larger than n − 1. By Lemma 1, there is a full binary tree
T ′0 that satisfies depth(l′i , T

′
0) ≤ depth(li, T0) for each i, and

f ′(T ′0) ≤ f ′(T0). Since depth(l′j, T
′
0) ≤ n − 1 holds by the

same reason above, we have f ′j (depth(l′j, T
′
0)) = 0. On the

other hand, it holds f ′j (depth(l j, T0)) > 0. One can see that
for any i � j, f ′i (depth(l′i , T

′
0)) ≤ f ′i (depth(li, T0)). There-

fore, we have f ′(T ′0) < f ′(T0), which contradicts the opti-
mality of T0.

Hence, it follows that depth(l j, T0) ≤ n − 1. By
f j(depth(l j, T0)) = f ′j (depth(l j, T0)) = 0, we have f (T0) =
f ′(T0).

In the rest of the proof, we show the optimality of T0

for the instance I. Assume that there is a binary tree T1 such
that f (T1) < f (T0).

(i) The case where depth(l j, T1) ≤ n − 1. Since
f ′j (depth(l j, T1)) = f j(depth(l j, T1)) = 0 holds, we have
f ′(T1) = f (T1). Then, it is derived that f ′(T1) = f (T1) <
f (T0) = f ′(T0), which contradicts the optimality of T0.

(ii) The case where depth(l j, T1) ≥ n. Again, by

FUJIWARA et al.: THE HUFFMAN TREE PROBLEM WITH UNIT STEP FUNCTIONS
1191

the property of a full binary tree and Lemma 1, there is
a full binary tree T ′1 that satisfies f (T ′1) ≤ f (T1). By
f ′j (depth(l′j, T

′
1)) = f j(depth(l′j, T

′
1)) = 0, we have f ′(T ′1) =

f (T ′1). Then, we obtain f ′(T ′1) = f (T ′1) ≤ f (T1) < f (T0) =
f ′(T0), which contradicts the optimality of T0.

Hence, it is concluded that T0 is optimal also for the
instance I. �

3. Kraft’s Inequality and Construction of Trees

Our algorithm for GHT with unit step functions, given in
Sect. 5, roughly consists of two steps: to determine the depth
of each leaf and to construct a binary tree based on the se-
quence of depths. We here present some properties on bi-
nary trees and a subroutine for constructing a binary tree.
The inequality in the following lemma is known as Kraft’s
Inequality [5].

Lemma 3: ([5]) Let T be a binary tree having leaves
l1, l2, . . . , ln which are located in the depth d1, d2, . . . , dn in
T , respectively. Then, it holds that

n∑

i=1

2−di ≤ 1.

The converse statement of Lemma 3 is also true. In this
section, however, we give a constructive proof: We present
a simple algorithm constructTree for constructing a binary
tree. The fact that constructTree runs in linear time will
later help the evaluation of our algorithm for GHT with unit
step functions.

Algorithm 1: constructTree
Input : A sequence (d1, d2, . . . , dn) ∈ Nn

Output : A binary tree T with the depths of its leaves being
d1, d2, . . . , dn

Assume: (d1, d2, . . . , dn) is sorted in ascending order and∑n
i=1 2−di ≤ 1

1 Create a root vertex r;
2 Construct a path r-l1 of length d1 by repeatedly creating a

left child;
3 for i← 2 to n do
4 v← the first vertex on the path from li−1 to r that does

not have a right child;
5 Create a right child w of v;
6 if di − dist(r, v) − 1 = 0 then
7 li ← w;
8 else
9 Construct a path w-li of length (di − dist(r, v) − 1)

by repeatedly creating a left child;
10 end
11 end
12 return the constructed tree;

Lemma 4: Let (d1, d2, . . . , dn) ∈ Nn be such that∑n
i=1 2−di ≤ 1, di ≤ di+1 for 1 ≤ i ≤ n − 1, and di ≤ h(n)

for some h and 1 ≤ i ≤ n. Then, constructTree for

(d1, d2, . . . , dn) computes in O(n + h(n)) time a binary tree
T with leaves l1, l2, . . . , ln such that depth(li, T) = di for
1 ≤ i ≤ n.

Proof: (I) We first show that constructTree never gets
stuck. In each iteration, it is observed that the algorithm
gets stuck either (i) when the algorithm fails to find the ver-
tex v, or (ii) when di − dist(r, v) − 1 < 0 and the algorithm
therefore fails to create a path w-li.

One can easily know that the case (ii) does not hap-
pen. Indeed, since the sequence (d1, d2, . . . , dn) is ordered in
ascending order, it follows that dist(r, v) ≤ di−1 − 1 ≤ di − 1.

The rest is to show that the case (i) does not occur.
Consider a full binary tree with 2dn leaves such that all the
leaves are at depth dn. Note that dn is the largest among
d1, d2, . . . , dn. One can interpret the behavior of construct-
Tree as successively choosing a vertex of the full binary tree
and cutting down its descendants. Therefore, it is sufficient
to show that constructTree can always choose a vertex of
depth di in the full binary tree.

We first claim that in each iteration, what is cut down
from the full binary tree includes the left most leaf of that
tree. For the case of l1 our claim is trivial. Assume that our
claim holds for l1, . . . , li−1. Observe that until construct-
Tree finds v on the path li−1-r, it looks only edges between
a right child and its parent. In fact, it encounters an edge
between a left child and its parent, then the right child of the
parent should already have vanished with its descendants.
This contradicts the assumption. Therefore, the vertex w is
on the left most path, and so is the vertex li. Hence, our
claim is correct.

At the beginning the full binary tree has 2dn leaves. In
the j-th iteration it decreases by 2dn−dj . We calculate

2dn −
i−1∑

j=1

2dn−dj = 2dn

⎛⎜⎜⎜⎜⎜⎜⎝1 −
i−1∑

j=1

2−dj

⎞⎟⎟⎟⎟⎟⎟⎠

> 2dn

⎛⎜⎜⎜⎜⎜⎜⎝1 −
n∑

j=1

2−dj

⎞⎟⎟⎟⎟⎟⎟⎠

≥ 0,

which means that immediately after the i-th iteration has
started, there remains at least one leaf in the full binary tree.
Thus, the algorithm can always find the vertex v.

(II) We next evaluate the running time. Instead of sum-
ming up the number of steps in each part, we consider the to-
tal running time based on the resulting tree T . It is observed
that constructTree traces each edge of T exactly twice. Re-
call that |E(T)| = |V(T)| − 1 for any tree. In the rest of the
proof we count the vertices, excluding the root.

We begin by bounding the number of vertices of degree
two. We here prove the fact that after the i-th iteration, ver-
tices of degree two all lie on the path r-li. For the case of
i = 1, this is trivial. Assume that the fact is true by the end
of the (i − 1)-th iteration. In the i-th iteration, a path r-v-li
is created after choosing v on the path r-li−1. The vertex v is
the first vertex that does not have a right child along the path

1192
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.6 JUNE 2015

from li−1 to r. In other words, the vertex is chosen so that
there is no vertex of degree two on the path v-li−1. There-
fore, vertices of degree two on the path r-v-li−1, if any, lie on
the path r-v. Hence, the fact holds true for i-th iteration. The
fact implies that the number of vertices of degree two in T
is bounded by dn − 1 ≤ h(n) − 1.

One can straightforwardly know about the number of
vertices of degree one and three: Every vertex of degree one
in T is a leaf. The vertices of degree three increase by one
on each iteration. Therefore, there are n − 1 vertices in T at
the end.

Together with the root, we know |V(T)| ≤ 1+n+h(n)−
1 + n − 1 = 2n + h(n) − 1. Hence, we conclude that the
running time is O(n + h(n)). �

The algorithm constructTree depends on the assump-
tion that (d1, d2, . . . , dn) is sorted in ascending order. Note
that for example, the algorithm gets stuck for (3, 2, 2, 3, 3, 3);
the algorithm fails to find the vertex v for the last leaf. On
the other hand, the algorithm works for (2, 2, 3, 3, 3, 3).

4. Coin Collector’s Problem

Our algorithm for GHT with unit step functions first checks
whether for the given instance, it can return a binary tree
such that the objective function takes value zero. If it is not
the case, our algorithm calls the packageMerge algorithm as
a subroutine, presented as Algorithm 2, for solving the Coin
Collector’s problem [1]. In the Coin Collector’s problem,
one is given a set of coins 1, 2, . . . ,N each associated with a
width si in the form of 2 j (j ∈ Z) and a rational weight ci, and
a positive integer K. (From the viewpoint of coin collectors,
the width is the face value of the coin, whereas the weight is
the value of the coin common among coin collectors.) The
goal is to find a subset of the coins of minimum total weight
such that its total width is equal to K. We formulate this as
follows:

Coin Collector’s problem
Input: A sequence of tuples J = ((s1, c1), (s2, c2), . . . , (sN ,

cN)) with each si ∈ {2 j | j ∈ Z} and each ci ∈ Q, and
K ∈ N.

Output: A subset Y of {1, 2, . . . ,N} such that
∑

i∈Y si = K.
Objective: Minimize c(Y) :=

∑
i∈Y ci.

This problem can been seen as a special case of the Knap-
sack Problem. It is known that the algorithm packageMerge
solves this problem in linear time with some preprocessing.

Lemma 5: ([1]) Let (J,K) be an instance of the Coin Col-
lector’s problem with N coins such that J is sorted by width
in ascending order, then by weight in ascending order. Then,
the packageMerge algorithm computes an optimal solution
to the instance (J,K) in O(N) time.

Our algorithm for GHT with unit step functions con-
verts a given instance of the problem (P) into that of the
Coin Collector’s problem as follows: Given an instance
I = ((t1, r1), (t2, r2), . . . , (tn, rn)) of the problem (P), let

Algorithm 2: packageMerge [1] for the Coin
Collector’s problem

Input : A sequence of tuples
J = ((s1, c1), (s2, c2), . . . , (sN , cN)) with each
si ∈ {2 j | j ∈ Z} and each ci ∈ Q, and K ∈ N

Output : A subset Y of {1, 2, . . . ,N} such that
∑

i∈Y si = K
Assume: J is sorted by width in ascending order, then by

weight in ascending order

1 D← − log2 s1; // coin 1 is of smallest width

2 for d ← D downto 1 do
3 Ad ← sequence of coins of width 2−d , sorted by weight
4 end
5 for d ← D downto 1 do
6 while |Ad | ≥ 2 do
7 Remove the first pair of coins from Ad ; // the

lightest two coins

8 Define a new coin: let its width be d − 1 and its
weight be the sum of weights of the removed pair;

9 Record from which coins in J the new coin was
defined;

10 Insert the new coin into Ad−1 with maintaining the
order by weight;

11 end
12 end
13 return sequence of coins that define the first K coins in A0.

J =((2−t1 ,−r1), (2−t2 ,−r2), . . . , (2−tn ,−rn),

(2−1, 0), (2−2, 0), . . . , (2−n+1, 0),

(2−n+1,−R − 1)), (1)

K = 1, (2)

where R = max1≤i≤n ri.
The converted instance has 2n coins in total. The first

n coins in J correspond to the leaves in the problem (P).
As seen, each of the 2n coins is assigned a negative weight.
Intuitively, the weight −ri stands for the fact that: if one is
allowed to relocate leaf i from depth over ti to depth ti, then
the value of the objective function decreases by ri. Our idea
is to find a set of leaves whose contribution to the objective
function is zero.

The following n − 1 coins in J are dummy coins of
weight zero, which we call the zero-weight dummy coins.
The last coin in J is referred to as the last dummy coin. The
aim of our conversion is to choose a set of leaves, in the
context of the problem (P), so that their total width does not
exceed 1 − 2−n+1. An intuitive reason why we set 1 − 2−n+1,
not 1, is that the resulting binary tree has to reserve “space”
of width 2−n+1 for the leaves that have positive contributions
to the objective function. The zero-weight dummy coins are
introduced for dealing with this constraint on the total width
as an equality. In the proof of Lemma 8, we will clarify how
this set of zero-weight dummy coins plays a role.

Although we can give a version of the packageMerge
algorithm that accepts K of the form of

∑
i 2 ji (j1, j2, . . . ∈

Z), the presented version for integer K is much simpler. The
reason why we have added the last dummy coin is that we
would like to set K = 1. (That is to say, we can have an
equivalent solution if we employ J without the last dummy

FUJIWARA et al.: THE HUFFMAN TREE PROBLEM WITH UNIT STEP FUNCTIONS
1193

coin, and K = 1 − 2−n+1.) Lemma 6 guarantees that the last
dummy coin is always included in the solution.

We have seen that all coins in the converted instance
have non-positive weight. Although the Coin Collector’s
problem is originally a minimization problem, one can think
of the instance as a maximization problem. The package-
Merge algorithm works correctly even for such an instance.

Lemma 6: Any optimal solution to the instance (J,K)
in (1) and (2) contains the last dummy coin.

Proof: Consider an arbitrary optimal solution. We show the
lemma by claiming that neither of the following two cases
arises.

(I) Assume that the optimal solution does not include
either a zero-weight dummy coin or the last dummy coin.
Choose a coin in the solution which appears in the first n en-
tries in J, that is, one which corresponds to a leaf in the prob-
lem (P). Suppose that its width is 2−t and its weight is −r.
This coin can be replaced by a union of some zero-weight
coins and the last dummy coin. Indeed, if we combine the
zero-weight dummy coins of weight 2−t−1, 2−t−2, . . . , 2−n+1,
then the total width is

2−t−1 + 2−t−2 + · · · + 2−n+1 = 2−t − 2−n+1.

This width plus the width of the last dummy coin makes
exactly 2−t. By replacing coins in this way, the objective
function decreases by −r − (−R − 1) > 0, which contradicts
the optimality.

(II) Assume that the optimal solution includes at least
one zero-weight dummy coin and does not include the last
dummy coin. Choose a zero-weight dummy coin with
largest width. Suppose that its width is 2−t. Similarly as (I),
it is seen that this zero-weight coin can be replaced by the
union of the last dummy coin and the zero-weight dummy
coins of width 2−t−1, 2−t−2, . . . , 2−n+1, which are not in the
solution. This replacement of coins decreases the objective
function. Therefore, the assumption again turns out to be
false. �

We introduced in Sect. 1.2 that the case where the asso-
ciated functions are all non-decreasing convex functions is
solved in O(n2 log n) time [2], which is also based on reduc-
tion to the Coin Collector’s problem. We here remark that
the reduction is different from that in this paper: Whereas
the reduction of [2] involves n2 coins, our reduction requires
just 2n coins.

We mention a bit more of the reduction of [2]. In
the converted instance according to the reduction, the coins
(i, 1), (i, 2), . . . , (i, j) are included in the solution if and only
if the leaf i is located at the depth j in the resulting binary
tree. On the other hand, in our instance, the coin i is in-
cluded in the solution if and only if the depth of the leaf i is
equal to or smaller than ti.

One should note also that a unit step function is not
convex, since

fi(ti) + fi(ti + 2)
2

=
ri

2

whereas

f (ti + 1) = ri >
ri

2
.

Although we do not present the detail, the reduction of [2]
in fact fails for an instance with a unit step function.

5. Algorithm for GHT with Unit Step Functions

Algorithm 3: solveGHTUS
Input : A sequence of tuples

I = ((t1, r1), (t2, r2), . . . , (tn, rn)) ∈ (N × Q)n

Output : An optimal binary tree T
Assume: ti ≤ n − 1 and ri > 0 for all 1 ≤ i ≤ n

1 if
∑n

i=1 2−ti ≤ 1 then // f(T) = 0

2 S ← sequence of t’s in I, sorted by in ascending order;
3 return constructTree(S);
4 else // f(T) > 0

5 R← max1≤i≤n ri;
6 J ← ((2−t1 ,−r1), (2−t2 ,−r2), . . . , (2−tn ,−rn),

(2−1, 0), (2−2, 0), . . . , (2−n+1, 0), (2−n+1,−R − 1));
7 K ← 1; // construct instance

8 Sort J so that (si, ci) precedes (s j, c j) if either (i)
si = s j and ci ≤ c j, or (ii) si < s j; // sort by width
and then by weight

9 Y ← packageMerge(J, K);
10 S ← sequence of ti’s such that i ∈ Y and

−R − 1 < ri < 0; // discard dummy coins

11 Sort S in ascending order;
12 Repeat (n − |S |) times: Append (n − 1 +
log2(n − |S |)�)

to S ;
13 return constructTree(S);
14 end

We present here our algorithm solveGHTUS for GHT
with unit step functions as Algorithm 3. The first “if” sen-
tence checks whether the algorithm can return a binary tree
with objective value zero. Only when the answer is “no”,
the algorithm converts the given instance to the Coin Col-
lector’s problem. We explain why this check is necessary.
Suppose that the given instance satisfies

∑n
i=1 2−ti = 1 and

the algorithm converts it to the instance (J,K) in (1) and (2).
Lemma 4 then claims that employing constructTree, one
can have a binary tree T such that the leaves are located at
exactly depth t1, t2, . . . , tn. Hence, f (T) = 0. On the other
hand, by Lemma 6, any optimal solution to (J,K) contains
the last dummy coin. The total width of non-dummy coins
is thus no greater than 1 − 2−n+1, which means that some
non-dummy coin has been excluded from the solution. The
leaf corresponding to such a non-dummy coin is at depth
(n − 1 +
log2(n − |S |)�). Consequently, the value of the
objective function becomes positive. In this way, if the al-
gorithm skips the check at the beginning, it may not return
an optimal solution.

For an instance with
∑n

i=1 2−ti > 1, Lemma 3 says that
there is some leaf of depth greater than ti in an optimal bi-
nary tree. In a sense, the subroutine packageMerge excludes

1194
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.6 JUNE 2015

an optimal set of such leaves from its solution. The excluded
leaves are determined to have positive contributions to the
objective function. Our algorithm puts all these leaves at
depth (n − 1 +
log2(n − |S |)�). The last dummy coin in
the converted instance creates a path from the root to these
leaves.

The choice of the depth for such leaves is just a matter
of taste. The reason why our algorithm uses the depth (n −
1+
log2(n−|S |)�) is simple. The algorithm knows that there
are n−|S | leaves whose function values are determined to be
positive. In a full binary tree with n− |S | leaves of minimum
height, each leaf has a depth at most
log2(n − |S |)�). Our
algorithm constructs such a subtree under a vertex of depth
n−1. Thus, the n− |S | leaves have a depth (n−1+
log2(n−
|S |)�).

5.1 Correctness of the Algorithm

We first show the correctness for an instance I =

((t1, r1), (t2, r2), . . . , (tn, rn)) with
∑n

i=1 2−ti > 1.

Lemma 7: Let T be a binary tree that is feasible to the in-
stance I = ((t1, r1), (t2, r2), . . . , (tn, rn)) of the problem (P),
and di = depth(li, T) for 1 ≤ i ≤ n. Let X be the set
{i ∈ N | di ≤ ti, 1 ≤ i ≤ n}. If X � {i ∈ N | 1 ≤ i ≤ n}, then∑

i∈X 2−ti ≤ 1 − 2−n+1 holds.

Proof: By Lemma 3, we know that
∑n

i=1 2−di ≤ 1. Since

1 ≥
n∑

i=1

2−di >
∑

i∈X

2−di ≥
∑

i∈X

2−ti

by the assumption of the lemma, we have
∑

i∈X 2−ti < 1.
We need a bit stronger inequality. We derive∑

i∈X 2−ti = 2−n+1∑
i∈X 2n−1−ti . Since n − 1 − ti is a non-

negative integer for each i,
∑

i∈X 2n−1−ti is also a non-negative
integer. Denote the value of

∑
i∈X 2n−1−ti as A. Letting B =

2n−1, we have A < B by the inequality
∑

i∈X 2−ti < 1. Not-
ing that the both are integers, it should hold that A ≤ B − 1.
Thus, we have
∑

i∈X

2−ti = 2−n+1A ≤ 2−n+1(B − 1) = 1 − 2−n+1.

�

Lemma 8: Let T be a binary tree that is feasible to the in-
stance I = ((t1, r1), (t2, r2), . . . , (tn, rn)) of the problem (P)
with

∑n
i=1 2−ti > 1. There exists a solution Y to the instance

(J,K) in (1) and (2) of the Coin Collector’s problem such
that c(Y) = f (T) −∑n

i=1 ri − R − 1, where R = max1≤i≤n ri.

Proof: Let di = depth(li, T) for 1 ≤ i ≤ n, and X be the
set {i ∈ N | di ≤ ti, 1 ≤ i ≤ n}. We first confirm that
X � {i ∈ N | 1 ≤ i ≤ n}. Indeed, otherwise we have

n∑

i=1

2−di =
∑

i∈X

2−di ≥
∑

i∈X

2−ti =

n∑

i=1

2−ti > 1.

Lemma 3 says that there exists no such binary tree T .

By Lemma 7, we know that
∑

i∈X

2−ti ≤ 1 − 2−n+1.

Suppose that

0.z1z2 · · · zn−1

is the binary representation of

1 − 2−n+1 −
∑

i∈X

2−ti .

Note that this is always possible; since ti ≤ n − 1 for all i,
no smaller fraction than 2−n+1 appears. Let D = {n + i | zi =

1, 1 ≤ i ≤ n − 1}, which is a set of zero-weight dummy
coins. Let Y = X ∪ D ∪ {2n}. Recall that the 2n-th coin of
the instance (J,K) is the last dummy coin of width 2−n+1 and
weight (−R−1). From these arguments, we have

∑
i∈Y 2−ti =

1, that is to say, Y is feasible to the instance (J,K).
In the problem (P), the leaves in X do not contribute to

the objective function, while each of the other leaves adds ri

to the objective function. We thus have

f (T) =
∑

i�X

ri =

n∑

i=1

ri −
∑

i∈X

ri.

Therefore,

c(Y) =
∑

i∈X

(−ri) − R − 1

=

n∑

i=1

ri −
∑

i∈X

ri −
n∑

i=1

ri − R − 1

= f (T) −
n∑

i=1

ri − R − 1.

�

Lemma 9: For an instance I = ((t1, r1), (t2, r2), . . . , (tn, rn))
of the problem (P) such that

∑n
i=1 2−ti > 1, the algorithm

solveGHTUS computes an optimal solution in O(n log n)
time.

Proof: (I) First, we guarantee the running time. We begin
by investigating that constructTree(S) invoked in solveG-
HTUS runs in O(n) time, with the help of Lemma 4.
Lemma 6 states that there is always the last dummy coin
in Y . Thus, the sum of width over non-dummy coins in Y
is no larger than 1 − 2−n+1. Therefore, immediately before
constructTree(S) is called, we can bound as
∑

w∈S
2−w ≤ 1 − 2−n+1 + (n − |S |)2−(n−1+
log2(n−|S |)�)

≤ 1 − 2−n+1 + (n − |S |)2−n+1/(n − |S |)
= 1.

Besides, the maximum value in S is n−1+
log2(n−|S |)�
appearing at the tail, which is upper-bounded by n + log2 n.

FUJIWARA et al.: THE HUFFMAN TREE PROBLEM WITH UNIT STEP FUNCTIONS
1195

Hence, Lemma 4 guarantees the O(n) running time.
The rest parts in solveGHTUS, except sorting, are all

executed in O(1) or O(n) time. The sorting is implemented
with an O(n log n)-time algorithm. Therefore, the overall
running time is O(n log n).

(II) Next, we show the optimality of the returned tree
T . Assume that there is a binary tree T0 with n leaves such
that f (T0) < f (T). Then, Lemma 8 states the existence of a
solution Y0 to the instance (J,K) such that c(Y0) = f (T0) −∑n

i=1 ri − R − 1. Now, we derive

c(Y) = f (T) −
n∑

i=1

ri − R − 1

< f (T0) −
n∑

i=1

ri − R − 1

= c(Y0),

which contradicts the optimality of Y . Therefore, T is an
optimal solution to the problem (P). �

For an instance with
∑n

i=1 2−ti ≤ 1, the algorithm
solveGHTUS returns a binary tree with objective value zero
in O(n log n) time; O(n log n) for sorting and O(n) for con-
structTree by Lemma 4. Together with the normalization
in Sect. 2, which is done in O(n) time, we establish our main
theorem.

Theorem 1: The algorithm solveGHTUS solves GHT
with unit step functions in O(n log n) time.

5.2 Example

As an example, we trace the behavior of solveGHTUS with
an instance of the problem (P):

I = ((1, 4), (2, 1), (2, 2), (2, 3), (4, 5)).

Since
∑n

i=1 2−ti = 21
24 > 1, the algorithm solveGHTUS

converts the instance to that of the Coin Collector’s problem.
Adding dummy coins, the algorithm has

J =((2−1,−4), (2−2,−1), (2−2,−2), (2−2,−3), (2−4,−5),

(2−1, 0), (2−2, 0), (2−3, 0), (2−4, 0),

(2−4,−6)),

and K = 1. Note that the coins 6, 7, 8, 9, and 10 in J are
dummy coins.

Next, packageMerge is invoked after sorting J by width
and then by weight. We keep on referring the i-th coin in
J before sorting, displayed above, as the coin i. Immedi-
ately before packageMerge returns a solution, the sequence
A0 has two coins: the first is a combined coin of (20,−13)
made of the coins 10, 5, 8, 4, and 1, while the last is a com-
bined coin of (20,−3) made of the coins 3, 2, and 6. Only
the first one is picked up as a solution

Y = (1, 2, 4, 5, 9),

Fig. 1 An optimal binary tree for instance I = ((1, 4), (2, 1), (2, 2), (2, 3),
(4, 5)). The numbers on vertices identify leaves. Solid black points are
non-leaf vertices. The objective value is 0 + 0 + 2 + 3 + 0 = 5.

which corresponds to the coins 10, 5, 8, 4, and 1, respec-
tively. Note that the entries of Y are indices in the sorted
J. By discarding dummy coins and sorting the sequence,
solveGHTUS obtains a sequence of ti’s S = (1, 2, 4), that is
to say, the coins 1, 4, and 5. By appending

n − 1 +
log2(n − |S |)� = 5 − 1 +
log2(5 − 3)� = 5

twice, S finally becomes (1, 2, 4, 5, 5). By calling con-
structTree, the tree in Fig. 1 is returned.

6. Discussion

The algorithm solveGHTUS is designed with the intention
of guarantee of its O(n log n) running time. Consequently,
the algorithm may output an awkward tree; the leaves that
are excluded from the solution of the Coin Collector’s prob-
lem may be located at an unnecessarily deep level in the re-
sulting tree. One can obtain a full binary tree by repeatedly
contracting either of the two edges incident to each non-leaf
vertex, as we did in the proof of Lemma 1.

In this paper we have seen instances consisting of only
non-decreasing unit step functions. For an instance with
some decreasing unit step functions, it is done if one puts
such leaves at a sufficiently deep level in the tree. Neverthe-
less, if one is imposed the additional constraint that the out-
put should be a full binary tree, the problem remains open.

References

[1] L.L. Larmore and D.S. Hirschberg, “Length-limited coding,” Proc.
SODA ’90, pp.310–318, 1990.

[2] H. Fujiwara and T. Jacobs, “On the huffman and alphabetic tree prob-
lem with general cost functions,” Algorithmica, vol.69, no.3, pp.582–
604, 2014.

[3] D.A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proc. Institute of Radio Engineers, pp.1098–1101,
1952.

[4] L.L. Larmore and T.M. Przytycka, “A fast algorithm for optimum
height-limited alphabetic binary trees,” SIAM J. Comput., vol.23,

1196
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.6 JUNE 2015

pp.1283–1312, 1994.
[5] L.G. Kraft, A device for quantizing, grouping, and coding amplitude

modulated pulses, Master’s thesis, Massachusetts Institute of Tech-
nology, 1949.

Hiroshi Fujiwara received his B.E., Mas-
ter of Informatics, and Ph.D. in Informatics de-
grees from Kyoto University in 2001, 2003, and
2006, respectively. Since 2014 he has been an
associate professor in Department of Computer
Science & Engineering at Shinshu University,
Japan, after working at Kwansei Gakuin Uni-
versity and Toyohashi University of Technology.
During his career, he worked as a research as-
sistant at University of Freiburg, Germany, from
2004 to 2005, and worked as a visiting associate

professor at University of Electronic Science and Technology, China, in
2012. His research interests include analysis of algorithms, online opti-
mization, and functional analysis.

Takuya Nakamura is at Department of
Computer Science and Engineering, Toyohashi
University of Technology. His research interests
include design and analysis of algorithms and
combinatorial optimization.

Toshihiro Fujito received his B.E. and M.E.
degrees in Mechanical Engineering from Kyoto
University, in 1981 and 1983, respectively. He
received his M.S. and Ph.D. degrees in Com-
puter Science from Pennsylvania State Univer-
sity, in 1986 and 1994, respectively. He joined
Toyohashi University of Technology in 2004 af-
ter working at Hiroshima University and Na-
goya University, and has been a professor in De-
partment of Computer Science and Engineering
since then. His research interests include design

and analysis of algorithms, discrete structures, and combinatorial optimiza-
tion.

