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Abstract. Poincaré’s recurrence theorem which states that every Hamiltonian

dynamics enclosed in a finite volume returns to its initial position as close as

one wishes is a mathematical basis of the statistical mechanics. It is Liouville’s

theorem that guarantees the dynamics preserves the volume on the state space. A

quantum version of Poincaré’s theorem was obtained in the middle of 20th century

without any volume structures of the state space (Hilbert space). One of our aims

in the present paper is to establish such properties of quantum dynamics from an

analogue of Liouville’s theorem, namely, we will construct a natural probability

measure on the Hilbert space from a Hamiltonian defined on the space. Then we

will show that the measure is invariant under the corresponding Schrödinger flow.

We moreover show that the dynamics naturally causes an infinite dimensional

Weyl transformation. It also enables us to discuss ergodic properties of such

dynamics.

1. Introduction

It is believed that a mathematical basis of statistical mechanics is an ergodic

property, and a basis of the ergodic theory is Poincaré’s recurrence theorem. A

classical version of Poincaré’s recurrence theorem is stated as follows: Let X be a

complete separable metric space with a Borel σ-field B and a probability measure

µ. If T : X → X preserves µ, we have µ({x ̸∈ ω(x)}) = 0, where the omega-limit

set ω(x) of x is the set of y ∈ X such that lim infn→∞ d(T nx, y) = 0. If we combine

it with Liouville’s theorem which states that every Hamiltonian dynamics preserves

the Lebesgue measure, we can assert that every Hamiltonian dynamics enforced in

a finite volume has a recurrence property.

Since Poincaré’s recurrence theorem holds for any measure preserving transforma-

tion, we can say that the principal grounds of the recurrence property for classical

Hamiltonian dynamics are the Liouville property and the finite volume enforce-

ment. To our knowledge, a quantum version of the recurrence theorem was first
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established by Bocchieri and Loinger [2]. They showed that if the quantum Hamil-

tonian has purely point spectrum, a recurrence theorem holds for the quantum

dynamics. They used some properties of almost-periodic functions to show the

theorem; without the Liouville property or the finite volume enforcement. After

that Shulman [17] gave another proof of the theorem using the classical Poincaré’s

recurrence theorem, still without a concept of a probability measure on the state

space.

In Section 2, we shall note a result that the recurrence theorem never holds for the

initial state belonging to the absolutely continuous subspace of the Hamiltonian.

We also give a counterexample for the recurrence property if the initial state belongs

to the singular continuous spectrum. We do not know whether the non-recurrence

holds for all singular continuous states. We, however, want to emphasize here that

this example shows a crucial difference from the scattering theory. In the scattering

theory, it is known by [19] that, if a particle spends finite time in every finite region

in space, then the state is absolutely continuous. And if the initial state is singular

continuous, there exists at least one finite region in space that the particle spends

infinite time of sojourn there. Our example shows, however, from the recurrence

point of view, nonrecurrent property could be shared by absolutely and singular

continuous spectra.

We will then introduce an analogue of the Liouville property for the quantum

dynamics in Section 3. Recall that, in a usual setting for analysis on infinite dimen-

sional spaces, Gaussian measures will play a similar role to the Lebesgue measure on

finite dimensional spaces. In our context, Gaussian measures in quantum mechan-

ics play a same role as the Lebesgue measure in classical mechanics. We, however,

emphasize here that the Gaussian measures in the present paper will be constructed

from our Hamiltonian.

The finite volume enforcement reflects on the existence of the probability measure

on the Hilbert space; recall that existence of the finite (or probability) Lebesgue

measure is equivalent to it in classical cases. We believe that this approach makes

a natural way to discuss ergodic properties of the dynamics. Needless to say that

the quantum dynamics never has an ergodic property since all balls centered at

origin are invariant under the Schrödinger (unitary) flow. In Section 4, we shall

disintegrate the measure and represent the dynamics as a Weyl transformation on

an infinite dimensional torus. Then we will recover a “Lebesgue measure” on such

infinite dimensional spaces and give a simple condition that the dynamics is ergodic

with respect to that measure. We expect that it also shows the reason why taking

Gaussian measures on the Hilbert space is natural in our setting. Although the

Gaussian measures constructed from the Hamiltonian are not uniquely determined,

the dynamics on the infinite dimensional torus is the same.

To close the introductory section, we want to give comments for related stud-

ies. A computer experiments of the quantum recurrence is examined by Hogg and
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Huberman [7]. H-theorem for such systems was treated by Percival [14]. The re-

currence properties and the Liouville properties are also studied by Duvenhage in

a context of C∗-algebra [6]. There are several studies in C∗-algebras, see e.g., [15].

On the other hand, mathematically speaking, our dynamics are a simple example

of dynamics of linear operators which has been a very active field in these years, see

e.g., [1]. It is also worthy to point out that, since our measures are invariant under

the Schrödinger flow, we carry out construction of invariant measures for certain

linear partial differential equations of Schrödinger type (see Corollary 6). Our result

may be interesting from the point of view to construct invariant measures for the

deterministic dynamics governed by partial differential equations. We only indicate

[5, 4] for this direction.

Both authors would like to express our deeply gratitude to kind hospitality of

the Isaac Newton Institute for Mathematical Sciences in Cambridge. A part of this

research was executed during our stay at the institute. We would also like to thank

Zdzis law Brzeźniak for his comments and suggestions at an early stage of the study.

His insight and discussions enabled us to refine the present paper. Finally we are

grateful to anonymous referees, who informed us about the Rajchman measures

and related studies, and suggested several instructive improvements of the present

paper.

2. Functional Analytic Approach

This section treats the recurrence theorem without any measures. Throughout

the paper, we denote by H the separable complex Hilbert space on which a (fixed,

single) self-adjoint operator H is defined. We decompose H into Hpp⊕Hsc⊕Hac;

pure point, singular continuous, absolutely continuous spectrum, respectively, by

H.

Definition 1. We say that a vector Ψ ∈ H is recurrent if lim inft→∞ ∥e−
√
−1 tHΨ−

Ψ∥H = 0.

One can easily observe the following result.

Theorem 1. (1) Every Ψ ∈ Hpp \ {0} is recurrent.

(2) No Ψ ∈ Hac \ {0} is recurrent.

Proof. The proof of the first part of the theorem can be found in [2, 17]. We will

give a proof for the second part. Let Ψ ∈ Hac \ {0}. We clearly have

∥e−
√
−1 tHΨ − Ψ∥2H = 2∥Ψ∥2H − 2ℜ

∫
R
e−

√
−1 tλ d ⟨Ψ, E(λ)Ψ⟩ ,

where E(·) denotes the spectral measure of H, namely, a family of projection op-

erators {E(Λ); Λ ∈ B(R)} is a resolution of the identity on R. The second term

converges to zero from the Radon–Nikodym’s theorem, the Riemann–Lebesgue’s

lemma, and the assumption Ψ ∈ Hac, which implies the conclusion. □
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Therefore the difference between pure point and absolutely continuous spectrum

is clear. Next we will consider a case of singular continuous case. We show a

counterexample for the recurrence. If the spectral measure is Rajchman, the state

is not recurrent ([12]). Our example shows, however, that even if the spectral

measure is not Rajchman, there is a case that the state is nonrecurrent. As we

already pointed out in Section 1, it might be conjectured that nonrecurrent property

could be shared by absolutely and singular continuous spectra, and shows that such

recurrence phenomena differ from the scattering theory.

Before showing the example, we give some notations. Let φ : [0, 1] → [0, 1] be a

Cantor function and µ be the Borel probability measure on [0, 1] whose distribution

function is given by φ, i.e., µ((λ, µ)) = φ(µ) − φ(λ), (0 ≤ λ, µ ≤ 1) and

(1) µ(B) = inf{µ(O)|B ⊂ O,O open}

on Borel sets of [0, 1]. Take HC := L2([0, 1], µ) and HC as a multiplication operator

by φ(λ). We define a projection operator [E(Λ)Ψ](λ) := 1Λ(λ)Ψ(λ) for Ψ ∈ HC

and Λ ∈ B([0, 1]). Then we have HC =
∫ 1

0
λ dE(λ). It is clear that HC has purely

singular continuous spectrum, i.e., σ(HC) = σsc(HC), σac(HC) = ∅, σp.p.(HC) = ∅.

Proposition 2. All vectors in HC \ {0} are not recurrent in the dynamics of

e−
√
−1tHC.

Proof. Let Ψ ∈ HC \ {0} be an arbitrary nonzero vector. For any ε > 0 there exist

αn ∈ C and Borel set Bn in [0, 1] such that

|Ψ(λ)| ≥ |Ψn(λ)| λ ∈ [0, 1],

Ψn(λ) =
N∑

n=1

αnχBn(λ)

and ∥Ψ − Ψn∥ < ε hold. Then we have

∥e−
√
−1tHCΨ − Ψ∥2 ≥ ∥e−

√
−1tHCΨn − Ψn∥2 =

N∑
n=1

α2
n∥e−itHCχBn − χBn∥2.

Therefore it is suffices to prove that for any Borel set B with χB ̸= 0, the charac-

teristic function is not recurrent:

lim inf
t→∞

∥e−
√
−1tHCχB − χB∥2 > 0.

By the outer regularity (1) of µC , there exists an open set O such that B ⊂ O ⊂
[0, 1] with ∥χB − χO∥ < ε. Then we have

∥e−
√
−1tHCχB − χB∥ ≥ ∥e−

√
−1tHCχO − χO∥ − 2ε.(2)

Since O is a disjoint union of open intervals, it is sufficient to prove that, for each

interval I ⊂ [0, 1]

(3) lim inf
t→∞

∥e−
√
−1tHCχI − χI∥ ≥ A∥χI∥
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holds where A > 0 is a constant independent of I. For N ∈ N, we consider the set{
N∑

n=1

cn
3n

∣∣∣∣∣cn ∈ {0, 2}, n = 1, 2, . . . , N

}
,

and write this set as {a1, a2, · · · , a2N |a1 < a2 < · · · < a2N}. We set

CN
k :=

[
aNk , a

N
k +

1

3N

]
, CN := ∪2N

k=1C
N
k , k = 1, 2, . . . , 2N .

Clearly, the sequence {CN}N is decreasing: C1 ⊃ C2 ⊃ · · ·C3 ⊃ · · · , and the Cantor

set is equal to

C = lim
N→∞

CN .

Next we show that

(4) lim inf
t→∞

∥e−
√
−1tHCχCN

k
− χCN

k
∥ ≥ A∥χCN

k
∥.

From the self-similarity of the Cantor function, we have 2µC(dλ/3) = µC(dλ) and

(5)

∫ 1/3

0

f(λ)µC(dλ) =

∫ 1

0

f

(
t

3

)
µC

(
dλ

3

)
=

1

2

∫ 1

0

f

(
λ

3

)
µC(dλ)

for any measurable function f . Hence we have

∥e−
√
−1tHCχCN

k
− χCN

k
∥2 =

1

2

∫ 3/3N

0

∣∣∣e−√
−1t(aNk +λ/3) − 1

∣∣∣2 µC(dλ)(6)

=
2

2N

(
1 −ℜe

√
−1taNk

∫ 1

0

e−itλ/3NµC(dλ)

)
(7)

≥ 2

2N
(1 − |I(t/3N)|),(8)

where I(t) =
∫ 1

0
e−

√
−1tλµC(dλ). Similarly we can compute

I(t) =
1 + e−2

√
−1t/3

2
I(t/3).

So we have

I(t) =
∞∏
j=1

(
1 + e−2

√
−1t/3j

2

)
,

and |I(t)| =
∏∞

j=1 | cos(t/3j)|. For t ∈ [π, 3π], we have | cos(t/3) cos(t/9)| < 0.6

and |I(t)| < 0.6. The equality |I(t)| = | cos(t/3)I(t/3)| implies |I(t)| < 0.6 for

t ∈ [3π, 9π]. By the inductive argument, we have

|I(t)| ≤ 0.6 for t ≥ π

By using this fact, the right hand side of (8) is bounded by

0.8/2N = 0.8µC(CN
k ) = 0.8∥χCN

k
∥2,
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which implies (4) with A2 = 0.8. Let I be an arbitrary open interval in [0, 1]. Then,

there is at most a countable sequence {dn}n ⊂ {CN
k |N ∈ N, k = {1, . . . , 2N}} such

that dn ⊂ I and

µC(dn ∩ dm) = 0 n ̸= m(9)

∥χI∥2 = µC(I) =
∑
n

µC(dn).(10)

Therefore we have

lim inf
t→∞

∥e−
√
−1tHCχI − χI∥2 = lim inf

t→∞

∑
n

∥e−
√
−1tHCχdn − χdn∥2

≥ 0.8
∑
n

∥χdn∥2 = 0.8∥χI∥2(11)

and hence (3) holds. □
Remark 1. It is conjectured that every state is non-recurrent in the dynamics of the

Hamiltonian with purely singular continuous spectrum.

Example 2. Here are some examples of Hamiltonians whose spectral type are pure

point. See, e.g., [16] for detailed treatments.

(1) Laplacian in a bounded domain: Let Ω be a bounded domain in Rd. H =

−∆ on H = L2(Ω, dx) with Dirichlet boundary condition has compact

resolvent. Hence any Ψ ∈ H is recurrent under e−
√
−1tH .

(2) Schrödinger operator with a binding potential: Let V : Rd → R be a continu-

ous real valued function with V (x) → ∞ as |x| → ∞. Then H = −∆+V (x)

on H = L2(Rd, dx) has purely pure point spectrum.

(3) Free quantum field in a bounded domain: Let Ω be a bounded domain in Rd

and ∆ be a Laplace operator with Dirichlet boundary condition. Then the

second quantization dΓ(
√
−∆) has compact resolvent since −∆ is strictly

positive.

(4) Interacting quantum field in a bounded domain: Let K be a Hilbert space

and put H := K ⊗ Fb(L
2(Ω × {1, 2})), where Ω is a bounded domain in

Rd. Let A be a self-adjoint operator on K and has compact resolvent, and

HI be an interaction Hamiltonian acting on H . Assume H = A⊗ I + I ⊗
dΓ(

√
−∆)+HI is self-adjoint on D(A⊗ I + I⊗dΓ(

√
−∆)). Then the closed

graph theorem implies that H has compact resolvent, in particular H has

purely pure point spectrum.

(5) Anderson model: Schrödinger operator with suitable random potential in

one dimension has purely point spectrum [20]. Then all states are recurrent

almost surely.

The above argument can be extended for any self-similar measure and a multi-

plication operator. Therefore, in general, a state belonging to a singular continuous

spectrum is not recurrent.
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3. Invariant Measures for Schrödinger Flows

In this section, we assume H : H → H is a self-adjoint operator which has

purely point spectrum with finite degrees of degeneracy, i.e., σ(H) = σp.p.(H), σc(H) =

∅ and dim ker(H − λ) < ∞ for all λ ∈ σ(H), where σp.p.(H) and σc(H) denote the

pure point spectrum and the continuous spectrum of H, respectively. Since σp.p.

is countable, there exists an injection f : σp.p.(H) → (0,∞) such that f(H) is of

trace class. Note that Q := f(H) is a strictly positive trace class operator on H .

Therefore we can take a complete orthonormal system {ej} such that

Qej = qjej

for every qj > 0 and
∑∞

j=1 qj < ∞. We start with constructing a mean zero

Gaussian measure on H with covariance operator Q; see also section 5.1 of [1].

We first define a Gaussian measure µq(dz) on C:

µq(dz) :=
1

πq
exp

{
−1

q
|z|2
}

dz,

where q > 0. Note that dz = dx dy is a volume (not length) element of C for

z = x+
√
−1y, x, y ∈ R. Recall that µq is entirely characterized by its characteristic

function

µ̂q(w) :=

∫
C

exp{
√
−1ℜ⟨z, w⟩}µ(dz) = exp

{
−q

4
|w|2

}
for w ∈ C.

Remark 3. If we use a polar coordinate z = re
√
−1θ, r ≥ 0, θ ∈ [0, 2π), for z ∈ C,

we can rewrite µq as follows:

µq(dr dθ) =
r

πq
exp

{
−1

q
r2
}
dr dθ.

Let {n1, n2, . . . , nj} be any finite sequence of positive integers. We can define a

Gaussian measure µ{n1,n2,...,nj} on Cj as

µ{n1,n2,...,nj}(dzn1dzn2 . . . dznj
) := µqn1

(dzn1)µqn2
(dzn2) . . . µqnj

(dznj
),

whose characteristic function is given by

µ̂{n1,n2,...,nj}(w) = exp

{
−1

4

⟨
Qn1,...nj

w,w
⟩
Cj

}
for w ∈ Cj, where Qn1,...nj

is a restricted matrix of Q on Span{en1 , en2 , . . . , enj
}.

Therefore, by virtue of Kolmogorov’s extension theorem (see [11]), there exists a

probability measure µQ on C∞ whose characteristic functional is given by

µ̂Q(w) = exp

{
−1

4
⟨Qw,w⟩C∞

}
,
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that we call mean zero Gaussian measure on C∞ with covariance operator Q. More-

over, it is not difficult to show that µQ is actually supported on

ℓ2(C) := {(zj)
∞
j=1;

∞∑
j=1

|zj|2 < ∞},

and it can be regarded as a Borel probability measure on ℓ2(C). Hence, by a

standard identification procedure, µQ can be regarded as a mean zero Gaussian

measure on H with covariance operator Q.

Remark 4. If we introduce another Hilbert space K := Q1/2(H ) with inner product

⟨f, g⟩K :=
⟨
Q−1/2f,Q−1/2g

⟩
H

, and if we denote by H ∗ the dual space of H under

an identification with K ≃ K ∗ (Riesz identification), we have H ∗ ≃ Q(H ) ⊂ K
and ⟨w, z⟩H ∗,H = ⟨Q−1w, z⟩H . With these notions, the characteristic functional of

µQ is given by

µ̂Q(w) =

∫
H

exp
{√

−1ℜ⟨w, z⟩H ∗,H

}
µQ(dz) = exp

{
−1

4
∥w∥2K

}
for every w ∈ H ∗ and hence w ∈ K . K is referred to as a reproducing kernel

Hilbert space of µQ. In the case that Q = (−∆)−1 on L2([0, T ]) assuming Q satisfies

our assumptions, it can be shown that ⟨w, z⟩K is a Wiener integral
∫ T

0
w′(t) dz̄(t).

Remark 5. To our knowledge, Gaussian measures on complex spaces are first studied

by Itô [8] followed by first attempts for mathematically rigorous treatment of the

Feynman path integrals [9, 10]. Although our definition may look slightly different

from those, it is not difficult to see that our measure determines same Gaussian

system in the sense of Itô.

We say a measurable map T : (X,B) → (X,B) preserves a measure µ on (X,B)

if µ(T−1A) = µ(A) for every A ∈ B.

Lemma 3. Let µQ be a mean zero Gaussian measure with covariance operator Q on

H . A bounded linear operator T : H → H preserves µQ if and only if TQT ⋆ = Q,

where T ⋆ : H → H is a Hilbert adjoint of T .

Proof. It is enough to show that T ◦ µQ = µTQT ⋆ . To do it, it is necessary and

sufficient that both characteristic functionals agree. We then have

T̂ ◦ µQ(h) =

∫
H

exp{
√
−1ℜ⟨h, z⟩H }(T ◦ µQ)(dz)

=

∫
H

exp{
√
−1ℜ⟨h, Tz⟩H }µQ(dz) =

∫
H

exp{
√
−1ℜ⟨T ⋆h, z⟩H }µQ(dz)

= exp

{
−1

4
⟨QT ⋆h, T ⋆h⟩H

}
= exp

{
−1

4
⟨TQT ⋆h, h⟩H

}
= µ̂TQT ⋆(h).

Therefore we have the conclusion. □
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Corollary 4. Let U : H → H be unitary. Then U preserves the measure µQ if

and only if U commutes with Q, that is, QU = UQ.

Proof. Since U⋆ = U−1 on H , it is immediate from Lemma 3. □

We recall here that our Gaussian measure µQ is entirely determined from the

quantum Hamiltonian H, that is, we start with a Hilbert space H and H, then we

have constructed µQ on H from H. Therefore we have the following proposition:

Proposition 5. Assume that H : H → H is a self-adjoint operator with purely

point spectrum with finite degrees of degeneracy. Let Q := f(H) be a strictly positive

trace class operator, where f : σp.p.(H) → (0,∞) be an injective map. Then the

Schrödinger flow Ut := e−
√
−1 tH preserves a mean zero Gaussian measure µQ on

H with a covariance operator Q for every t > 0.

Proof. Since the unitary operator Ut commutes with Q for every t > 0, Corollary 4

asserts that µQ is invariant under Ut. □

Corollary 6. Let us consider the following linear partial differential equation of

Schrödinger type:
√
−1ℏ

∂Ψ(t)

∂t
= HΨ(t).

If the law of initial state Ψ(0) is µQ on L2(Rd, dx), then the law of Ψ(t) is also µQ

for every t > 0.

Remark 6. If we define an operator

UtF (w) := F (U−1
t w)

for every w ∈ H , it is easy to see that Ut defines a unitary flow on L2(H , µQ). To

see it, since µQ is invariant under Ut,

⟨UtF,UtG⟩L2(H ,µQ) =

∫
H

F (U−1
t w)Ḡ(U−1

t w)µQ(dw)

=

∫
H

F (U−1
t w)Ḡ(U−1

t w) (Ut ◦ µQ)(dw) = ⟨F,G⟩L2(H ,µQ)

for every F,G ∈ L2(H , µQ). It is well known that L2(H , µQ) =
⊕∞

n=0 H n by some

Hilbert spaces H n which are defined through Wiener integrals (see e.g., [8, 18, 21])

and is isomorphic to a Bosonic Fock space. This means that every Hamiltonian

automatically defines a quantum time evolution on a Fock space.

4. Quantum Liouville’s Theorem and Ergodicity

The classical version of Liouville’s theorem states that every classical Hamilton-

ian dynamics preserves the Lebesgue measure on Rd. In the previous section, we

constructed an invariant Gaussian measure µQ from the quantum Hamiltonian H
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on H . It may give a sense of incongruity if we call it a quantum version of Liou-

ville’s theorem; the measure is never universal in the sense that it heavily depends

on the Hamiltonian itself, it is not unique (since it depends on the choice of f),

and it is not a uniform measure. As we have already pointed out in Section1, one

advantage to treat recurrence properties from a metrical point of view is that it

enables us to discuss ergodic properties. Here we say a measure preserving trans-

formation T : (X,B, µ) → (X,B, µ) is ergodic if µ(T−1A \A) = 0 (A is invariant)

implies µ(A) = 0 or 1 for every A ∈ B. Unfortunately, our Gaussian measure is

never ergodic.

Example 7 ([3]). Let U : H → H be a unitary transformation on a Hilbert

space H and µ a Gaussian probability measure on H with full support. Define

Rn := {z ∈ H ;n − 1 ≤ ∥z∥H < n}. Then we have Rn is invariant under U and

H =
∪∞

n=1 Rn. Therefore if U is ergodic, there must be exactly one n such that

µ(Rn) = 1 and µ(Rm) = 0 for m ̸= n. Since µ is Gaussian, its restriction to every

finite dimensional subspace is also Gaussian, which contradicts the assumption that

µ has full support.

This example implies that, since our dynamics is unitary, we have to restrict our

consideration on a sphere. Moreover if we expand Ψ =
∑

Ψjej, where (ej) is an

orthonormal base associated with H, the unitary evolution does not change (Ψj).

Recall that µQ was first constructed on ℓ2(C) as an extension of measures on

Cn. As we already pointed out at Remark 3, we can disintegrate µQ into a product

space of position and momentum: Let

ℓ2+ := {(rj)
∞
j=1; rj ≥ 0,

∞∑
j=1

r2j < ∞}.

Then there exists a canonical map ℓ2(C) → ℓ2+ × T∞, where T∞ := {(θj)
∞
j=1; θj ∈

[0, 2π)}, by (zj)
∞
j=1 7→ ((|zj|)∞j=1, (arg zj)

∞
j=1). Therefore, from the construction of

µQ, we can define two probability measures ρ(dr) and λ(dθ) on ℓ2+ and T∞, respec-

tively, formally written by

ρ(dr) =
∞∏
j=1

2rj
qj

exp

{
− 1

qj
r2j

}
drj,

λ(dθ) =
∞∏
j=1

1

2π
dθj,

for r = (r1, r2, . . .) ∈ ℓ2+ and θ = (θ1, θ2, . . .) ∈ T∞.

Let us consider, for the sake of simplicity, a unitary operator U : H → H
defined by UΨ = e−

√
−1HΨ. Then U is naturally defined as an operator on ℓ2+×T∞

as follows: Let Ψ =
∑∞

j=1 Ψjej, where (ej) satisfies Qej = qjej, or by the definition
10



Hej = f−1(qj)ej ≡ hjej. Then we have

UΨ = U

∞∑
j=1

Ψjej =
∞∑
j=1

e−
√
−1hjΨjej.

Let Π : H → ℓ2+×T∞ by Ψ 7→ ((|Ψj|)∞j=1, (arg Ψj)
∞
j=1). We denote by the same sym-

bol U the map ((|Ψj|)∞j=1, (arg Ψj)
∞
j=1) 7→ ((|Ψj|)∞j=1, (arg Ψj−hj)

∞
j=1). We moreover

denote by UT : T∞ → T∞ the map (θj)
∞
j=1 7→ (θj − hj)

∞
j=1.

The following lemma is now obvious.

Lemma 7 (Quantum Liouville’s theorem). The unitary operator UT preserves the

measure λ on T∞.

Definition 2. We say a sequence of real numbers (θj)
∞
j=1 is rationally independent if

every finite subsequence (θj(1), . . . , θj(n)) satisfies
∑n

k=1 θj(k)mk ̸∈ Z for all sequence

of integers (mk).

Theorem 8. Let (hj)
∞
j=1 be the eigenvalues of H. Assume (hj/2π)∞j=1 is rationally

independent. Then the operator UT is ergodic on T∞ with respect to λ.

Proof. We first recall that the Borel σ-algebra of T∞ is generated by cylinder sets.

To show UT is ergodic, it is sufficient to prove that every set in a cylinder set

has the ergodic property: Every finite dimensional projection of UT is ergodic.

However, from the assumption, every finite subsequence of (2πhj) is also rationally

independent and therefore it is ergodic on the finite dimensional torus (see [13,

Theorem 3.2]). □
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[8] K. Itô, Complex multiple Wiener integral, Japan J. Math. 22 (1953), 63–86.

[9] , Wiener integral and Feynman integral, Proc. Fourth Berkeley Symp. Math. Statist.

Prob. II, 1960, pp. 119–132.

[10] , Generalized uniform complex measures in Hilbertian metric space with their ap-

plication to Feynman integral, Proc. Fifth Berkeley Symp. Math. Statist. Prob. II, 1965,

pp. 145–161.
11



[11] S. Kakutani, Notes on infinite product measure spaces, I, Proc. Imp. Acad. Tokyo 19 (1943),

148–151.

[12] R. Lyons, Seventy years of Rajchman measures, J. Fourier Anal. Appl. Publ. Res. Kahane

Special Issue (1995), 363–377.
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