2	Decomposition of methyl orange using C_{60} fullerene adsorbed on silica
3	gel as a photocatalyst via visible-light induced electron transfer
4	
5	Ryo Wakimoto ^a , Tamako Kitamura ^a ,
6	Fuyu Ito ^b , Hisanao Usami ^c , Hiroshi Moriwaki ^a *
7	
8	^a Shinshu University, Faculty of Textile Science and Technology, Division of Applied Biology, 3-15-1,
9	Tokida, Ueda 386-8567, Japan, E-mail: moriwaki@shinshu-u.ac.jp
10	^b Satellite Venture Business Laboratory, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567,
11	Japan
12	^c Shinshu University, Faculty of Textile Science and Technology, Division of Chemistry and Materials,
13	3-15-1, Tokida, Ueda 386-8567, Japan
14	
15	E-mail: moriwaki@shinshu-u.ac.jp
16	Tel: 81(0)268-21-5333
17	Fax: 81(0)268-21-5331
18	

19 Abstract

20 Visible-light induced electron transfer reactions of C₆₀ fullerene adsorbed on silica gel 21 $(C_{60}/SiO_2 \text{ powder})$ to methyl orange in water have been studied. The C_{60}/SiO_2 powder was 22 simply prepared by mixing a toluene solution of the C_{60} fullerene with silica gel followed by 23 evaporating the toluene. Irradiation by visible light (>420 nm) of the methyl orange aqueous 24 solution (25 μ M) in the presence of the C₆₀/SiO₂ powder and ascorbic acid resulted in the 25 decomposition of the methyl orange. These results showed that the degradation conversion reached 96% after a 25-min visible light irradiation. The reaction also occurred by the 26 27 irradiation of sunlight. The reductive products of methyl orange, N,N-dimethyl-p-phenylenediamine and sulfanilic acid, were ascertained and monitored by 28 29 liquid chromatography/mass spectrometry (LC/MS). The reaction did not occur in the dark 30 and in the absence of C_{60} /SiO₂ or ascorbic acid. The possible mechanism of the reaction is 31 discussed. Furthermore, the C₆₀/SiO₂ powder was applied to a continuous flow system for the 32 photodecomposition of methyl orange. C_{60}/SiO_2 powder was packed in a glass tube. The methyl 33 orange solution was pumped into the glass tube, and the tube was irradiated by visible light or 34 sunlight. The continuous decomposition of methyl orange was achieved by this method. 35 Keywords: fullerene, C₆₀ fullerene adsorbed on silica gel, photoinduced electron-transfer,

36 visible light, methyl orange

37 1. Introduction

38 C_{60} fullerene has attracted special interest since its structure and properties are very unique [1,2]. In particular, the photoreactivity of C₆₀ fullerene has received much attention because of its electron 39 40 acceptability and broad absorbance in visible light region [3-5]. Intensive studies using C_{60} fullerene 41 as a photocatalyst have been reported [6-9]. However, there are very few studies on the 42 photoreaction of fullerene in water, because the compound shows a very low solubility in water (the aqueous solubility of C_{60} : 2.6-8.0 ng/L) [10]. 43 44 It is very important for aquatic conservation to develop a visible-light induced reaction system, 45 which can be applied to the decomposition of chemicals in water. There are several examples about the photoreaction of pollutants using C_{60} derivatives by the irradiation of visible light [11]. However, 46 47 there are very few examples of useful reactions for water clean-up using C_{60} as a photocatalyst to the 48 best of our knowledge [12]. 49 In this report, we describe a novel photoreaction of methyl orange using C_{60} fullerene adsorbed 50 on silica gel (C_{60}/SiO_2) and ascorbic acid via visible-light induced electron transfer. The surface of 51 fullerene is hydrophobic, and C₆₀ powder cannot disperse in an aqueous solution without several 52 treatments, such as the evaporation of the tetrahydrofuran (THF) /water solution of C₆₀ and 53 hydroxylation of the surface [13-14]. C₆₀ adsorbed on silica gel powder could disperse using a stirrer 54 in the aqueous solution.

55	It has been reported that C_{60} adsorbed onto silica gel acts as a photocatalyst for the oxidation of
56	olefins in acetonitrile [15-16]. However, to the best of our knowledge, there are no examples that C_{60}
57	adsorbed onto silica gel has been applied to a visible light-activated photocatalyst for the
58	decomposition of environmental pollutants in water. In addition, the photo-degradation of furfuryl
59	alcohol in water by C_{60} immobilized on silica gel by amine-fullerene covalent binding has been
60	reported [12]. It is well-known that the functional groups of fullerene affect the redox potential and
61	reactivity of fullerene [17], and the photoreactivity of fullerene without functional groups in water
62	has aroused considerable interest.
63	Methyl orange is one of the azo dyes, and it has been widely used as a model compound for the
64	research of photoreactions [18]. Many researchers have reported the decomposition of methyl orange
65	using TiO ₂ as a photocatalyst under ultraviolet irradiation [19-21]. However, there are few examples
66	concerned with the decomposition of methyl orange by visible light irradiation [22]. In this study, we
67	discuss the utility and mechanism of the degradation of methyl orange using C_{60}/SiO_2 as a visible
68	light-activated photocatalyst. Furthermore, the C_{60}/SiO_2 powder was used in a continuous flow
69	system for the photodecomposition of methyl orange with the objective to apply the photoreaction to
70	water clean-up technology.

72 2. Experimental

73 2.1 Materials

74	C_{60} fullerene was obtained from SES Research (TX, USA). Methyl orange, ascorbic acid,						
75	acetonitrile (HPLC grade), 2-propanol, tert-butyl alcohol, acetic acid, ammonium acetate, sulfanilie						
76	acid, SiO_2 for column chromatography (particle diameter: 20-40 μ m),						
77	N,N-dimethyl- p -phenylenediamine, and propham- ¹³ C ₃ were from Wako Pure Chemical Industries						
78	(Osaka, Japan). Toluene (HPLC grade) was obtained from Nacalai Tesque (Kyoto, Japan). Sodium						
79	dodecyl-d ₂₅ sulfate was obtained from CDN isotopes (Quebec, Canada). TiO ₂ (JRC-TIO-4 (2)) was						
80	from AEROSIL (Tokyo, Japan).						

81 Pure water was prepared using an automatic water distillation apparatus (MQ academic A10,

82 Millipore, Billerica, MA, USA).

83 2.2 Preparation of the C_{60}/SiO_2 powder

The C_{60}/SiO_2 powder was prepared by a simple method using a rotary evaporator. The SiO₂ powder (1.0 g) was poured into the C_{60} toluene solution (30 mL, 133 µg mL⁻¹), and toluene was removed using a rotary evaporator. The obtained yellow powder was freeze-dried. In order to remove the fullerene, which is not steadily adsorbed on the silica gel, the powder was mixed with distilled water (40 mL) for 30 min followed by filtration, and freeze-dried again. The concentration of C_{60} adsorbed on the C_{60}/SiO_2 powder was determined by the toluene extraction. The absorbance of the extract was

90	measured at 330 nm (log ε = 4.38 at 330 nm) [23]. As a result, 1.7 mg of C ₆₀ was adsorbed onto 1.0
91	g of the SiO ₂ powder. When the powder (100 mg) was stirred in distilled water (10 mL) for 1 hour,
92	C_{60} was not detected in the supernatant (<0.01 µg/mL). This result indicated that desorption of C_{60}
93	from the powder does not occur by mixing in aqueous solutions. The C_{60}/SiO_2 powder was
94	investigated using a transmission electron microscope (JEM-2100, JEOL, Tokyo, Japan) and Raman
95	microscope (inVia Reflex/StreamLine Plus 532/785, Renishaw, UK). The material was kept in the
96	dark at room temperature, and used within a month of its production.
97	2.3 Preparation of the aqueous suspension of the nanoparticles of C_{60}
98	Deguchi et al. reported that the nanoparticles of C_{60} were obtained by hand-grinding the bulk solid of
99	C_{60} fullerene [24]. We prepared a suspension of the nanoparticles of C_{60} obtained by hand-grinding.
100	The hand-ground powder of C_{60} (20 mg) was mixed with distilled water (20 mL). The mixture was
101	then sonicated and filtered using a membrane filter with the pore size of 0.45 μm (Millipore
102	Corporation, Bedford, USA). The obtained suspension (C_{60} concentration, 5.6 µg mL ⁻¹) was used as
103	a photocatalyst. The particle size distribution of C_{60} in the suspension was measured by a dynamic
104	light scattering method using Zetasizer Nano Series (Malvern Instruments Limited, Worcestershire,
105	UK).

106 2.4 Photoreaction of methyl orange in the presence of the C_{60}/SiO_2 powder

107 Irradiation of the methyl orange aqueous solution (25 μ M, 10 mL) containing ascorbic acid (0.50

mM) and the C_{60}/SiO_2 powder (20 mg) was carried out under an air or nitrogen atmosphere (N₂ bubbling:10 min) with a xenon lamp (300 W cm⁻²) through a filter (>420 nm, L42, Hoya, Tokyo, Japan). The pH value of the solution was 4. The C_{60}/SiO_2 powder was dispersed in the reaction liquid by a stirrer bar during the photoreaction.

To investigate the reusability of the C_{60}/SiO_2 powder, the photodecomposition of methyl orange in water using the same C_{60}/SiO_2 powder was repeated. The suspension after the photoreaction was centrifuged (3000 rpm, 3 min), and the supernatant was removed from the tube and analyzed. The residue was mixed with the methyl orange aqueous solution in the presence of ascorbic acid, and irradiated again.

117 The reaction liquid was centrifuged at 3000 rpm for 3 min, and the UV spectrum of the obtained 118 supernatant was analyzed by a UV absorption spectrometer (V-630, JASCO Corporation, Tokyo, 119 Japan). The methyl orange concentration was analyzed by measuring its absorbance at 500 nm. The molar absorbance coefficient ε_m of the calibration curve was 3.1 x 10⁴ L mol⁻¹ cm⁻¹ at pH 4. After the 120 121 filtration of the reaction liquid using filter paper (No. 5A, Advantec, Tokyo, Japan), the solution was 122 analyzed by electrospray ionization/ mass spectrometry (ESI/MS) in both the positive and negative 123 ion modes and liquid chromatography (LC)/MS for the detection and determination of its products. 124 The reactions using sunlight were studied in the laboratory (Ueda City, Nagano, Japan). The solar 125 radiation was monitored by 5 min by a photometer (TM-207, Tenmars Electronics, Taipei, Taiwan),

126 and the values of the solar radiation in this study were around 600 W m^{-2} .

127 2.5 Photodecomposition of methyl orange by the continuous flow system

- 128 The C₆₀/SiO₂ column was prepared by putting 300 mg of C₆₀/SiO₂ powder into a pipette glass (4mm
- 129 inner diameter) stuffed with cotton. The length of the column was 2.5 cm. A methyl orange aqueous
- 130 solution (25 μM) containing ascorbic acid (2.0 mM) was pumped through the C₆₀/SiO₂ column by a
- 131 microtube pump (EYELA, Tokyo, Japan) at 0.70 mL min⁻¹. The solution was held in the column for
- 132 35 sec. Irradiation of the column was carried out by a xenon lamp or sunlight. The eluent from the
- 133 column was sampled and analyzed by UV absorption, ESI/MS and LC/MS.
- 134 2.6 ESI/MS analysis
- 135 The filtered sample solutions were analyzed by ESI/MS in the positive and negative ion modes. An
- 136 LC/MS 2010A mass spectrometer (Shimadzu, Kyoto, Japan) was used for the ESI/MS measurement.
- 137 ESI/MS conditions were: scan range, *m/z* 50-500; heat block temperature, 200°C; interface voltage,
- 4.5 kV; CDL voltage, 20 V. The solutions (10 μL) were injected into the LC/MS system, and the
- 139 flow rate of the mobile phase (acetonitrile) was 0.20 mL min⁻¹.
- 140 2.7 LC/MS analysis
- 141 The filtered reaction solutions were analyzed using the LC/MS technique. The LC/MS 2010A was
- 142 also used for the LC/MS measurement. An L-column ODS (Chemicals Evaluation and Research
- 143 institute, Tokyo, Japan: 3 µm particle size, 2.1x150 mm i.d.) was used for the LC separation of the

144 substrate and its products. The HPLC separation was carried out at 40 °C using a gradient composed 145 of solution A (1.0 mM ammonium acetate solution) and solvent B (acetonitrile). The gradient 146 conditions were as follows: 0-5 min, hold at 2.5% B; 5-10 min, a linear increase from 2.5 to 5 % B; 147 10-15 min, a linear increase from 5 to 99 % B; 15-35 min, hold at 99% B. The flow rate was 0.20 148 mL min⁻¹. The ESI conditions were the same as described above. The sample solution (1.0 mL) was 149 mixed with the internal standard methanolic solution (propham- $^{13}C_3$, 100 µg ml⁻¹; sodium 150 dodecyl-d₂₅ sulfate, 100 µg ml⁻¹). The LC/MS acquisition was performed in the selected ion 151 monitoring (SIM) mode at m/z 137 for N,N-dimethyl-p-phenylenediamine, m/z 172 for sulfanilic 152 acid, m/z 187 for propham-¹³C₃ and m/z 290 for sodium dodecyl-d₂₅ sulfate. The detection limits (S/N 3) were 0.01 and 0.005 µM for N,N-dimethyl-p-phenylenediamine and sulfanilic acid, 153 154 respectively. The yields of the products were calculated based on the decomposed methyl orange.

155

156 **3. Results and discussion**

157 3.1 Characterization of C_{60} /SiO₂ powder

The C₆₀/SiO₂ powder was tinged with yellow (Fig. 1a). The diffuse reflectance spectrum is shown in Fig. 1b, and the result showed that the powder has an absorption band in the visible light region (400-700 nm). The Raman spectrum of the C₆₀/SiO₂ powder was very similar to that of the single-crystal C₆₀ (Figure S1) [25]. The strong line at 1468 cm⁻¹ assigned to the A_g-pinch mode was

observed. This result indicated that C_{60} fullerene in the powder adsorbs onto the silica gel without

- 163 the formation of any covalent bonding.
- 164 Figure 2 shows a TEM image of C_{60}/SiO_2 . Fullerene clusters around 500 nm were observed on
- the SiO₂. When the electron diffraction pattern of the adhesive cluster was measured,
 Debye-Scherrer rings were detected (Figure S2). This result suggests that the fullerene cluster on the
- 167 C_{60}/SiO_2 powder consists of many randomly-aligned micro-crystallites of C_{60} .
- 168 The average zeta potential of C_{60} /SiO₂ was -9.43 mV at pH 4. This result suggests that the
- 169 C_{60}/SiO_2 is distributed with a negative charge in water. On the other hand, the zeta potential of SiO₂
- powder without treatment with C₆₀ was -3.3 mV. Snow et al. (2012) reported that negatively-charged
- 171 C_{60} cluster in aqueous water did not exhibit significant ${}^{1}O_{2}$ production by visible-light irradiation
- 172 [26]. Therefore, it is expected that ${}^{1}O_{2}$ would not be produced by the C₆₀/SiO₂ powder under
- 173 visible-light irradiation.
- 174 3.2 Photodecomposition of methyl orange in the presence of C_{60} /SiO₂ powder
- 175 Methyl orange was not adsorbed by SiO_2 at pH 4. That makes easy to evaluate C_{60}/SiO_2 as a
- 176 photocatalyst. In addition, SiO_2 does not disrupt the visible light absorption of C_{60} , because SiO_2
- 177 does not have an absorption band in the visible light region. Therefore, we selected SiO_2 as a support.
- 178 The irradiation of a methyl orange solution containing the C_{60}/SiO_2 powder and ascorbic acid with a
- 179 xenon lamp through a filter (> 420 nm) resulted in the de-colorization of the solution due to the

180	decomposition of methyl orange. Significant changes in the pH of the solution were not observed
181	before and after the photoreaction. Methyl orange was not decomposed by the visible light
182	irradiation without any additives. The photoreaction of methyl orange with C_{60}/SiO_2 in the absence
183	of ascorbic acid also did not occur. The results are summarized in Table 1. Methyl orange was
184	slightly decomposed in the presence of ascorbic acid without C_{60}/SiO_2 by the visible light irradiation
185	(Table 1, entry 2). Photolysis of methyl orange under direct excitation occurred in the presence of
186	ascorbic acid [27]. However, the efficiency of the reaction was significantly low compared to the
187	reaction in the presence of C_{60}/SiO_2 (Table 1, entries 2 and 7). The conversion of methyl orange
188	slightly decreased by the removal of oxygen (Table 1, entries 6 and 8 or entries 7 and 9). The
189	adsorptive removal of methyl orange by the C_{60}/SiO_2 powder was not observed, when 20 mg of the
190	C_{60}/SiO_2 powder was added to 10 mL of a methyl orange solution (25 μ M, pH 4) in the presence of
191	ascorbic acid (0.50 mM), and mixed by a magnetic stirrer for 160 min in the dark. In addition,
192	methyl orange was slightly decomposed in the presence of ascorbic acid (2.0 mM) with the C_{60}
193	powder (the average particle diameter: 110 μ m, 3.4 mg in 10 mL) by the visible light irradiation. The
194	decomposition of methyl orange was 7.2%. The decomposition (%) was lower than that using the
195	C_{60}/SiO_2 powder. The result is due to the differences of the dispersibility and surface area between
196	the C_{60}/SiO_2 powder and the C_{60} powder.

197 The effect of the ascorbic acid concentration on the decomposition of methyl orange was observed (Figure S3a). Methyl orange was completely decomposed by the photocatalyst in the presence of ascorbic acid (>2.0 mM) under visible light irradiation for 15 min. The effects of the quantity of the C_{60}/SiO_2 powder on the decomposition (%) of methyl orange was also investigated (Figure S3b). Methyl orange was efficiently decomposed in the presence of the powder (>20 mg/10 mL). Based on these results, it was found that the optimum concentrations of ascorbic acid and the C_{60}/SiO_2 powder were 2.0 mM and 20 mg/10mL, respectively.

Figure 3 shows the temporal absorption changes of the filtered solution by the photocatalytic

process. The plot of $-\ln C/C_0$ versus time shows an approximate linearity, which indicated that the

- 206 photoreaction of methyl orange with C_{60}/SiO_2 in the presence of ascorbic acid (0.50 mM) fitted a
- 207 pseudo-first-order kinetic model (-ln $C/C_0 = 0.0837 t$, R²=0.9949; Fig. 3).

205

The mass spectrum of the filtered solution after the irradiation (15 min) is shown in Figure 4.

209 The product of the photoreaction was assigned to *N*,*N*-dimethyl-*p*-phenylenediamine (1) based on

- 210 ESI/MS and LC/MS measurements. The retention time of the product in the LC/MS measurement in
- 211 the selected ion monitoring mode (m/z 137) was in agreement with that of the standard sample 1,

212 therefore, it was concluded that one of the products of this reaction was

- 213 N,N-dimethyl-p-phenylenediamine. The ion peak at m/z 172 by ESI/MS in the negative ion mode
- also corresponded to the product of the photoreaction. The peak was assigned to sulfanilic acid
- 215 (molecular weight: 173). The retention time of the product in the LC/MS measurement in the

216	selected ion monitoring mode (m/z 172) was in agreement with that of the standard sulfanilic acid (2),
217	and it was concluded that one of the products of this reaction was sulfanilic acid. The yields of 1 and
218	2 were 88% and 55%, and the conversion of methyl orange was 96% (Table 1, entry 7). The yield of
219	2 was low compared to the yield of 1 and the conversion of methyl orange. The result indicates that
220	the product 2 underwent further reactions, and there are several products, which were not detected
221	by ESI/MS. We also measured the filtered reaction solution by ion chromatography. As a result, the
222	formations of NO ₂ ⁻ , NO ₃ ⁻ , and SO ₄ ²⁻ were not observed. It is probable that the oxidation of ascorbic
223	acid in the photoreaction results in the formation of dehydroascorbic acid as a similar photoreaction
224	using ascorbic acid as an electron donor [28]. However, when the filtered solution after the
225	photoreaction was injected into ESI source in the positive or negative ion modes, no ions assignable
226	to dehydroascorbic acid were observed (Fig. 4 for the positive ion mode). It is possible that further
227	reactions of dehydroascorbic acid occur and result in the formation of products that are not detected
228	by ESI/MS.
229	The decomposition of methyl orange using the C_{60} /SiO ₂ powder as a photocatalyst also occurred
230	by the sunlight irradiation. The decomposition (%) of methyl orange was 97% by the sunlight

- 231 irradiation for 25 min (Table 1, entry 15).
- 232 The photodecomposition of methyl orange in water using the same C_{60}/SiO_2 powder was 233 repeated five times to observe the reusability of the C_{60}/SiO_2 powder (Figure S4). The

decompositions (%) of methyl orange were over 95% and did not significantly decrease throughout

235 the photoreaction cycles (1-5 times). Therefore, the C_{60}/SiO_2 powder can be repeatedly used as a

236 photocatalyst to decompose methyl orange in water. This result suggests the possibility that the

237 powder can be continuously use for a long period as a photocatalyst.

238 3.3 Photodecomposition of methyl orange in the presence of the C_{60} nanoparticles

239 We prepared a suspension of the C_{60} fullerene nanoparticles, and studied the potential of the particles 240 as a photocatalyst for the decomposition of methyl orange by visible light irradiation. The adsorption 241 spectrum of the suspension of C₆₀ was measured, and the suspension revealed absorption bands in 242 the visible light region (400-700 nm) similar to those of the C₆₀/SiO₂ powder. The size distribution 243 of the C₆₀ particle in the suspension was 100-500 nm, and the average diameter was 192 nm. In the 244 case of the visible light irradiation (2 hours) of a methyl orange aqueous solution (4.2 mL) containing the C₆₀ nanoparticles (16.8 µg) and ascorbic acid (2.0 mM), the decomposition of the 245 246 methyl orange was observed. The decomposition (%) of methyl orange was 75%, which was lower 247 than that using the C_{60}/SiO_2 powder as a photocatalyst. This result would be due to the quantity of 248 C_{60} in the reaction system. Product 1 and 2 were also detected in the solution after irradiation, and 249 the yields of 1 and 2 were 100 and 56%, respectively. Based on these results, it is suggested that the 250 photocatalytic reaction using C₆₀ nanoparticles is similar to that by the C₆₀/SiO₂ powder, and the 251 efficiency of the photoreaction by C_{60}/SiO_2 is higher than that of C_{60} nanoparticles.

252 3.4 Mechanism of photodecomposition of methyl orange by the C_{60} /SiO₂ powder

253 The color of the methyl orange solution turned from orange to red by the addition of ascorbic acid, 254 because methyl orange is protonated by the addition of ascorbic acid and forms the quinoid structure. 255 The protonated methyl orange shows a stronger electron-acceptability compared to the neutral form 256 of methyl orange. Recently, it was reported that methyl orange was decomposed into products 257 containing N,N-dimethyl-p-phenylenediamine by visible light-irradiated natural sphalerite 258 (conduction band: -1.4 V vs SCE; Eg: 2.95 eV) in the presence of ascorbic acid (the oxidative 259 potential: 0.127 V vs NHE) [28]. The mechanism of the reaction was proposed as follows: methyl 260 orange (the reduction potential: -(0.058 pH) V vs. SCE) was reduced by the excited-state natural 261 sphalerite, and destruction of the azo bond resulted in the formation of 1. 262 Based on the photoreaction using natural sphalerite and the results from the present 263 photoreaction of the C_{60} /SiO₂ powder, we have proposed a possible mechanism for the photoreaction of methyl orange as shown in Figure 5. The first step is the photoexcitation of the C₆₀ fullerene on 264 265 the surface of the C_{60}/SiO_2 powder. It has been reported that the triplet state of C_{60} fullerene is formed with a quantum yield of 1.0 [29], and it is probable that the excited C_{60} fullerene on the 266 267 surface of the C_{60}/SiO_2 powder undergoes an intersystem crossing from the singlet to triplet state. In 268 addition, it was reported that $E_{red}(C_{60})$ was -0.42 V (vs SCE, solvent benzonitrile) and $E_{S}({}^{1}C_{60})=1.9$ 269 eV [29, 30]. The next step is the electron transfer from the excited C_{60} to the protonated methyl

orange (quinoid structure) and from ascorbic acid to the excited C_{60} . The radical species of methyl orange undergo bond cleavage to generate the product **1**. The efficiencies of the reaction at pH 6-10 were significantly low compared to the reaction at pH 4 (decomposition (%) of methyl orange at pH 6 was 4.8%). These results support the proposed mechanism.

It has been reported that the irradiation of C_{60} fullerene forms reactive oxygen species in the presence of oxygen [31, 32]. This pathway leads to the electron transfer from donors to the excited-state C_{60} , forming the C_{60} radical anion [29]. Next, the superoxide anion radical (O_2^{-1}) can

278 The decomposition (%) of methyl orange slightly decreased by the removal of oxygen (Table 1,

entries 6 and 8 or entries 7 and 9). This result would be caused by the reaction of methyl orange with

280 the superoxide anion radical formed by electron transfer between the C_{60} radical anion and oxygen.

The addition of 2-propanol slightly decreased the decomposition (%) of methyl orange (Table 1,

entries 6, 7, 10 and 11). Furthermore, for the addition of *tert*-butylalcohol, the decomposition (%) of

283 methyl orange also decreased (Table 1, entries 6, 7, 12 and 13). These results also indicated that the

- formation of the superoxide anion radical affects the photodecomposition of methyl orange [33].
- 285 Recent study has suggested that the photoinduced electron transfer from a photoexcited dye to
- 286 TiO₂ by the irradiation of visible light lead to the decomposition of the dye [34]. Methyl orange was
- 287 not decomposed by the visible light irradiation (15 min) of a methyl orange aqueous solution (pH 4)

289 adjusted by HCl. This result indicates that the photodecomposition of methyl orange is not occurred 290 by only effect of pH change, and the reaction does not proceed without ascorbic acid. Furthermore, 291 methyl orange was not decomposed by the visible light irradiation of a methyl orange solution (pH 292 4) containing TiO_2 in the absence of ascorbic acid. In the case of the irradiation of sunlight (15 min), 293 methyl orange was decomposed by using TiO₂ as a photocatalyst in the absence of ascorbic acid (pH 294 4, decomposition (%): 28.6%). The photodecomposition of methyl orange would be induced by the 295 ultraviolet radiation of sunlight. In addition, an earlier study has shown that mixing TiO_2 with 296 ascorbic acid resulted in the formation of charge-transfer bidenate complex [35]. 297 3.5 Continuous flow system of photodecomposition of methyl orange using C_{60} /SiO₂ packed column 298 With a aim to apply the C_{60}/SiO_2 powder as the photocatalyst for water clean-up, a continuous flow 299 system for the photoreaction of methyl orange with the C_{60}/SiO_2 powder was studied. Figure 6 is a 300 schematic of the continuous flow system for the photodecomposition of methyl orange by the 301 C_{60}/SiO_2 powder. The conditions for the system, such as the flow rate of the sample solution, and 302 continuous reaction time, were changed, and the changes in the decomposition (%) of methyl orange 303 were investigated.

containing C_{60}/SiO_2 in the absence of ascorbic acid. The pH value of the aqueous solution was

288

304

305 irradiation. When the initial concentration of ascorbic acid in the solution was 2.0 mM, the

The continuous decolorization of the sample solution was achieved by the visible light

306	decomposition (%) of methyl orange was around 90% at the flow rate 0.70 mL min ⁻¹ by the
307	photoreaction for 1 hour. Products 1 and 2 were detected in the solution under the continuous flow
308	condition. The decomposition of methyl orange through the column did not occur in the dark. The
309	mobile phase passed through the column in 35 sec at this flow rate. The continuous decomposition
310	of methyl orange was achieved, because the reaction of methyl orange by photoinduced electron
311	transfer with the C_{60}/SiO_2 powder is very rapid. When the flow rates were 1.1 or 1.4 mL min ⁻¹ , the
312	decompositions (%) of methyl orange were 88 and 74%, respectively. The decrease in the
313	decomposition (%) of methyl orange compared to the flow rate at 0.70 mL min ⁻¹ would be due to the
314	insufficient holding time of methyl orange in the column.

- 315 A similar reaction occurred by the sunlight irradiation (the decomposition (%) of methyl orange:
- 316 89% at the flow rate 0.80 mL min⁻¹). This result indicated that the present method is useful as a

317 novel water clean-up technology without using fossil energy.

318 4. Conclusion

319 The irradiation of visible-light led to the decomposition of methyl orange using C_{60}/SiO_2 powder

- 320 in the presence of ascorbic acid. The reaction also occurred by the irradiation of sunlight, therefore,
- 321 indicating that the C_{60}/SiO_2 powder could be used as a novel sunlight-sensitized photocatalyst for the
- 322 decomposition of pollutants.
- 323 No additional reactions of the products (1 and 2) were observed under the condition described

above. The development of the method to mineralize the products is needed together with theestablishment of the presented method.

326 In this study, the detachment of C₆₀ from the C₆₀/SiO₂ powder was not confirmed. However, 327 there is the possibility that the fullerene cluster is desorbed using the powder for a long time. The 328 toxic effects of fullerene on aquatic organisms have been extensively studied in order to understand 329 its environmental risk when used. For example, Oberdörster reported the toxicity of C₆₀ cluster 330 dispersed in water for fish [36]. However, in most of these studies, there is the possibility that the 331 test solution contains a trace amount of THF, which was used for the preparation of the particle, and 332 the residual THF is related to the toxic effects of the C_{60} cluster. In fact, Deguchi et al. reported that 333 C₆₀ nanoparticles prepared without THF or other organic solvents revealed no toxic effects on the 334 growth of *E. coli* (the concentration of C_{60} in a nutrient-poor minimal Davis medium: 5 µg mL⁻¹ of 335 C₆₀ nanoparticle) [24].

In order to evaluate the utility of the C_{60}/SiO_2 powder, it is important to study the decomposition of other environmental pollutants by the C_{60}/SiO_2 powder as a photocatalyst. We have already confirmed that methyl red was decomposed by C_{60}/SiO_2 powder under the same condition described above. In addition, further studies on the influences of various environmental matrices on the reaction using the C_{60}/SiO_2 powder are needed. We observed the photodecomposition of methyl orange in seawater using the C_{60}/SiO_2 powder. The sunlight irradiation to a methyl orange seawater

342	solution (25 $\mu M)$ in the presence of the C_{60}/SiO_2 powder (20 mg) and ascorbic acid (5.0 mM)
343	resulted in the decomposition of methyl orange. The decomposition (%) of methyl orange was 93%
344	by the irradiation of sunlight for 10 min.
345	Furthermore, the necessity of ascorbic acid for the reaction is questionable from the viewpoint of
346	water purification because of cost-effectivity and the load of ascorbic acid to environment. The next
347	step in this study is to develop the photoreaction system of the C_{60}/SiO_2 powder using other
348	compounds instead of ascorbic acid as an electron donor.
349	Acknowledgements
350	This work was supported by the Shinshu University Satellite Venture Business Laboratory (SVBL).
351	We wish to thank Ms. Keiko Kakegawa (SVBL) for her generous SEM measurement.
352	
353	References:
354	[1] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature 318 (1985) 162-163.
355	[2] Y. Chai, T. Guo, C. Jin, R. E. Haufler, L. P. Felipe, J. Fure, L. Wang, J. M. Alford, R. E. Smalley,
356	J. Phys. Chem. 95 (1991) 7564-7568.
357	[3] H. Imahori, Y. Sakata, Adv. Matrial 9 (1997) 537-546.

- [4] J. W. Arbogast, A. O. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alvarez, S. J. 358
- Anz, R. L. Whetten, J. Phys. Chem. 95 (1991) 11-12. 359

- 360 [5] R. V. Bemasson, E. Bienvenue, M. Dellinger, S. Leac, P. Setat, J. Phys. Chem. 98 (1994)
 361 3492-3500.
- 362 [6] C. S. Foote, Topics Current Chem. 169 (1994) 347-363.
- 363 [7] T. Konishi, M. Fujitsuka, O. Ito, Y. Toba, Y. Usui, J. Phys. Chem. A 103 (1999) 9938-9942.
- 364 [8] F. Prat, C. Mart, S. Nonell, X. Zhang, C. Foote, R. Gonza, L. M. Jose, L. Bourdelande, J. Font, Phys.
- 365 Chem. Chem. Phys. 3 (2001) 1638-1643.
- 366 [9] J. P. Kamat, T. P. A. Devasagayam, K. I. Priyadarsini, H. Mohan, J. P. Mittal, Chemico-Biol.
- 367 Interact. 114 (1998) 145-159.
- 368 [10] C. T. Jafvert, P. P. Kulkarni, Environ. Sci. Technol. 42 (2008) 5945-5950.
- 369 [11] S. Mu, Y. Long, S.-Z. Kang, J. Mu, Catal. Commun. 11 (2010) 741-744.
- 370 [12] K. J. Moor, J.-H. Kim, Environ. Sci. Technol. 48 (2014) 2785-2791.
- 371 [13] S. Deguchi, R. G. Alargova, K. Tsuji, Langmuir 17 (2001) 6013-6017.
- 372 [14] K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, T. Oshima, ACS Nano 2 (2008) 327-333.
- 373 [15] G. D. Panagiotou, M. D. Tzirakis, J. Vakros, L. Loukatzikou, M. Orfanopoulos, C. Kordulis, A.
- 374 Lycourghiotis, Appl. Catal. A 372 (2010) 16-25.
- 375 [16] J. Kyriakopoulos, A. T. Papastavrou, G. D. Panagiotou, M. D. Tzirakis, K. S. Triantafyllidis, M.
- 376 N. Alberti, K. Bourikas, C. Kordulis, M. Orfanopoulos, A. Lycourghiotis, J. Mol. Catal. A
- 377 381(2014) 9-15.

- 378 [17] P. Piotrowski, J. Pawłowska, J. Pawłowski, A. Więckowska, R. Bilewicz, A. Kaim, J. Mater.
- 379 Chem. A 2 (2014) 2353-2362.
- 380 [18] S. A-Qaradawi, S. R. Salman, J. Photochem. Photobiol. A: Chem. 148 (2002) 161–168.
- 381 [19] L.-C. Chen, T.-C. Chou, Ind. Eng. Chem. Res. 33 (6) (1994) 1436–1443.
- 382 [20] Y. Li, X. Li, J. Li, J. Yin, Water Res. 40 (2006) 1119-1126.
- 383 [21] X. H. Wang, J.-G. Li, H. Kamiyama, Y. Moriyoshi, T. Ishigaki, J. Phys. Chem. B 110 (13)

384 (2006) 6804–6809.

- 385 [22] G. Grandos-Oliveros, E. A. Páez-Mozo, F. M. Ortega, C. Ferronato, J.-M. Chovelon, Appl.
- 386 Catal. B: Environ. 89 (2009) 448-454.
- 387 [23] W. L. F. Armarego, D. D. Perrin, Purification of Laboratory Chemicals, 4th ed.; 1996,
- 388 Butterworth-Heinemann: Oxford.
- 389 [24] S. Deguchi, S. Mukai, M. Tsudome, K. Horikoshi, Adv. Mater. 18 (2006) 729-732.
- 390 [25] M. Matus, H. Kuzmany, Appl. Phys. A56 (1993) 241-248.
- 391 [26] S. D. Snow, J. Lee, J.-H. Kim, Environ. Sci. Technol. 46 (2012) 13227-13234.
- 392 [27] G. R. Seely, J. Phys. Chem. 69 (1965) 2779-2782.
- 393 [28] Y. Li, A. Lu, S. Jin, C. Wang, J. Hazard. Material. 170 (2009) 479-486.
- 394 [29] J. W. Arbogast, C. S. Foote, M. Kao, J. Am. Chem. Soc. 114 (1992) 2277-2279.
- 395 [30] D. M. Guldi, M. Prato, Acc. Chem. Res. 33 (2000) 695-703.

- 396 [31] W.-C. Hou, C. T. Jafvert, Environ. Sci. Technol. 43 (2009) 5257-5262.
- 397 [32] Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu, T. Nagano,
- 398 J. Am. Chem. Soc. 125 (2003) 12803-12809.
- 399 [33] K. J. A. Davis, M. E. Delsignore, J. Biol. Chem. 262 (1987) 9908-9913.
- 400 [34] X. Yan, T. Ohno, K. Nishijima, R. Abe, B. Ohtani, Chem. Phys. Lett. 429 (2006) 606-610.
- 401 [35] Y. Ou, J.-D. Lin, H.-M. Zou, D.-W. Liao, J. Mole. Catal. C 241 (2005) 59-64.
- 402 [36] E. Oberdörster, Environ. Health Perspect. 112 (2004) 1058–1062.
- 403
- 404 Figure captions
- 405 **Fig.1** a) Photograph and b) diffuse reflectance spectrum of C_{60}/SiO_2 powder.
- 406 **Fig.2** TEM image of the C_{60}/SiO_2 powder.
- 407 Fig.3 UV spectral changes in the degradation of methyl orange by the photocatalytic process. Inset:
- 408 Pseudo-first order plots of degradation of methyl orange vs. irradiation time. The initial
- 409 concentrations of methyl orange and ascorbic acid were 25 μ M and 0.50 mM, respectively. The
- 410 sample volume was 10 mL, and the additive amount of the C_{60} /SiO₂ powder was 20 mg.
- 411 Fig.4 Mass spectrum of the filtered solution after the photoreaction of methyl orange with C_{60}/SiO_2
- 412 powder for 15 min (ESI in the positive ion mode). The initial concentrations of methyl orange and
- 413 ascorbic acid were 25 μ M and 0.50 mM, respectively. The sample volume was 10 mL, and the

- 414 amount of C_{60} /SiO₂ powder was 20 mg.
- 415 Fig.5 A possible mechanism for the photodecomposition of methyl orange in the presence of
 416 aqueous C₆₀ cluster.
- 417 Fig.6 An outline of the continuous flow system for the photo-decomposition of methyl orange by the
 418 C₆₀/SiO₂ powder.
- 419
- 420 Fig. S1 a) Raman spectrum of the C_{60} /SiO₂ powder. b) Raman spectrum of the C_{60} powder.

421 **Fig. S2** The electron diffraction pattern of the adhesive cluster on the C_{60} /SiO₂ powder.

- 422 Fig. S3 a) Effects of ascorbic acid concentration on the decomposition (%) of methyl orange using
- 423 the C_{60}/SiO_2 powder as a catalyst. The irradiation time was 15 min. The initial concentration of
- 424 methyl orange was 25 μ M. The sample volume was 10 mL, and the additive amount of the C₆₀/SiO₂
- 425 powder was 20 mg. b) Effects of the quantity of the C_{60}/SiO_2 powder on the photodecomposition of
- 426 methyl orange. The irradiation time was 15 min. The initial concentrations of methyl orange and
- 427 ascorbic acid were 25 μ M and 0.50 mM, respectively. The sample volume was 10 mL.
- 428 Fig. S4 Photodecomposition (%) of methyl orange in water using the same C_{60}/SiO_2 powder (1-5
- 429 cycles). The initial concentrations of methyl orange and ascorbic acid were 25 μ M and 0.50 mM,
- 430 respectively. The sample volume was 10 mL, and the initial amount of C_{60}/SiO_2 powder was 20 mg.
- 431

Fig. S1

Table 1 Photodecomposition (%) of methyl orange with Cee/SIC	Table 1
--	---------

Entry	Additives	Atmosphere	Light	Irradiation time (min)	Decomposition (%)
1	C ₆₀ /SiO ₂	Air	Visible Light (>420 nm)	25	0.80
2	Ascorbic acid (AA)	Air	Visible Light (>420 nm)	25	4.0
3	None	Air	Visible Light (>420 nm)	25	0.0
4	C ₆₀ /SiO ₂	Air	Dark	25	0.40
5	C ₆₀ /SiO ₂ +AA	Air	Dark	25	5.2
6	C ₆₀ /SiO ₂ +AA	Air	Visible Light (>420 nm)	15	85
7	C ₆₀ /SiO ₂ +AA	Air	Visible Light (>420 nm)	25	96
8	C ₆₀ /SiO ₂ +AA	N ₂	Visible Light (>420 nm)	15	70
9	C ₆₀ /SiO ₂ +AA	N ₂	Visible Light (>420 nm)	25	95
10	C ₆₀ /SiO ₂ +AA+2-propanol ^b	Air	Visible Light (>420 nm)	15	73
11	C ₆₀ /SiO ₂ +AA+2-propanol ^b	Air	Visible Light (>420 nm)	25	95
12	C ₆₀ /SiO ₂ +AA+tert-butyl alcohol ^c	Air	Visible Light (>420 nm)	15	68
13	C ₆₀ /SiO ₂ +AA+tert-butyl alcohol ^c	Air	Visible Light (>420 nm)	25	84
14	C ₆₀ /SiO ₂ +AA	Air	Sunlight	15	86
15	C ₆₀ /SiO ₂ +AA	Air	Sunlight	25	97
16	C ₆₀ /SiO ₂ +AA	N_2	Sunlight	15	85
17	C ₆₀ /SiO ₂ +AA	N_2	Sunlight	25	95
18	SiO ₂ +AA	Air	Visible Light (>420 nm)	25	4.0

^a Initial concetrations of methyl orange and ascorbic acid were 25 μ M and 0.50 mM, and the amount of C₆₀/SiO₂ powder was 20 mg/10 mL.

^b The concentration of 2-propanol was 0.1 M. 2-propanol was used as a radical scavenger. ^c The concentration of *tert*-butyl alcohol was 0.1 M. *Tert*-butyl alcohol was used as a radical scavenger.

522