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The flapping flight of tiny insects such as flies or larger insects like butterflies is of funda-
mental interest not only in biology itself but also in its practical use for the development
of micro air vehicles. It is known that a butterfly flaps downward for generating the lift
force and backward for generating the thrust force. In this study, we consider a simple
butterfly-like flapping wing-body in which the body is a thin rod and the rectangular
rigid wings flap in a simple motion. We investigate lift and thrust generation of the model
by using the immersed boundary-lattice Boltzmann method. Firstly, we compute the lift
and thrust forces when the body of the model is fixed for the Reynolds numbers in the
range of 50 - 1000. In addition, we estimate the supportable mass for each Reynolds
number from the computed lift force. Secondly, we simulate free flights when the body
can only move translationally. It is found that the expected supportable mass can be
supported even in the free flight except when the mass of the body relative to the mass
of the fluid is too small, and the wing-body model with the mass of actual insects can
go upward against the gravity. Finally, we simulate free flights when the body can move
translationally and rotationally. It is found that the body has a large pitch motion and
consequently gets off-balance. Then, we discuss a way to control the pitching angle by
flexing the body of the wing-body model.
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1. Introduction

The flapping flight of tiny insects such as flies or larger insects like butterflies is of fun-
damental interest not only in biology itself but also in fluid dynamics and aerodynamics
related to a propulsion mechanism of micro air vehicles (MAVs). Actually, it was reported
that Ma et al. (2013) achieved free flights by an insect-scale flapping-wing robot modeled
loosely on the morphology of flies (a robotic fly). Such a technological application is also
a motivation for studying the flapping flight.
In the flapping flight, the lift and thrust forces must be generated for supporting weight

against the gravity and for driving forward, respectively. In order to estimate the aerody-
namic forces, many efforts with analytical, experimental, and computational approaches,
have been made over 50 years. In many studies on the flapping flight, not only the wing
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motion but also the structure and the flexibility of the wing are regarded as impor-
tant factors for lift and thrust generation and enhancement (see Sane 2003; Shyy et al.
2008, 2010). Several wing models mimicking actual insects have been used to estimate the
aerodynamic forces. In analytical approaches using the quasi-steady assumption, in which
the instantaneous aerodynamic forces on a flapping wing are assumed to be equivalent
to those for steady motion at the same instantaneous velocity and angle of attack (see
Ellington 1984), the aerodynamic forces can be approximately estimated by using the
morphological and kinematic data for various insects. In experimental approaches, the
flow field as well as the aerodynamic forces are measured by constructing mechanically
scaled models which mimic the wing motion and the wing structure of real insects (e.g.
Ellington et al. 1996; Dickinson et al. 1999; Birch & Dickinson 2001). Zhao et al. (2010)
investigated the effect of the wing flexibility by using wings of variable flexural stiffness.
In addition, Tanaka & Shimoyama (2010) fabricated an artificial butterfly mimicking
a swallowtail butterfly and analyzed its flights using images taken with a high-speed
video camera. Over the last two decades, computational approaches have taken a com-
plementary role to analytical and experimental approaches (e.g. Liu et al. 1998; Liu &
Kawachi 1998; Aono et al. 2008; Liu 2009). In addition, Nakata & Liu (2012) developed
a robust and efficient integrated computational model with flexible wings. More recently,
Yokoyama et al. (2013) simulated forward flights of a butterfly modeled as a four-link
rigid-body system consisting of a thorax, an abdomen, and left and right wings.
As seen above, most of studies on the flapping flight are aimed at making more com-

plete wing models which have more realistic motion, structure, and flexibility. In partic-
ular, recent trend is to incorporate the wing flexibility in wing models. In the present
study, however, in order to reveal the contribution of each factor to the lift and thrust
generation and enhancement, we consider a simple wing with a rectangular shape and
without flexibility. The following primary question still remains interesting: How large
lift and thrust forces can a simple wing model generate ? Actually, the above question
has been answered partially in Sun (2005), which reported that a simple wing model
with rectangular wings and simplified dragonfly’s motion can generates enough lift force
for supporting an actual insect weight. However, it is still unclear whether the enough
lift force can be generated even in free flights of the wing model. In order to answer the
above question, we construct a simple wing model which can fly freely. In this study, we
focus on a butterfly-like wing motion where the wings flap downward and backward for
generating the lift and thrust forces, respectively. In addition, the model has infinitely-
thin rectangular wings and a rod-shaped body. The flexibility of the wings and the body
is neglected. Hereafter, we call the wing-body model a butterfly-like flapping wing-body
model. We attempt to answer the above question by a computational approach since
with recent advances in computational methods we can easily and accurately compute
complex flows around flapping wings.
From the viewpoint of numerical simulations, the flapping wing is a typical example of

moving boundary problems. Body-fitted or unstructured-grid methods have commonly
been used to simulate the moving boundary problems. However, the algorithms of the
methods are generally complicated, and the computational costs of the methods are
high. In recent years, various immersed boundary methods (IBMs) have been proposed
to simulate flows with moving boundaries in the Cartesian grid (e.g. Mittal & Iaccarino
2005). The IBM is a simple approach for the moving boundary problems, although some
techniques are required to satisfy the no-slip boundary condition at the moving boundary.
On the other hand, the lattice Boltzmann method (LBM) has been developed into an
alternative and promising numerical scheme for simulating viscous fluid flows in the
Cartesian grid without solving the Poisson equation for pressure field (e.g. Succi 2001).
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Since both of the above methods are based on the Cartesian grid, the LBM combined
with the IBM (so-called IB-LBM) is well suited to simulations of moving boundary
problems, and several approaches of the IB-LBM have already been presented (e.g. Feng
& Michaelides 2004, 2005; Shu et al. 2007; Sui et al. 2008; Wu & Shu 2010; Kruger et al.
2011). The authors also proposed a new IB-LBM (Suzuki & Inamuro 2011), which is more
accurate for satisfying the no-slip boundary condition at a moving boundary than other
IB-LBMs. The IB-LBM (Suzuki & Inamuro 2011) has already been applied to researches
on flows and lift generation by the 2D symmetric flapping wing (Ota et al. 2012; Kimura
et al. 2014) and by a dragonfly-like flapping wing-body model (Minami et al. 2015).

In this study, we apply the IB-LBM (Suzuki & Inamuro 2011) to the investigations of
lift and thrust generation by the butterfly-like flapping wing-body model. In addition, we
simulate free flights of the wing-body model. Most researches on flapping flight assume a
steady state where insects hover or drive forward at a constant speed. However, a more
important feature of the flapping flight is accelerated motions such as sudden starting,
halting, and turning. In the accelerated motions, a take-off from a resting state is espe-
cially important. In our simulations, we calculate a take-off and a transitional motion to a
steady forward flight. The following four kinds of simulations are performed: (i) the com-
putation of aerodynamic forces, (ii) free flight (without rotation) simulations, (iii) free
flight (with rotation) simulations, and (iv) the computation for controlling the rotational
motion. In the simulation (i), we compute the flow induced by the flapping wings, the
lift and thrust forces acting on the wings, and the power expended in moving the wings
against the aerodynamic forces for Reynolds numbers in the range of 50-1000, when the
body of the model is fixed. In addition, we estimate the supportable mass by using the
computed lift force. In the simulation (ii), we simulate free flights when the body can
only move translationally in order to find the conditions of the Reynolds number and the
mass where the model can overcome the gravity. In the simulation (iii), we simulate free
flights when the body can move translationally and rotationally in order to investigate
the effect of the rotation of the body. In the simulation (iv), we discuss a way to control
the rotation of the body by flexing the body of the model.

The paper is organized as follows. In §2, we construct the butterfly-like flapping wing-
body model. In §3, we explain the governing equations and parameters of the system.
The computational conditions are presented in §4, and results and discussions are shown
in §5. We finally conclude in §6.

2. Butterfly-like flapping wing-body model

2.1. Components

The wing-body model is composed of the same two wings and a body. The wing is
infinitely-thin and has a rectangular shape (see figure 1a). The rectangular wing has
the length L and the width c. We define the span direction along the length L and the
chord direction along the width c. In this study, the aspect ratio, defined as the wing
span squared divided by the wing area (e.g. Shyy et al. 2008), AR = 2L/c is set to 2,
i.e. L = c. We assume that the mass of the wing can be neglected, since in general the
mass of actual insects’ wing is much smaller than that of their body. In order to neglect
the effect of the wing flexibility, we assume that the wing is rigid.

The body is described as a straight infinitely-thin rod with the length Lb. We set
Lb = c for simplicity. The body has uniform (line) density ρb. Therefore, the center of
mass of the body is at the middle point of the body, and the total mass of the body is
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Figure 1. Illustration of (a) a rectangular wing and (b) the wing-body model with two
rectangular wings and a rod-shaped body.

Figure 2. Two axes fixed to the body (X-Y -Z) and the right wing (ξ-η-ζ).

M = ρbLb. The two wings are connected to the body in a manner such that the middle
point of the wing root is located at that of the body (see figure 1b).

2.2. Wing motion

The wing motion relative to the body is described by the rotation of the coordinate
system fixed to the wing relative to the body. At first, we define the coordinate systems
(see figure 2). Let the coordinate system fixed to the body be Σb, and its origin be located
at the center of mass of the body. The axes of Σb are denoted by X, Y , and Z, where
the X-axis is parallel to the body. We define the forward direction relative to the body
as the positive direction of the X-axis, the right direction as the positive direction of
the Y -axis, and the downward direction as the positive direction of the Z-axis. Let the
coordinate system fixed to the right wing be Σw, and its origin be located at the middle
point of the wing root. Therefore, the origin of Σw is coincident with that of Σb. The axes
of Σw are denoted by ξ, η, and ζ, where the ξ-axis is parallel to the chord direction and
the η-axis is parallel the span direction. Since the motion of the left wing is symmetrical
to the right wing about the Z-X plane, the definition of the coordinate system fixed to
the left wing is not required.
We describe the rotation of Σw relative to Σb by the 3-2-1 Euler angle. Let eX , eY ,

and eZ be three unit vectors along the X-, Y -, and Z-axis, respectively, and eξ, eη,
and eζ be three unit vectors along the ξ-, η-, and ζ-axis, respectively. The vector array
[eξ, eη, eζ ] is given by the successive orthogonal transformations of [eX , eY , eZ ] as
below:

[eξ, eη, eζ ] = [eX , eY , eZ ]S3(0)S2(α(t))S1(−θ(t)), (2.1)
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where S3, S2, and S1 are the orthogonal matrices given by

S3(ϕ) =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 , (2.2)

S2(ϕ) =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 , (2.3)

S1(ϕ) =

 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 . (2.4)

The angles α(t) and θ(t) in equation (2.1) are the attacking angle and the flapping angle
at time t, respectively, given by

α(t) =
αm

2

[
1 + cos

(
2π

T
t+ γ

)]
, (2.5)

θ(t) = θm cos

(
2π

T
t

)
, (2.6)

where αm is the maximum attacking angle, θm is the flapping amplitude corresponding
to the half of the stroke amplitude, T is the period of flapping motion, and γ is the phase
shift．In order to make a butterfly-like wing motion, we set γ = π/2. Note that the wings
are initially located at the most upward. In this study, θm is fixed to 45◦, and thus the
wing motion is changed only by αm. As an example, the wing motion with αm = 40◦ is
shown in figure 3.

In this model, the stroke plane angle is changed by the attacking angle α(t), which is the
inclined angle of the wing root relative to the body. However, an actual butterfly changes
the stroke plane angle by changing the angle of its body (as for the actual butterfly’s
kinematics, see Sunada 1993; Huang & Sun 2012; Yokoyama et al. 2013). Since the lift
and thrust forces by the body motion are considered to be negligibly small, the difference
between the present flapping way and the actual butterfly flapping way essentially gives
no effect on estimating the forces generated by the flapping wings and the body.

3. Governing equations

We consider the motion of the butterfly-like flapping wing-body model in the earth’s
atmosphere and gravity. Since tiny insects move at low speed, the compressibility of the
air can be neglected. Hence, we consider the incompressible Navier–Stokes equations for
the fluid motion. The motion of the wing-body model is composed of the wing motion
and the body motion. The wing motion is prescribed relative to the body as shown in
previous section. As above-mentioned, the mass of the wings is neglected in the wing-
body model, and the aerodynamic forces generated by the wings act on the body through
the connecting point. The body motion is governed by the equation of motion with the
aerodynamic forces and the gravitational force.
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Figure 3. (a) The illustration of the wing motion and (b) the time variations of the attacking
angle α and the flapping angle θ with αm = 40◦ during one stroke.

3.1. Fluid motion

The fluid motion around the wings and the body is governed by the incompressible
Navier–Stokes equations as follows:

∇ · u = 0, (3.1)

Du

Dt
= − 1

ρf
∇p+ ν∇2u, (3.2)

where u is the fluid velocity, p is the pressure, ρf is the density of the fluid, and ν is the
kinematic viscosity of the fluid. We consider the air at room temperature 20◦C as the
fluid, that is, ρf = 1.205 [kg/m3] and ν = 1.512 × 10−5 [m2/s]. It should be noted that
the gravitational term is not appeared in equation (3.2). This is because the pressure
p includes the gravitational potential. The no-slip condition should be satisfied on the
surface of the wing-body model, i.e. the fluid velocity must be equal to the velocity of
the wings and the body.
In this study, we take the mean wing tip speed defined by Utip = 4θmL/T as the char-

acteristic flow speed, and the wing length L as the characteristic length. The governing
parameter of the above equations is the Reynolds number Re given by

Re =
UtipL

ν
. (3.3)

It should be noted that another definition of the Reynolds number based on the mean
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wing chord length has been used for studying hovering flights conventionally (see Shyy
et al. 2008). On the other hand, several studies on butterfly’s flights (e.g. Ota et al.
2012; Yokoyama et al. 2013) have used the definition of the Reynolds number based on
the wing length in the same way as equation (3.3).

3.2. Body motion

The body motion is described by the translational motion of the origin of Σb and the
rotational motion of Σb relative to the coordinate system fixed to the space Σs. The
origin of Σb, i.e. the center of mass of the body is denoted by Xc. In the followings,
vectors observed from Σb have a pre-superscript b, while vectors observed from Σs have
no pre-superscript. Let the axes of Σs be x, y, and z and ex, ey, and ez be three unit
vectors along the axes, where the positive direction of the y-axis is the upward direction.
Therefore, the gravitational acceleration vector is given by G = −Gey where G = 9.807
[m/s2]. The unit vectors eX and eZ of Σb are initially coincident with ex and −ey of Σs,
respectively. The vector array [eX , eY , eZ ] is given by an orthogonal transformation of
[ex, ey, ez] as below:

[eX , eY , eZ ] = [ex, ey, ez]S(Q(t)), (3.4)

where S(Q) is an orthogonal matrix represented by a unit quaternionQ = (q0, q1, q2, q3)
T

(the superscript T represents the transpose of a vector or a matrix). The detail of the
quaternion and the kinematic equations of the body are shown in appendix A.

Let Uc(t) be the velocity of Xc(t) and bΩc(t) be the angular velocity of the body.
Supposing that we obtain the total aerodynamic force Faero(t) generated by the wings
and the body and the total aerodynamic torque Taero(t) around Xc(t), Uc(t) and

bΩc(t)
are governed by the Newton–Euler equations as below:

M
dUc

dt
= Faero +MG, (3.5)

Ib
dbΩc

dt
+ bΩc × (Ib

bΩc) = S(Q)TTaero. (3.6)

where Ib is the inertia matrix observed in Σb given by

Ib =

 0 0 0
0 1

12ML2
b 0

0 0 1
12ML2

b

 . (3.7)

Note that in the present wing-body model the mass of the wings is neglected. It should
be noted that the components of the first row of Ib are all zero. This is because the body
of the present wing-body model is an infinitely thin rod, i.e. the moment of inertia about
the axis parallel to the body (the X-axis) is zero. So, we cannot consider the rotation
about the X-axis, which corresponds to the roll motion. In this study, we neglect the
roll motion, but consider the pitch motion (the rotation about the Y -axis) and the yaw
motion (the rotation about the Z-axis). Therefore, the motion of the wing-body model
has 3 degrees of freedom (DOF) in the translational motion and 2 DOF in the rotational
motion, i.e. totally 5 DOF. Note that the buoyancy force is not included in equation
(3.5), since the wing-body model has no volume.

The governing parameters of equations (3.5) and (3.6) are the non-dimensional mass
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NM and the Froude number Fr defined as

NM =
M

ρfL3
, (3.8)

Fr =
Utip√
LG

. (3.9)

Note that the non-dimensional inertia matrix NI is determined by NM in the wing-body
model as below:

NI =
Ib
ρfL5

=

 0 0 0
0 1

12NM 0
0 0 1

12NM

 . (3.10)

3.3. Governing parameters and degrees of freedom

As shown in §3.1 and §3.2, the governing parameters of the system are the Reynolds
number Re, the non-dimensional mass NM, and the Froude number Fr. In order to
calculate free flights of the wing-body model in fluid, we have to determine the three
parameters. However, the three parameters are not determined independently. Actually,
the relation between Re and Fr is given by

Fr

Re
=

ν√
L3G

. (3.11)

Being given the values of ν and G in the earth’s atmosphere and gravity, the ratio of Fr
to Re is determined by setting the wing length L. Therefore, the wing length L can be
treated as equivalent to the ratio of the Reynolds number to the Frude number in this
situation.
It should be noted that in this study the Strouhal number doesn’t appear as a govern-

ing parameter unlike many other studies on flapping wings (e.g. Triantafyllou et al. 1993;
Wang 2000; Taylor et al. 2003). The Strouhal number is defined by St = FreqLref/Uref

where Freq is the flapping frequency, Lref is the characteristic length, and Uref is the
characteristic velocity. In general, the stroke amplitude and the forward velocity are cho-
sen as Lref and Uref, respectively (e.g. Shyy et al. 2008). The Strouhal number is an
important governing parameter when the forward velocity is chosen as the character-
istic velocity. In this study, however, we use the flapping velocity as the characteristic
velocity. Therefore, the Strouhal number is not included in governing parameters here.
For the same reason, the reduced frequency (see Shyy et al. 2008, 2010) doesn’t appear
as a governing parameter. Although we can calculate the Strouhal number by using the
forward velocity obtained as a result of a free flight, it is not a parameter but a result.
The resulting Strouhal number can be seen in §5.2.2.
In this study, the following four kinds of simulations are carried out: (i) the computation

of aerodynamic forces, (ii) free flight (without rotation) simulations, (iii) free flight (with
rotation) simulations, and (iv) the computation for controlling the rotational motion.
In the simulation (i), we neglect equations (3.5) and (3.6). Hence, the motion of the
wing-body model has 0 DOF and the governing parameter of the system is only Re. In
the simulation (ii), we calculate equation (3.5) for the translational motion, but neglect
equation (3.6) for the rotational motion. Thus, the motion of the wing-body model has 3
DOF and the governing parameters of the system are Re, NM, and Fr. In the simulation
(iii), we calculate both equations (3.5) and (3.6), that is, the motion of the wing-body
model has 5 DOF and the governing parameters of the system are Re, NM, and Fr. In
the simulation (iv), we calculate Lagrange equations for the thorax-abdomen system (see
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Figure 4. Computational domain for simulations of flows around the butterfly-like flapping
wing-body model.

§5.4) instead of equations (3.5) and (3.6), while the governing parameters of the system
are Re, NM, and Fr.

4. Computational conditions

We use the IB-LBM (Suzuki & Inamuro 2011) for solving equations (3.1) and (3.2). The
motion of the body determined by equations (A 3), (A 4), (3.5) and (3.6) is computed
by the second-order Adams–Bashforth method. In calculating the aerodynamic force
and torque, the internal mass effect (see Suzuki & Inamuro 2011) is neglected, since
the wing-body model has no volume. It should be noted that in this study we take into
account the aerodynamic force and torque acting on not only the wings but also the body.
However, in our preliminary calculations, the aerodynamic force and torque acting on the
body are two orders of magnitude smaller than those acting on the wings. Although the
aerodynamic force and torque acting on the body can be neglected, we take into account
them in this study. For the detail of the numerical method, see Suzuki & Inamuro (2011).
Validations of the numerical method are described in appendix B.
The computational domain is a cuboid with the widthW , the height H, and the depth

H as shown in figure 4. The boundary condition on two sides perpendicular to the x-axis
is the periodic boundary condition, and on the other sides the no-slip condition is used.
This computational condition corresponds to the situation where the wing-body models
are placed at regular intervals of W . If the interval W is much larger than the wing
length L, the effect of the neighboring models can be neglected. The center of mass of
the body is initially placed at the center of the domain filled with a stationary fluid at
uniform pressure.
In the following calculations, we use a moving multi-block grid (Inamuro 2012) in order

to save computation time. The multi-block grid is composed of a moving fine grid with a
lattice spacing ∆x and a stationary coarse grid with 2∆x. The moving fine grid is used
only around the wing-body model, and the stationary coarse grid is used in the other
domain. For the fine grid, we use an inner cubic domain with width D which moves
together with the motion of the body. The center of the inner domain is initially placed
at the center of mass of the body.
The simulation (i) is performed in the domain of W = 12L, H = 6L, and D = 3L for

50 ⩽ Re ⩽ 1000, while the simulations (ii), (iii) and (iv) are performed in the domain
of W = 12L, H = 12L, and D = 2.4L for various Reynolds numbers of Re < 1200. The
spatial and temporal resolutions for each Re are shown in table 1. The dependence of
grid resolution is examined in appendix C. In order to save the computational cost for
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Re L N T
50 40∆x 3321 6000∆t

100 40∆x 3321 6000∆t
200 40∆x 3321 6000∆t
300 50∆x 5151 6000∆t
374 55∆x 6106 6000∆t
500 60∆x 7381 6000∆t
619 72∆x 10585 7200∆t
800 96∆x 18721 9600∆t

1000 120∆x 29161 12000∆t
1190 144∆x 41905 14400∆t

Table 1. Spatial and temporal resolutions. The total number of boundary Lagrangian points
N includes that of the body, the right wing, and the left wing. ∆x is the lattice spacing and ∆t
is the time step.

Re > 500, we calculate one-half of the computational domain with the mirror boundary
condition on the longitudinal plane which passes through the center of the domain and
is perpendicular to z-axis. This implies that the flow field is assumed to be symmetrical
with respect to the longitudinal plane, and the body is assumed to move only in the
longitudinal plane, i.e. the translational velocity and the angular velocity are restricted
to Uc = (Ux, Uy, 0)

T and bΩc = (0, ω2, 0)
T , respectively. It should be noted that for

Re ⩽ 500 we calculate the whole of the computational domain and don’t use the above
assumption.

5. Results and discussion

5.1. Computation of aerodynamic forces for fixed body

5.1.1. Induced flows by the wing-body model

First, we calculate flows around the wing-body model with αm = 40◦, 60◦, and 90◦

for the Reynolds numbers of 50 ⩽ Re ⩽ 1000, when the body is fixed. Figure 5 shows
the velocity fields projected onto x-y plane during the 10th stroke for Re = 500. We can
see from figure 5 that the wing-body model induces a backward flow and a downward
flow during one stroke. It can be expected that both mean lift and thrust forces are
induced as reactions to the induced flows. Ota et al. (2012) and Kimura et al. (2014)
reported that the symmetry breaking occurs with respect to the longitudinal plane in
the two-dimensional symmetric flapping wings. However, in all results for Re ⩽ 500 of
this study, the flow field is symmetrical with respect to the longitudinal plane.

5.1.2. Aerodynamic forces and pitching moment

Next, we show the aerodynamic forces and pitching moment. We define the lift coeffi-
cient CL, the thrust coefficient CT, and the pitching moment coefficient CM as below:

CL =
Faero · ey

0.5ρfU2
tip(2Lc)

, (5.1)

CT =
Faero · ex

0.5ρfU2
tip(2Lc)

, (5.2)

CM =
Taero · ez

0.5ρfU2
tip(2Lc)L

. (5.3)
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t/T = 9.2

t/T = 9.5

t/T = 9.7

t/T = 10.0

x
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Figure 5. Velocity fields around the wing-body model with αm = 40◦ and 90◦ at t/T = 9.2,
9.5, 9.7, and 10.0 for Re = 500 projected onto x-y plane when the body is fixed. The wing-body
model is shown as a red surface. The colors of vectors denote the magnitude of the velocity
vectors. The velocity vectors are drawn at every 10∆x.
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It should be noted that the vectors in the above equations are observed in the coordinate
system fixed in the space Σs. Figure 6 shows the time variations of CL, CT, and CM with
αm = 40◦, 60◦, and 90◦ for Re = 500 in one stroke of 9.0 ⩽ t/T ⩽ 10.0. The simulations
are conducted until t = 20T , but the results during each stroke are almost the same after
t = 9T . Thus, we present the results of tenth period here. It can be seen from figure 6a
that CL reaches its positive peak around t/T = 9.2 for all αm, while the negative peak of
CL is around t/T = 9.7 for αm = 40◦ and 60◦ and around t/T = 9.5 for αm = 90◦. The
magnitude of the negative peak decreases significantly as αm increases. Note that the
magnitude of the positive peak is larger than that of the negative peak for all αm. On
the other hand, it can be seen from figure 6b that CT reaches its negative peak around
t/T = 9.0 and its positive peak around t/T = 9.7 for all αm. Also, the magnitude of
the positive peak is much larger than that of the negative peak. In comparing 6a and b,
we can see that the thrust coefficient looks very asymmetrical as compared with the lift
coefficient. This is because the attacking angle α changes asymmetrically (0 ⩽ α ⩽ αm),
while the flapping angle θ changes symmetrically (−θm ⩽ θ ⩽ θm) as shown in figure 3b.
Since the thrust force is induced by the attacking motion (if αm = 0, no thrust force is
induced), the thrust coefficient changes asymmetrically compared with the lift coefficient.
It should be noted that the lift coefficient in figure 6a is rather different from that of
figure 24 in appendix B.2. This is because the wing motions are considerably different,
that is, one is for a forward flight of a butterfly and the other is for a hovering of an insect.
From figure 6c, we can see that the curve of CM has a shape similar to a square wave
which is negative in 9.2 ⩽ t/T ⩽ 9.7 and positive in the other duration. The magnitude
of the positive peak is almost equal to that of the negative peak for all αm. Actually,
the mean value of CM is more than two orders of magnitude smaller than the magnitude
of the peak value. This means that the center of mass of the body is almost coincident
with the mean center of pressure. The magnitude of the peak value of CM increases as
αm increases.
Figure 7 shows the vortical structures near the wing-body model with αm = 90◦ for

Re = 500 at t/T = 9.2 and 9.7. It should be noted that the lift coefficient reaches its
positive peak around t/T = 9.2 and the thrust coefficient reaches its positive peak around
t/T = 9.7. The low-pressure vortices structures are identified by the Q-criterion (Hunt
et al. 1988), i.e. the second invariant of the velocity gradient tensor given by

Q = − ∂ui
∂xj

∂uj
∂xi

(5.4)

where i, j = x, y, z represent the Cartesian coordinates and the summation convention
is used. It can be seen from figure 7 that a wing-tip vortex (WTV) and a leading edge
vortex (LEV) appear on the upper surface of the wings at t/T = 9.2 and on the lower
surface of the wings at t/T = 9.7. Like an actual butterfly (Yokoyama et al. 2013), the
WTV and the LEV are considered to be a main cause of the lift and thrust generation of
the present wing-body model. Also, the LEV on the left wing is connected continuously
to that on the right wing. The same feature is shown in the flow visualization around
free-flying butterflies conducted by Srygley & Thomas (2002) and is distinctive from the
experiments using the fruit fly’s and howkmoth’s wings (e.g. Birch et al. 2004; Ellington
et al. 1996). Srygley & Thomas (2002) also reported that the structure of the wake
behind the butterfly is broken by the wings when the wing-wake interaction is occurred.
However, we cannot observe from figure 7 that the structure of the wake behind the
model is broken. It should be noted that in the experiment by Srygley & Thomas (2002)
the case where the wing-wake interaction doesn’t occur is also observed. Therefore, our
results are not inconsistent with an actual butterfly. Instead, it can be seen from figure 7
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Figure 6. Time variations of (a) lift coefficient CL, (b) thrust coefficient CT, and (c) pitching
moment coefficient CM with αm = 40◦, 60◦, and 90◦ for Re = 500.

that the WTV and the LEV at downstroke and upstroke are released downward and
backward, respectively, and form a vortex ring. The vortex ring is observed also in the
free flight simulation of a butterfly by Huang & Sun (2012).

As for lift generation, it has been reported in Iima & Yanagita (2001) and Ota et al.
(2012) that for a two-dimensional symmetric flapping wing the symmetry breaking of
flows generates a mean lift force. The two-dimensional symmetric flapping wing corre-
sponds to the present wing-body model with c → ∞ and αm = 0◦. However, in our
preliminary calculations using the present model with c = L and αm = 0◦, the symmetry
breaking of flows does not appear, and no mean lift force is generated for Re ⩽ 1000.
This is because the vorticity in the three-dimensional flow field is completely different
from that in the two-dimensional flow field. As another possibility for the lift genera-
tion, one might consider a ground effect (Gao & Lu 2008). Indeed, in figure 5 the flow
velocities reach the ground. In order to evaluate the ground effect, we performed the
same simulation in a wider computational domain of W = H = 12L with αm = 90◦

for Re = 500. It can be seen from figure 8 that the lift coefficient obtained in the wider
domain of H = 12L is almost coincident with that in the standard domain of H = 6L.
This means that the ground effect is not important in the present simulations.

5.1.3. Aerodynamic performance

Here we investigate the aerodynamic performance by calculating the time-averaged
aerodynamic forces, the power, and the efficiency. We define the power coefficient CP as
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Figure 7. Vortical structures visualized by the Q-criterion, that is, the second invariant of
velocity gradient tensor at t/T = 9.2 and 9.7 with αm = 90◦ for Re = 500 viewed from (a) the
top side and (b) the right side of the wing-body model when the body is fixed. The wing-body
model is shown as a red surface, and the isosurface of Q = 3(Utip/L)

2 is shown as a gray surface.
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Figure 8. Comparison of the lift coefficient between the wider computational domain of
H = 12L and the standard domain of H = 6L with αm = 90◦ for Re = 500.

below:

CP =

∑
wing flocal · ulocal

0.5ρfU3
tip(2Lc)

, (5.5)

where
∑

wing means the summation over Lagrangian points on the wings, flocal is the
force locally acting on the fluid at a Lagrangian point on the wings, and ulocal is the
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flow velocity at the point. Therefore,
∑

wing flocal · ulocal means the power expended in
moving the wings against the aerodynamic forces. At first, we show the time variations
of the lift, thrust and power coefficients with αm = 90◦ for various Reynolds numbers. In
comparing the lift coefficients for Re = 50 and 100 in figure 9a, it can be seen that both
positive and negative peaks much decrease to the same degree as the Reynolds number
increases. This is because for low Reynolds numbers the wings receive a large viscous
resistance. For Re ⩾ 100, the magnitude of the positive peak of CL slightly decreases
as the Reynolds number increases, while the magnitude of the negative peaks much
decrease as the Reynolds number increases. Therefore, the time-averaged lift coefficient
is expected to increase as the Reynolds number increases. Since the positive peak of CL

is caused mainly by the LEV and the WTV at downstroke, it can be expected that the
LEV and the WTV at downstroke don’t change so much for 100 ⩽ Re ⩽ 1000. Actually,
in our preliminary calculations, the LEV and the WTV at downstroke are not so different
between Re = 100 and Re = 500. On the other hand, since the negative peaks appear
when the projected area of the wings onto the horizontal plane is relatively small, the
shear stress, i.e. the viscous skin friction has a large contribution on the negative peaks of
the lift coefficient. Therefore, the decrease in the viscous skin friction with the Reynolds
number is considered as a main cause of the decrease in the magnitude of the negative
peaks. We can see from figure 9b that the thrust coefficient has the same feature as the
lift coefficient, although the phase of the thrust coefficient differs by T/2 compared with
the lift coefficient. Since the model with αm = 90◦ flaps downward in the downstroke and
directly backward in the upstroke, the roles of the downstroke and the upstroke in the
lift coefficient are replaced by the upstroke and the downstroke in the thrust coefficient,
respectively. In addition, it can be seen from figure 9c that the power coefficient totally
decreases as the Reynolds number increases. Consequently, the decrease in the power
coefficient is presumably due to the decrease in the viscous skin friction.
The time-averaged values of CL, CT, and CP are important indices of the aerodynamic

performance. Let CL, CT, and CP be the time-averaged values in the 10th stroke (9 ⩽
t/T ⩽ 10). In addition, we define the efficiency by

Eff =

√
CL

2
+ CT

2

CP

. (5.6)

It should be noted that Zheng et al. (2013) use the ratio of the lift coefficient to the
power coefficient as an efficiency, which is a similar definition to that in this study. Since
in this study the model generates the thrust force as well as the lift force, the ratio of
the magnitude of the vector (CT, CL) to the power coefficient seems more appropriate
for the definition of the efficiency. Figure 10 shows CL, CT, CP, and Eff against various
Reynolds numbers for αm = 40◦, 60◦, and 90◦. It can be seen from figure 10a and b that
both CL and CT increase as αm and Re increase. However, the rate of increasing both
in CL and CT against Re becomes smaller as Re increases. From figure 10c, we can see
that CP decreases as Re increases, while it varies only slightly as αm changes. It can
be seen from figure 10d that Eff increases as αm and Re increase. This means that the
wing-body model can generate larger lift and thrust forces by a smaller power as αm

and Re increase. These results are consistent with earlier findings (e.g. Wu & Sun 2004;
Lentink & Dickinson 2009; Zheng et al. 2013).

5.1.4. Expected supportable mass

Finally, we estimate the supportable mass by using CL shown in figure 10a. Letting the
wing-body model have a mass of Mexp, the gravitational force acting on the wing-body
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Figure 9. Time variations of (a) lift coefficient CL, (b) thrust coefficient CT, and (c) power
coefficient CP with αm = 90◦ for Re = 50, 100, 500, and 1000.

Figure 10. The time averaged (a) lift coefficient CL, (b) thrust coefficient CT, and (c) power

coefficient CP, and (d) the efficiency Eff against various Reynolds numbers for αm = 40◦, 60◦,
and 90◦.
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Figure 11. The non-dimensional expected supportable mass against various Reynolds numbers
for αm = 90◦. The upper red curve describes NMexp for L = 3.0 [mm], and the lower black one
for L = 18.1 [mm]. The conditions for a fruit fly (L = 3.0 [mm]) and a small butterfly (L = 18.1
[mm]) are also included.

model MexpG should be balanced by the time-averaged lift force Faero ·ey for supporting
the mass. Hereafter, Mexp is called the expected supportable mass. The non-dimensional
expected supportable mass NMexp can be calculated by using equations (3.8) and (5.1)
as below:

NMexp =
c

L

U2
tip

LG
CL =

2

AR

(
Fr

Re

)2

Re2 CL. (5.7)

In the right hand side of equation (5.7), the ratio Fr/Re is determined by setting the
wing length L in equation (3.11). In addition, CL is given against Re for each αm in
figure 10a. Therefore, NMexp can be obtained against Re for each αm and L.
Figure 11 shows the non-dimensional expected supportable mass against Re for αm =

90◦ with L = 3.0 [mm] and 18.1 [mm]. The figure includes the two curves for the scale
of a fruit fly (Drosophila melanogaster, L = 3.0 [mm]) and for the scale of a small
butterfly (Janatella leucodesma, L = 18 [mm]). It can be expected that a smaller mass
than NMexp can be supported by the lift force against the gravity, while a larger mass
cannot be supported by the lift force. The actual parameters of a fruit fly and a Janatella
leucodesma are listed in table 2, and the non-dimensional parameters are plotted in figure
11. It can be seen from figure 11 that the parameter of a fruit fly is under the curve of
NMexp for L = 3.0 [mm], and the parameter of a Janattela leucodesma is found along an
extension of the curve of NMexp for L = 18.1 [mm]. Therefore, we can expect that the
present wing-body model has a similar aerodynamic performance to actual insects.

5.2. Free flight (without rotation) simulation

Since the expected supportable mass is estimated by using the lift force when the body is
fixed, the following question is not trivial: Can the expected supportable mass be supported
actually in a free flight ? In order to answer the above question, we simulate free flights
by the wing-body model when the body can move translationally but cannot rotate. In
this simulation, we set αm = 90◦ since the aerodynamic performance for αm = 90◦ is the
best in the results shown in §5.1.3. In the following, we show two kinds of simulations:
the cases for L = 3.0 [mm] and for L = 18.1 [mm]. From equation (3.11), the ratio
Fr/Re is fixed to be 2.9×10−2 and 1.98×10−3 for L = 3.0 [mm] and for L = 18.1 [mm],
respectively. Note that in all results of these simulations the flow field is symmetrical
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L [mm] Freq [Hz] Utip [m/s] M [mg] Re Fr NM

Fruit fly (Shyy et al. 2008, p. 109) 3.0 200 3.1 2.0 620 18 61

Janatella leucodesma (Dudley 1990) 18.1 13.3 0.992 24.0 1190 2.35 3.36

Table 2. Flight parameters for a fruit fly and a Janatella leucodesma. Four dimensional param-
eters (the wing length L, the flapping frequency Freq = 1/T , the mean wing tip speed Utip, and
the mass M) and three non-dimensional parameters (the Reynolds number Re, the Froude num-
ber Fr, and the non-dimensional mass NM) are specified. It should be noted that the Reynolds
number is based on the mean wing tip speed and the wing length, while that for a fruit fly is
conventionally based on the velocity of the chord section and the wing chord length.

Figure 12. Trajectories of the center of the mass (COM) of the wing-body model with NM = 16，
17，20，and 30 for Re = 200. The initial position of the COM (the center of the domain) is
denoted by (x/L, y/L) = (0, 0). The symbols on the trajectories indicate the position of the
COM when the wings are at top dead point.

with respect to the longitudinal plane and Uc = (Ux, Uy, 0)
T , while no assumption about

the flow field and the body motion is used for Re ⩽ 500 (see §4).

5.2.1. Case for L = 3.0 [mm]

Figure 12 shows the trajectories of the center of the mass (COM) of the wing-body
model with NM = 16，17，20，and 30 (in the dimensional mass,M = 0.521, 0.553, 0.651,
and 0.976 [mg], respectively) for Re = 200 in the case of L = 3.0 [mm]. It should be
noted thatNM = 16 is equal to the non-dimensional expected supportable massNMexp for
Re = 200. It can be seen from figure 12 that the wing-body model with NM = NMexp can
go upward against the gravity. In addition, the wing-body model with NM = 17 > NMexp

also can go upward, while the model with NM = 30 goes downward. It is interesting that
the model with NM = 20 goes slightly downward at first, and then keeps the altitude.
This is because the lift force increases as the forward speed of the model increases.
By calculating free flights for various Reynolds numbers and non-dimensional masses,

we can obtain the conditions for upward flights, downward flights, and almost horizontal
flights. The results are shown in figure 13a which also includes the non-dimensional
expected supportable mass NMexp. From this figure, it can be seen that the boundary
between points for upward flight and those for downward flight is consistent with the
curve of NMexp. Particularly, it is found that the present wing-body model with the same
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Figure 13. The map of (a) Re–NM and (b) Utip–M containing the expected supportable mass
and points describing upward flight, almost horizontal flight, or downward flight for L = 3.0
[mm]. The condition of a fruit fly is also described.

condition as a fruit fly can go upward against the gravity. This means that even a simple
wing-body model can generate an enough lift force to support actual insects’ weight for
L = 3.0 [mm]. Figure 13b shows the map of Freq–M which is equivalent to the map of
Re–NM in figure 13a but described by the dimensional variables of the mean wing tip
speed Utip and the mass M which are related to Re and NM as below:

Utip =
ν

L
Re, (5.8)

M = ρfL
3NM. (5.9)

In addition, we calculate the forward velocity Ux of the wing-body model for the
condition of a fruit fly. Figure 14 shows Ux and its averaged value in each stroke. Looking
at the increasing rate of the averaged value, it cannot be expected that the forward speed
of the wing-body model will reach the forward flight speed of a fruit fly, i.e. Ux/Utip = 0.64
(Shyy et al. 2008). This means that the thrust force generated by the wing-body model
is smaller than that of a fruit fly. Therefore, the present wing-body model is not enough
to generate a real thrust force. One might consider that the phase shift γ (see equation
(2.5)) has a significant effect on the aerodynamic forces in the same way as the hovering
fruit fly’s wing investigated by Dickinson et al. (1999). Actually, the aerodynamic forces
dramatically change as γ changes also in the butterfly-like flapping wing-body model (see
appendix D). However, the value used here, γ = 90◦, gives an almost maximal thrust
force. Therefore, it is expected that even an optimal phase shift cannot give a comparable
thrust force with a real insect. An actual insect may rely on the wing structure and the
wing flexibility for generating a higher thrust force.

5.2.2. Case for L = 18.1 [mm]

Figure 15 shows the trajectories of the COM of the wing-body model with NM = 0.2，
0.5，and 1.0 (in the dimensional mass, M = 1.43, 3.57, and 7.15 [mg], respectively)
for Re = 500 in the case of L = 18.1 [mm]. Note that NM = 0.5 is equal to the non-
dimensional expected supportable mass NMexp for Re = 500. It can be seen from figure
15 that the wing-body model with NM = NMexp goes downward. Moreover, the model
even with NM = 0.2 < NMexp also goes downward. These results are quite different from
those in the case of L = 3.0 [mm] shown in figure 12. This is because the non-dimensional
masses in this case are much smaller than those in the previous case. That is, if the body
is very light compared with the fluid, the body easily goes up and down by the force
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Figure 14. Time variations of the forward velocity Ux of the wing-body model for the condition
of a fruit fly (L = 3 [mm], Re = 620, NM = 61). The instantaneous value of Ux and the time
averaged value of Ux in each stroke are described.

Figure 15. Trajectories of the center of the mass (COM) of the wing-body model withNM = 0.2，
0.5，and 1.0 for Re = 500. The initial position of the COM (the center of the domain) is denoted
by (x/L, y/L) = (0, 0). The symbols on the trajectories indicate the position of the COM when
the wings are at top dead point.

generated by the wings during each stroke; the body goes upward and downward during
the downstroke and the upstroke of the wings, respectively. Thus, the velocity of the
wing tips relative to the coordinate system fixed to the space decreases. Consequently,
the wings cannot generate enough time-averaged lift during the stroke. It should be
noted that the dimensional mass for L = 18.1 [mm] is actually much larger than that
for L = 3.0 [mm], since the non-dimensional mass is the mass of the body relative to the
mass of the fluid in the volume L3. Therefore, this result suggests that it is difficult to
support not a small dimensional mass but a small non-dimensional mass.
In the same way as the previous case of L = 3.0 [mm], we calculate free flights for var-

ious Reynolds numbers and non-dimensional masses. The results are shown in figure 16a
with the non-dimensional parameters and in figure 16b with the dimensional parameters,
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Figure 17. Time variations of the forward velocity Ux of the wing-body model for the condition
of a Janatella leucodesma (L = 18.1 [mm], Re = 1190, NM = 3.36). The instantaneous value of
Ux and the time averaged value of Ux in each stroke are described.

respectively. In the figures, the non-dimensional expected supportable masses are also
plotted. Unlike the case for L = 3.0 [mm], the wing-body model with NM ⩽ NMexp goes
downward for Re < 1000. However, for Re ⩾ 1000, the model with NM ⩽ NMexp can go
upward or keep altitude. Particularly, the model with the same condition as a Janatella
leucodesma can go upward against the gravity. This result supports the same conclusion
as the case of L = 3.0 [mm], that is, even a simple wing-body model can generate an
enough lift force to support real insects’ weight for L = 18.1 [mm].

Figure 17 shows the forward velocity Ux and its time-averaged value in each stroke
for the parameters of a Janatella leucodesma. We can see from figure 17 that Ux largely
oscillates in one stroke and the averaged value of Ux reaches the terminal forward speed
at t/T = 14, since the non-dimensional mass is small as above-mentioned. The terminal
forward speed of the wing-body model Ux/Utip = 0.32 is smaller than the forward flight
speed of a Janatella leucodesma Ux/Utip = 0.77 (Dudley 1990). This result is similar to
the case of a fruit fly as shown in §5.2.1. The Strouhal number defined by using the stroke
amplitude and the terminal forward speed is St = 4θmFreqL/Ux = Utip/Ux = 3.13.
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Figure 18. (a) Trajectories of the center of the mass (COM) of the body and (b) time variation
of the pitching angle of the body. In (a), the initial position of the COM (the center of the
domain) is denoted by (x/L, y/L) = (0, 0), and the symbols on the trajectories indicate the
position of the COM when the wings are at top dead point.

5.3. Free flight (with rotation) simulation

Thirdly, in order to investigate the body rotation, we simulate free flights of the wing-
body model when the body can move translationally and rotationally. In this simulation,
we set αm = 90◦, L = 3.0 [mm], NM = 38, and Re = 300. Note that NM = 38 is equal
to the non-dimensional expected supportable mass for Re = 300, that is, the wing-body
model can go upward against the gravity as shown in figure 13a. As shown in figure 16a,
the upward flight with L = 18.1 [mm] can be achieved only for Re ⩾ 1000. However,
computations of 3D moving boundary flows for Re ⩾ 1000 are quite expensive. On the
other hand, the condition of Re = 300 and L = 3.0 [mm] is much easier to be calculated
and is a typical condition resulting in the upward flight. So, we use L = 3.0 [mm] instead
of L = 18.1 [mm] in the followings.
Figure 18 shows the trajectory of the COM and the time variation of the pitching

angle of the body θpitch. The pitching angle θpitch is calculated by

θpitch = arctan

(
2(q1q3 + q2q4)

q20 + q21 − q22 − q23

)
. (5.10)

It should be noted that also in this result the flow fields are symmetrical with respect
to the longitudinal plane, Uc = (Ux, Uy, 0)

T , and bΩc = (0, ω2, 0)
T , while no assumption

about the flow field and the body motion is used for Re ⩽ 500 (see §4). It can be seen
from figure 18a and b that the pitching angle θpitch increases gradually, and eventually
the wing-body model turns over. This means that the present wing-body model obtains
a positive mean pitching moment, while the mean pitching moment is almost vanished
when the body of the wing-body model is fixed. This is because the mean center of
pressure moves backward due to the forward motion of the wing-body model. It has been
reported also in Yokoyama et al. (2013) that the periodic flapping flights of a butterfly
are longitudinally unstable and the control of the pitching angle is essential.

5.4. Computation for controlling the rotational motion

Finally, we discuss a way to control the pitching angle of the body. It is known that
the body of an actual butterfly is composed of the thorax and the abdomen, and the
pitching angle of the body is controlled by flexing at the joint between the thorax and
the abdomen (Dudley 2002). In this study, we attempt to control the pitching angle of
the body by using a modified wing-body model whose body is composed of the thorax
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Figure 19. The body composed of the thorax and the abdomen for controlling the pitching
angle of the wing-body model.

and the abdomen like an actual butterfly. Here, we assume that the body moves only in
the x and y directions and rotates only in the pitching motion for simplicity.

5.4.1. Computational model for controlling the pitching motion

Let the body be composed of two straight infinitely-thin rods (see figure 19): the thorax
with the length Lt and the abdomen with the length La. The total length of the body
is Lb = Lt + La. Let the mass of the thorax be Mt and that of the abdomen be Ma.
The total mass of the body is M =Mt +Ma. The connecting point between the thorax
and the wings is located at the distance of ℓ0 from the head of the thorax. In this study,
we set Lb = 0.75L, Lt : La = 3 : 7, Mt : Ma = 44 : 51, and ℓ0 = 0.77Lt, which are
the same as a Janatella leucodesma (Dudley 1990). We assume that the thorax and the
abdomen are connected by a rotary actuator with no mass and no rotation friction. The
shape and the motion of the wings of the modified wing-body model are the same as the
original wing-body model. We attempt to control the pitching angle of the thorax θt by
the input torque T cont produced by the rotary actuator. The equations of motion of the
thorax and the abdomen are shown in appendix E.
In this study, we consider the proportional-plus-integral-plus-derivative (PID) control,

i.e. the input torque T cont is determined by

T cont(t) = Kp(θ0(t)− θt(t)) +Ki

∫ t

0

(θ0(t
′)− θt(t

′)) dt′ +Kd(θ̇0(t)− θ̇t(t)), (5.11)

where θ0 is the desired pitching angle of the thorax, Kp is the proportional gain, Ki is
the integral gain, and Kd is the derivative gain. In order to suppress the increase in the
pitching angle θt, we set θ0(t) = 0◦. It should be noted that in this control there are
three tuning parameters, i.e. Kp, Ki and Kd.

5.4.2. Calculation example

We calculate the motion of the wing-body model under the above control for the
same condition as §5.3, i.e. αm = 90◦, L = 3.0 [mm], NM = 38, and Re = 300. In
this simulation, we set Kp = −MaL

2
aF

2
req × 0.698, Ki = −MaL

2
aF

3
req × 0.698, and Kd =

−MaL
2
aFreq × 9.65 as an example. Figure 20 shows the trajectory of the center of mass

of the thorax, the time variation of the pitching angle θt, and the time variation of the
relative angle ψ. It can be seen from figure 20a that the wing-body model can go upward.
In figure 20b, the pitching angle is controlled in the ranges of |θt| < 5◦ beyond 20 strokes.
In addition, we can see form figure 20c that the relative angle ψ of the abdomen to the
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Figure 20. (a) Trajectory of the center of the mass (COM) of the thorax, (b) time variation of
the pitching angle of the thorax, and (c) time variation of the relative angle of the abdomen to
the thorax when the pitching angle of the thorax is controlled by flexing at the joint between
the thorax and the abdomen. In (a), the initial position of the COM (the center of the domain)
is denoted by (x/L, y/L) = (0, 0), and the symbols on the trajectories indicate the position of
the COM when the wings are at top dead point.

thorax increases at first, and then oscillates around 120◦. This result means that the
pitching angle of the thorax can be controlled by flexing at the joint between the thorax
and the abdomen like an actual butterfly. However, the range of the relative angle is very
unrealistic.
Since the position of the center of pressure is very important in the stability of aircrafts,

one might consider that the position of the connecting point between the thorax and the
wings, which is determined by ℓ0 in this model, has a significant effect on the behavior
of the relative angle ψ. Figure 21 shows the results for ℓ0 = Lt, 0.77Lt, 0.5Lt, and
0.23Lt. It is noted that the results for ℓ0 = 0.77Lt is the same as figure 20. It can be
seen from figure 21a and b that while in all cases the wing-body model can go upward,
the oscillation of the pitching angle θt becomes more suppressed as ℓ0 increases, that is,
the connecting point between the thorax and the wings gets away from the head of the
thorax. Also, we can see from figure 21c that the range of the relative angle ψ becomes
more limited as ℓ0 increases. Therefore, the stability of the wing-body model is improved
as ℓ0 increases. However, even for the most stable case of ℓ0 = Lt, the relative angle
varies in an unrealistic range.
It should be noted that the conditions in this simulation (L = 3.0 [mm], NM = 38,

and Re = 300) are much different from that of an actual butterfly. The difference of
the conditions may be a cause that the relative angle varies in an unrealistic range. The
calculation for the condition of an actual butterfly and the optimization control remain
in future work.
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Figure 21. The effect of ℓ0 on (a) trajectory of the center of the mass (COM) of the thorax, (b)
time variation of the pitching angle of the thorax, and (c) time variation of the relative angle of
the abdomen to the thorax. In (a), the initial position of the COM (the center of the domain)
is denoted by (x/L, y/L) = (0, 0), and the symbols on the trajectories indicate the position of
the COM when the wings are at top dead point.

In the view point of the actual insect flight mechanisms, the present wing-body model
is not sufficient to explain the mechanisms completely, since the present model is highly
idealized and neglects many important factors, e.g. the wing structure, the wing flexibility,
the mass of the wings, and so on. Therefore, the results obtained by the present model
just suggest a possibility that flexing the body may affect the stability of the flapping
flight by insects. In the view point of practical implementations for micro air vehicles, the
frequency of the pitching angle is so high that the control mechanism cannot be applied
directly to practical implementations. Therefore, an intermittent control with a practical
interval should be considered for practical implementations.

6. Conclusions

We have investigated lift and thrust generation by a simple butterfly-like flapping
wing-body model. The wing-body model is composed of two rectangular wings and a
rod-shaped body, and the wings and the body are rigid and infinitely-thin. The wing-
body model flaps downward for generating the lift force and backward for generating the
thrust force like a butterfly. In this study, the following four kinds of simulations were
implemented by using the IB-LBM: (i) the computation of aerodynamic forces, (ii) free
flight (without rotation) simulations, (iii) free flight (with rotation) simulations, and (iv)
the computation for controlling the rotational motion.
First, we calculated flows around the wing-body model and the aerodynamic forces

for various Reynolds number of 50 ⩽ Re ⩽ 1000, when the body of the wing-body
model is fixed. As results, we found that the time-averaged lift coefficient CL and the
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time-averaged thrust coefficient CT increase as the Reynolds number and the maximum
attacking angle increase. However, the rate of increase both in CL and CT against the
Reynolds number becomes smaller as the Reynolds number increases. In addition, it
was found that the time averaged power coefficient decreases and therefore the efficiency
increases as the Reynolds number and the maximum attacking angle increase. Moreover,
we estimated the expected supportable mass for each Reynolds number by using CL,
and found that the mass of a fruit fly (Drosophila melanogaster) and a small butterfly
(Janatella leucodesma) can be supported against gravity.

Second, we simulated free flights when the body of the wing-body model can only move
translationally. It was found that the expected supportable mass can be supported even
in the free flight except when the mass of the body relative to the mass of the fluid is
too small. In addition, it was found that the wing-body model with the mass of actual
insects (a fruit fly and a small butterfly) can go upward against the gravity at the actual
Reynolds number, but cannot achieve the forward speed of actual insects.

Finally, we simulated free flights when the body of the wing-body model can move
translationally and rotationally, and found that the body has a large pitching motion
and consequently gets off-balance. Then, we showed that the pitching motion of the
body can be controlled by flexing at the joint between the thorax and the abdomen like
an actual butterfly.

It is highlighted that even a simple wing-body model with rigid wings can generate a
realistic lift force and can stabilize its attitude by a simple control method. These results
encourage that an artificial flapping MAV with simple rigid wings and simple mechanisms
can be achieved. It should be noted that many important factors (e.g. the wing structure,
the wing flexibility, the mass of the wings, and so on) are not considered in the present
wing-body model, and may lead different conclusions. Therefore, the present model is not
sufficient to explain the actual insect flight mechanisms completely. For example, Shyy
et al. (2010) suggests that the wing flexibility in actual insects’ wings is expected to
considerably affect the lift and thrust generations and the flight stability. So, the present
results based on rigid wings may considerably change if the wing flexibility is considered.
The effect of the flexibility of the wing remains in future work.

This research used computational resources of the HPCI system provided by ACCMS
(Kyoto University) through the HPCI System Research Project (Project ID: hp120112).
K. Suzuki acknowledges the financial support by the JSPS Institutional Program for
Young Researcher Overseas Visits and Grant-in-Aid for JSPS Fellows (No. 25·1557).
The authors would like to thank Dr. A. Medina for help with the simulation in appendix
B.2 and for providing his data computed by using the IB-FVM.

Appendix A. Formulation of the kinematic equations

In this section, we look the kinematics of the body described by the quaternion. The
orthogonal matrix represented by a unit quaternion S(Q) is given by

S(Q) =

 q20 − q22 − q23 + q21 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q23 − q21 + q22 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

 , (A 1)

where

q20 + q21 + q22 + q23 = 1. (A 2)
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The initial value of the quaternion is set to be Q(0) = (1/
√
2, 1/

√
2, 0, 0)T so that

S(Q(0)) = S1(90
◦) for setting the initial direction of the axes of Σb. We refer the reader

to Shuster (1993) and Goldstein et al. (2002) for more detail of the quaternion.
Let Uc(t) be the velocity of Xc(t) and

bΩc(t) be the angular velocity of the body. The
kinematic equations of the body are as below:

dXc

dt
= Uc(t), (A 3)

dQ

dt
= A(t)Q(t), (A 4)

where A(t) is a 4× 4 matrix which is determined by bΩc = (ω1, ω2, ω3)
T as below:

A =
1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 . (A 5)

Appendix B. Accuracy of the numerical method

In order to examine the accuracy of the present numerical method, we have calculated
typical flows around a flat plate, around a flapping wing with a finite thickness, and
around the fruit fly’s wing which has been investigated by Dickinson et al. (1999).

B.1. Flow around a flat plate

In order to examine the accuracy of the present numerical method, we have calculated
the flow around a rectangular flat plate by the IB-LBM. The flat plate is an infinitely-thin
rectangular plate as shown in figure 1a with L = 2c. The flat plate is set in a uniform
flow whose speed is U∞ with an attacking angle α. The Reynolds number defined by
Re = U∞c/ν is set to 100. Let the x-axis be parallel to the uniform flow, the y-axis
be the upward direction, and the z-axis be the span direction of the flat plat. The
computational domain is [−4c, 6c]× [−5c, 5c]× [−5c, 5c], and the center of the flat plate
is located at the origin. Boundary conditions on all sides of the domain are set to the
uniform flow u = (U∞, 0, 0) except for the outlet boundary where a Neumann boundary
condition, i.e. ∂u/∂x = 0 and ∂p/∂x = 0 is used. In the simulation by the IB-LBM, we
use a multi-block grid (Inamuro 2012) in order to save computation time. The multi-block
grid is composed of a fine grid with ∆x in [−1.4c, 5.8c]× [2.4c, 2.4c]× [1.4c, 1.4c] where
c = 50∆x and a coarse grid with 2∆x in the other domain. We calculate the lift coefficient
CL = 2Fy/(ρfU

2
∞Lc) and the drag coefficient CD = 2Fx/(ρfU

2
∞Lc) for various attacking

angles of 0◦ ⩽ α ⩽ 90◦. Figure 22 shows CL and CD against α at t/(c/U∞) = 13. The
results by the present method agree well with the experimental and numerical results by
Taira & Colonius (2009).

B.2. Flow around a flapping wing with a finite thickness

The second problem is a flow around a flapping wing with a finite thickness. The wing
has a thin-cuboid shape with the tip length c, the wing length L, and the thickness w.
In this simulation, we set L = 2c and w = 0.1c. The wing flaps and changes its attacking
angle in fluid at rest.
Let the coordinate system fixed to the wing be Σw, and the coordinate system fixed to

the space be Σs. We denote the axes and the unit vectors along the axes of Σw and Σs by
the same notations as §2 and §3. The η-axis lies on the center plane between the front and
back sides of the wing and is normal to the tip side. The ζ-axis lies on the center plane
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Figure 22. Lift and drag coefficients for a rectangular plate with L = 2c in a uniform flow
at Re = 100. The results by the present IB-LBM are compared with the experimental and
numerical results by Taira & Colonius (2009).

between the front and back sides of the wing and is normal to the top side. The distance
of the origin of Σw from the top side is d and that from the root side is rs (see figure
23a). In this simulation, we set d = 0.16c and rs = 0.4c. The vector array [eξ, eη, eζ ] is
given by the successive orthogonal transformations of [ex, ey, ez] as below:

[eξ, eη, eζ ] = [ex, ey, ez]S3(ϕ(t))S2(β(t))S1(0), (B 1)

where ϕ(t) and β(t) are the flapping angle and the rotational angle at time t, respectively,
given by

ϕ(t) = ϕm cos

(
2π

T
t

)
, (B 2)

β(t) =
βm

tanhCη
tanh

(
Cη sin

(
2π

T
t

))
, (B 3)

where ϕm is the maximum flapping angle, βm is the maximum rotational angle, and Cη is a
rotational shape parameter. In this simulation, we set ϕm = 80◦, βm = 45◦, and Cη = 3.3.
The time variation of the rotational angle β and the flapping angle ϕ are shown in
figure 23b. The Reynolds number defined by Re = Utipc/ν where Utip = 2πϕm(rs+L)/T
is set to 100.
In the simulation by the IB-LBM, we use a computational domain with [−5c, 5c] ×

[−3.9c, 6.1c] × [−5.3c, 4.7c]. As for the boundary condition of the domain, a Neumann
boundary condition, i.e. (n ·∇)u = 0 and n ·∇p = 0 (n is the unit vector normal to the
boundary) is used on all sides of the domain. It should be noted that in our preliminary
calculations where the no-slip boundary condition is used on all sides of the domain the
results for the Neumann boundary condition is almost coincident with those for the no-
slip boundary condition. We use a multi-block grid (Inamuro 2012) composed of a fine
grid with ∆x in [−2.6c, 2.6c]× [−0.5c, 2.7c]× [−1.05c, 0.45c] and a coarse grid with 2∆x
in the other domain. In this simulation, we set c = 50∆x and T = 35092∆t. The rigid
body approximation is used for the internal mass effect (see Suzuki & Inamuro 2011).
We calculate the lift coefficient CL = 2Fz/(ρfU

2
tipLc) and the drag coefficient CD =

2Fx/(ρfU
2
tipLc). Figure 24 shows the time variations of CL and CD in 3 ⩽ t/T ⩽ 4. The

results by the present method agree well with the numerical results computed by Medina
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Figure 23. (a) The wing with a finite thickness and the coordinate system fixed to the wing
(ξ - η - ζ) and (b) the time variations of the rotational angle β and the flapping angle ϕ

.

Figure 24. Time variations of lift coefficient CL and drag coefficient CD for a flapping wing
at Re = 100. The results by the present IB-LBM are compared with the numerical results by
IB-FVM.

(2013) using the immersed boundary-finite volume method (IB-FVM) proposed by Kim
et al. (2001).

B.3. Flow around the fruit fly’s wing

The third problem is a flow around the fruit fly’s wing which has been investigated by
Dickinson et al. (1999). The planform of the fruit fly’s wing used here (see figure 25) is
copied from that in Wu & Sun (2004), which is the same as that of the robotic fruit fly
wing used by Dickinson et al. (1999). The wing length L is 250 [mm], and the airfoil of
the wing is flat with thickness of 3.2 [mm] and two half circle edges. The wing flaps and
changes its attacking angle in a 1 [m] by 1 [m] by 2 [m] tank of mineral oil with the density
of 880 [kg/m3] and the kinematic viscosity of 1.15 × 10−4 [m2/s] at rest. In this study,
we simulate the experiments shown in figures 3A, B, and C of Dickinson et al. (1999).
In these experiments, the stroke amplitude is Φ = 160◦, the frequency Freq = 0.145 [Hz],
and the attacking angle at midstroke is αm = 40◦.
Let the coordinate system fixed to the wing be Σw, and the coordinate system fixed

to the space be Σs. We denote the axes and the unit vectors along the axes of Σw and
Σs by the same notations as §B.2. The η and ζ axes are defined as shown in figure 25,
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0.5L

Figure 25. The planform of the fruit fly’s wing and the coordinate system fixed to the wing
(ξ - η - ζ).

and the ξ-axis is defined so that Σw can be a right-handed system. The distances of the
ζ-axis from the wing tip and the wing root are L and rs, respectively. We define the
chord length at η = 0.5L as the mean chord length cm. The distance of the η-axis from
the leading edge at η = 0.5L is d. In this simulation, we set rs = 0.145L and d = 0.25cm.
The vector array [eξ, eη, eζ ] is given in the same way as equation (B 1), but the

flapping angle ϕ and the rotational angle β are different from equations (B 2) and (B 3).
In this study, we use the following mathematical formulations of ϕ and β which have
been used in many numerical studies (e.g. Sun & Tang 2002; Gilmanov & Sotiropoulos
2005; Bai et al. 2007):

ϕ(t) =



ϕ0 − ωϕ
∆τt
π

[
1− cos

(
πt
∆τt

)]
, (0 ⩽ t < ∆τt

2 ),

ϕ0 + ωϕ

[(
1
2 − 1

π

)
∆τt − t

]
, (∆τt

2 ⩽ t < T
2 − ∆τt

2 ),

ϕ0 + ωϕ

[(
1− 1

π

)
∆τt − T

2 − ∆τt
π

cos
(

π(t−T/2)
∆τt

)]
, (T2 − ∆τt

2 ⩽ t < T
2 + ∆τt

2 ),

ϕ0 + ωϕ

[(
1
2 − 1

π

)
∆τt − T + t

]
, (T2 + ∆τt

2 ⩽ t < T − ∆τt
2 ),

ϕ0 − ωϕ
∆τt
π

[
1− cos

(
π(t−T )
∆τt

)]
, (T − ∆τt

2 ⩽ t < T ),

(B 4)

β(t) =



β0 +
ωβ

2

[
t+ ∆τr

2π sin
(

2πt
∆τr

)]
, (0 ⩽ t < ∆τr

2 ),

β0 +
ωβ

2
∆τr
2 , (∆τr

2 ⩽ t < T
2 − ∆τr

2 ),

β0 − ωβ

2

[
t− T

2 + ∆τr
2π sin

(
2π(t−T/2)

∆τr

)]
, (T2 − ∆τr

2 ⩽ t < T
2 + ∆τr

2 ),

β0 − ωβ

2
∆τr
2 , (T2 + ∆τr

2 ⩽ t < T − ∆τr
2 ),

β0 +
ωβ

2

[
t− T + ∆τr

2π sin
(

2π(t−T )
∆τr

)]
, (T − ∆τr

2 ⩽ t < T ),

(B 5)

where ϕ0, ωϕ, and ∆τt are the initial flapping angle, the maximum flapping angular
velocity, and the duration of the wing acceleration/deceleration, respectively, and β0,
ωβ , and ∆τr are the initial rotational angle, the maximum rotational angular velocity,
and the duration of the wing rotation. The above mathematical formulations are periodic
and differentiable functions with the common period T = 1/Freq. It should be noted that
the rotational angle β(t) given in equation (B 5) is for the ‘symmetrical’ in figure 3B of
Dickinson et al. (1999). The ‘advanced’ and ‘delayed’ in figure 3A and C of Dickinson
et al. (1999) are given by using β(t + τr0) and β(t − τr0) instead of β(t), respectively,
where τr0 represents the timing of the rotation and is set to be 0.08T .
In the above formulation, ϕ changes in the range of ϕ0−ωϕ [T/2− (1− π/2)∆τt] to ϕ0,
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and β changes in the range of β0−ωβ∆τr/4 to β0+ωβ∆τr/4. Therefore, considering the
stroke amplitude Φ and the attacking angle at midstroke αm, we can obtain the following
equations:

ϕ0 =
Φ

2
, (B 6)

ωϕ

[
T

2
−
(
1− π

2

)
∆τt

]
= Φ, (B 7)

β0 = 0, (B 8)

ωβ∆τr
4

=
π

2
− αm. (B 9)

By using the above equations, all parameters for the kinematics (ϕ0, ωϕ, β0, and ωβ) are
determined when ∆τt and ∆τr are given. In this study, we use the same parameters of
Bai et al. (2007), that is, ∆τt = 0.1T and ∆τr = 0.32T . The Reynolds number based on
the mean chord length cm is Re = 2ΦFreqLcm/ν = 110.

In the simulation by the IB-LBM, we use a computational domain with [−2L, 2L] ×
[−2L, 2L]× [0, 8L], and the origin of Σw is set at (0, 0.28L, 6.4L). As for the boundary
condition of the domain, a no-slip boundary condition is used on all sides of the domain.
In the experiments by Dickinson et al. (1999), a liquid free surface exists at the top
of the domain. In spite of this, we use the no-slip condition at the top of the domain
instead of the free surface condition. This is because it is difficult to achieve the free
surface condition, and the influence of the mismatch of the boundary conditions on the
top of the domain is considered to be small. We use a multi-block grid (Inamuro 2012)
composed of a fine grid with ∆x in [−1.5L, 1.5L] × [−1.5L, 1.5L] × [5.6L, 7.2L] and a
coarse grid with 2∆x in the other domain. In this simulation, we set L = 90∆x and
T = 15000∆t. The rigid body approximation is used for the internal mass effect (see
Suzuki & Inamuro 2011).

We calculate the lift force Fz for the three modes; advanced, symmetrical, and delayed.
The simulations are conducted until t = 6T . The temporal variation of the lift force
during each stroke is almost the same after t = 3T , and thus we present the results of
fourth period in the followings. Figure 26 shows the time variations of the lift force and
the kinematics of the wing. The lift forces for the three modes obtained by the present
method have reasonable agreements with the experiment by Dickinson et al. (1999).

B.4. Summary and discussion on accuracy of the method

At the end of this appendix, we summarize the above three validations and discuss on
the accuracy of the method.

In the first validation, the flow around a stationary flat plate at Re = 100 is simulated,
and the lift and drag coefficients obtained by the present method agree well with the
experimental and numerical results by Taira & Colonius (2009). In the second validation,
the flow around a flapping wing with a finite thickness at Re = 100 is simulated, and
the time variations of the lift and drag coefficients obtained by the present method agree
well with the numerical results computed by Medina (2013) using the IB-FVM proposed
by Kim et al. (2001). In the third validation, the flow around the fruit fly’s wing around
Re = 100 is simulated, and the lift forces obtained by the present method have reasonable
agreements with the experimental results by Dickinson et al. (1999). From the above
three validations, we can conclude that the present method has an enough accuracy for
simulating flows around a flapping wing around Re = 100. However, we have to make
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α̇ (red). Grey and white backgrounds mark downstroke and upstroke, respectively.

mention of validations at higher Reynolds numbers up to 1000 and for free flights of
flapping wings.
As for higher Reynolds number up to 1000, we have not performed any validation.

However, our numerical results of the butterfly-like flapping wing-body model have some
common features compared with experimental results. For example, it is similar to the
experimental results of Lentink & Dickinson (2009) that the lift coefficient increases as
the Reynolds number increases, but the rate of increase in the lift coefficient is very small
for Re ∼ 1000. From this result, it can be expected that the present method can give a
consistent result with experiments for the Reynolds number up to 1000.
In order to simulate free flights of flapping wings accurately, we have to validate the

algorithm for coupling the equations of the fluid motion and the body motion. In our
previous study (Suzuki & Inamuro 2011), we have validated the algorithm of the present
IB-LBM through various moving boundary problems including a freely moving body
such as the sedimentation of an elliptical cylinder and a sphere. In addition, it has
been confirmed that the aerodynamic forces generated by flapping wings are accurately
calculated by the present method. Therefore, the algorithm of the present method should
give an accurate and reliable results even in simulations of free flights.

Appendix C. Dependence of grid resolution

The dependence of grid resolution is examined by computing the lift and thrust co-
efficients at Re = 500 with αm = 90◦ when the body is fixed with three different grids
of L = 40∆x, 60∆x, and 80∆x as shown in figure 27. It is seen that the results with
L = 60∆x and 80∆x almost coincide, while the result with L = 40∆x is a little different
from the other results. According to these results, we use the resolution shown in table 1.
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Figure 28. The time averaged lift and thrust coefficients against various phase shifts γ at
Re = 500 with αm = 90◦ when the body is fixed.

Appendix D. Effect of the phase shift

The effect of the phase shift is examined by computing the time averaged lift and
thrust coefficients at Re = 500 with αm = 90◦ when the body is fixed. The phase shift
affects the direction of the force in the downstroke and the upstroke, and consequently
affects the net force during one period. Figure 28 shows CL and CT against various phase
shifts γ. It can be seen from figure 28 that both CL and CT have maximal values with
γ = 120◦. In addition, we can see that the results with γ = 90◦ are very close to the
maximal values. Therefore, the results in §5 are for an almost optimal phase shift.

Appendix E. Equations of motion of the thorax and the abdomen

Hereafter, we denote the vectors for the position, the velocity, and the force for only
x and y components, and the torque for the z component. Let the position of the joint
between the thorax and the abdomen be (xj, yj)

T, and the relative angle of the abdomen
to the thorax be ψ. The motion of the thorax-abdomen system is described by the four
independent variables xj, yj, θt, and ψ. The Lagrangian for the thorax-abdomen system
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is given by:

L =
1

2
(Mt +Ma)(ẋ

2
j + ẏ2j )

+
1

6
MtL

2
t θ̇

2
t +

1

6
MaL

2
a(θ̇t + ψ̇)2

− 1

2
MtLtθ̇t(ẋj sin θt − ẏj cos θt)

+
1

2
MaLa(θ̇t + ψ̇)

(
ẋj sin(θt + ψ)− ẏj cos(θt + ψ)

)
−MtG

(
yj +

1

2
Lt sin θt

)
−MaG

(
yj −

1

2
La sin(θt + ψ)

)
, (E 1)

where the dot notation is used for time derivative.

Let the aerodynamic force acting on the wings and the thorax be (fwt
x , fwt

y )T, the

aerodynamic force acting on the abdomen be (fax , f
a
y )

T, the aerodynamic torque acting
on the wings and the thorax around the center of mass of the thorax be Twt, and the
aerodynamic torque acting on the abdomen around the center of mass of the abdomen
be T a. Supposing the rotary actuator produces the input torque T cont, the Lagrange
equations for the motion of the thorax-abdomen system can be obtained as below:

d

dt

(
∂L

∂ẋj

)
− ∂L

∂xj
= fwt

x + fax , (E 2)

d

dt

(
∂L

∂ẏj

)
− ∂L

∂yj
= fwt

y + fay , (E 3)

d

dt

(
∂L

∂θ̇t

)
− ∂L

∂θt
= Twt + T a +

1

2
Lt(−fwt

x sin θt + fwt
y cos θt)

+
1

2
La(f

a
x sin(θt + ψ)− fay cos(θt + ψ)), (E 4)

d

dt

(
∂L

∂ψ̇

)
− ∂L

∂ψ
= T a +

1

2
Lt(−fwt

x sin θt + fwt
y cos θt) + T cont. (E 5)
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