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Clifford Modules, Finite-Dimensional Approximation

and Twisted K-Theory

By Kiyonori Gomi

Abstract. A twisted version of Furuta’s generalized vector bun-
dle provides a finite-dimensional model of twistedK-theory. We gener-
alize this fact involving actions of Clifford algebras. As an application,
we show that an analogy of the Atiyah-Singer map for the generalized
vector bundles is bijective. Furthermore, a finite-dimensional model
of twisted K-theory with coefficients Z/p is given.

1. Introduction

Furuta’s generalized vector bundle [9], which we call a vectorial bundle

in this paper, arises naturally as a geometric object approximating a family

of Fredholm operators. This means that there is a natural homomorphism

of groups

α : [X,F(H)] −→ KF (X),

where [X,F(H)] is the group of homotopy classes of continuous maps from

a topological space X to the space F(H) of Fredholm operators on a sep-

arable Hilbert space H, and KF (X) is the group of homotopy classes of

(Z/2-graded) vectorial bundles on X. Usual vector bundles are examples

of vectorial bundles, so that there exists a natural homomorphism from

the K-group K(X) to KF (X). It is shown [9] that this homomorphism

K(X) → KF (X) is an isomorphism on a compact Hausdorff space X. In

this case, the K-group of X is also realized as [X,F(H)], as is well-known

[1]. Hence the homomorphism α, coming from a “finite-dimensional approx-

imation”, turns out to be bijective.

In [10], the construction above is generalized to

α : Kτ (X) −→ KF τ (X),

where Kτ (X) stands for the twisted K-group [5, 7] twisted by a principal

bundle τ over X whose structure group is the projective unitary group of H,
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and KF τ (X) consists of homotopy classes of τ -twisted vectorial bundles on

X. The homomorphism α again comes from an idea of finite-dimensional

approximation of a family of Fredholm operators, and turns out to be bijec-

tive for any CW complex X. It should be noticed that a general description

of a class in Kτ (X) usually involves some infinite-dimensional objects. The

isomorphism above provides a way to describe Kτ (X) in terms of finite-

dimensional objects.

The aim of this paper is to generalize the isomorphisms α involving

actions of Clifford algebras: let Cl(n) = Cl(Rn) be the Clifford algebra as-

sociated to R
n equipped with the standard metric, Hn a separable infinite-

dimensional Z/2-graded Hilbert space which contains each irreducible Z/2-

graded module of Cl(n) infinitely many, and Fn the non-contractible con-

nected component of the space of self-adjoint Fredholm operators on Hn

which are degree 1 (i.e. switching the gradings) and anti-commute with

the actions of generators of Cl(n). As is known [6], Fn classifies the K-

cohomology K−n, so that [X,Fn] ∼= K−n(X). On the other hand, vec-

torial bundles with Cl(n)-actions are also introduced in [9]. Their homo-

topy classes constitute a group KFCl(n)(X), providing a model of the K-

cohomologyK−n(X). As before, we can construct a natural homomorphism

α : [X,Fn] −→ KFCl(n)(X).

Taking a “twist” into account, we also have a natural homomorphism

Kτ−n(X) −→ KF τ
Cl(n)(X).

Then we will prove:

Theorem 1. For any twist τ on a CW complex X, the homomorphism

Kτ−n(X) → KF τ
Cl(n)(X) is bijective.

The idea of the proof of Theorem 1 is parallel to that in [10]: we lift

Kτ−n(X) and KF τ
Cl(n)(X) to certain generalized cohomology theories, and

compare these theories by using a natural transformation induced from α.

Then the problems reduce to the case of a single point: The key fact that

the natural transformation is bijective in this case again relies on a result

of Furuta [9].

The main result in [10] allows us to describe classes in Kτ−n(X) by

using ordinary twisted vectorial bundles on X × [0, 1]n, whereas Theorem
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1 provides a different way to describe classes in Kτ−n(X). The equivalence

of these two options is useful in studying Kτ−n(X), and will be applied to

a construction of twisted differential K-cohomology in a forthcoming paper.

A more simple application of Theorem 1 is the bijectivity of a homo-

morphism

AS : KF τ
Cl(n)(X) −→ KF τ−1

Cl(n−1)(X),

whose construction is similar to that of the homotopy equivalence Fn →
ΩFn−1 of Atiyah-Singer [6]. Another application of Theorem 1 is an intro-

duction of a finite-dimensional model of twisted mod p K-theory, or twisted

K-theory with coefficients in Z/p, based on twisted vectorial bundles with

Clifford action.

The organization of this paper is as follows: In Section 2, we recall

Clifford modules [2, 8], and the classifying space Fn of the K-cohomology

constructed out of the space of Fredholm operators [6]. In Section 3, we

briefly review a definition of twisted K-theory, and summarize axioms of

the induced cohomology theory. In Section 4, we introduce twisted vectorial

bundles with Clifford action, generalizing an idea in [9]. The definition is

quite parallel to that of twisted vectorial bundles without Clifford action

[10]. In this section, we also summarize axioms of certain cohomology theory

induced from KF τ
Cl(n)(X): its proof is skipped, because the argument in [10]

is straightly generalized to the present case. Then, in Section 5, we introduce

the homomorphisms α and prove our main theorem (Theorem 5.2), from

which Theorem 1 is derived as a corollary. In the proof of the main theorem,

we refrain from reproducing the same argument as that in [10], and only

details a proof of a key proposition. Finally, in Section 6, we introduce

the counterpart of the Atiyah-Singer map to twisted vectorial bundles with

Clifford action, and prove its bijectivity. Our finite-dimensional model of

twisted mod p K-theory is also provided in this section.

Acknowledgement . The author’s research is supported by the Grant-

in-Aid for Young Scientists (B 23740051), JSPS.

2. Review of Clifford Modules and Fredholm Operators

2.1. Clifford modules

For n > 0, we let Cl(n) = Cl(Rn) be the Clifford algebra associated to

the standard R
n, that is, the algebra over R generated by the generators ei,
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(i = 1, . . . , n) subject to the relation eiej + ejei = −2δi,j .

By a (unitary) module of Cl(n), we mean a Z/2-graded Hermitian vector

space V = V 0⊕̂V 1 over C equipped with an algebra homomorphism ρ :

Cl(n) → EndC(V ) such that ρ(ei) : V → V , (i = 1, . . . , n) are skew-

Hermitian maps of degree 1. (As a convention of this paper, we put a hat

on the symbol of the direct sum to distinguish the grading of a Z/2-graded

vector space V : the even part appears on the left of ⊕̂ and the odd part on

the right.)

Finite-rank irreducible modules of Cl(n) are classified as follows: if n

is odd, then Cl(n) has essentially a unique irreducible module ∆n; if n is

even, then Cl(n) has essentially two distinct irreducible modules ∆±
n . One

irreducible module is obtained by switching the grading of the other. These

irreducible modules are distinguished by the action of the volume element,

that is,

ρ∆±
n
(e1 · · · en) = ±(

√
−1)n/2

(
1 0

0 −1

)

with respect to the decomposition ∆±
n = (∆±

n )0⊕̂(∆±
n )1. For convenience,

we put ∆n = ∆+
n ⊕ ∆−

n .

Under the natural isomorphism Cl(n) ⊗ Cl(n′) ∼= Cl(n + n′), a Cl(n)-

module V and a Cl(n′)-module V ′ give a Cl(n+ n′)-module V ⊗ V ′, where

the tensor product is taken in the Z/2-graded sense. If n or n′ is even, and

both V and V ′ are irreducible, then V ⊗V ′ is also irreducible. In particular,

∆+
2m ⊗ ∆+

2m′ ∼= ∆+
2(m+m′).

The above behaviour of irreducible modules under tensor products im-

plies:

Lemma 2.1 ([8, 9]). Let n and m be positive integers.

(1) The category of Cl(n)-modules and that of Cl(n + 2m)-modules are

equivalent under the functor assigning V ⊗∆+
2m to a Cl(n)-module V

and f ⊗ id to a homomorphism f of Cl(n)-modules.

(2) The functor induces an isomorphism HZ/2(V ) ∼= HZ/2(V ⊗ ∆+
2m),

where HZ/2(V ) is the following vector space introduced to any Cl(n)-

module V :

HZ/2(V ) =

{
γ : V → V

∣∣∣∣ degree 1, Hermitian,

ρV (ei)γ + γρV (ei) = 0 for i = 1, . . . , n

}
,
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and HZ/2(V ⊗ ∆+
2m) is defined similarly.

Notice that this lemma also makes sense in the case of n = 0. (In this

case, we forget Clifford actions, and regard a Cl(0)-module V as just a

Z/2-graded Hermitian vector space, and HZ/2(V ) as the space of degree 1

Hermitian maps on V .)

For n = 1, 2, we describe the irreducible Cl(n)-modules explicitly. In

the case of n = 1, the irreducible module is ∆1 = C⊕̂C and ρ∆1(e1) =(
0 −1

1 0

)
. In the case of n = 2, the irreducible Cl(2)-module ∆+

2 is

∆+
2 = C⊕̂C and

ρ∆+
2
(e1) =

(
0 −1

1 0

)
, ρ∆+

2
(e2) =

(
0 −

√
−1

−
√
−1 0

)
.

We easily see HZ/2(∆1) = C, with its basis γ =

(
0 1

1 0

)
, and HZ/2(∆

+
2 ) =

0.

2.2. Fredholm operators

For n > 0, let Hn be a separable infinite-dimensional Z/2-graded Hilbert

space which contains each irreducible Cl(n)-modules infinitely many. A

particular construction of Hn is Hn = H ⊗ ∆n, where H is an ungraded

separable Hilbert space of infinite-dimension. We also let F̃n be the space

of degree 1 self-adjoint Fredholm operators on Hn anti-commuting with the

actions of ei ∈ Cl(n), (i = 1, . . . , n):

F̃n =

{
A : Hn → Hn

∣∣∣∣ degree 1, Fredholm, A∗ = A

Aei + eiA = 0 for i = 1, . . . , n

}
.

We topologize this space by the operator norm. In the case that n is odd,

F̃n has three connected components [6]. Two of them are contractible, and

we will denote the remaining non-trivial component by Fn(Hn) = Fn. In

the case that n is even, we put Fn(Hn) = Fn = F̃n. In the case of n = 0,

we also define F0 = F̃0 to be the space of degree 1 self-adjoint Fredholm

operators on a separable infinite-dimensional Z/2-graded Hilbert space.

Notice that there exists a homotopy equivalence [6]:

AS : Fn(Hn) −→ ΩFn−1(Hn),
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where ΩFn−1(Hn) stands for the space of maps Ã : [−1, 1] → Fn−1(Hn)

such that Ã(±1) are invertible. For A ∈ Fn(Hn), an explicit description of

the map AS(A) : [−1, 1] → Fn−1(Hn) is

AS(A)(t) = A+
√
−1ten.

Notice also that there is a homeomorphism Fn
∼= Fn+2m, ([6]). This home-

omprhism Fn(Hn) → Fn+2m(Hn+2m) is given by A 
→ A ⊗ id under the

identification Hn+2m
∼= Hn ⊗ ∆+

2m.

Because of the homotopy equivalence Fn → ΩFn−1, the space Fn pro-

vides a model of the classifying space of the K-theory of degree −n. Put

differently, we may define the K-group K−n(X) of a CW complex X to be

the homotopy classes of continuous maps from X to Fn. Under this realiza-

tion of K−n, the homeomorphism Fn
∼= Fn+2n induces the Bott periodicity.

Remark 1. As a model of the classifying space of K−n, the space of

Fredholm operators Fn is chosen in this paper. We can also choose the

model provided in [5]. With this choice, the subsequent argument is still

valid.

3. Twisted K-Theory

3.1. Twisted K-theory

To twist usual topologicalK-theory, we will use a principal bundle whose

structure group is a projective unitary group: For a separable infinite-

dimensional Hilbert spaceH, the projective unitary group PU(H) is defined

by the quotient PU(H) = U(H)/U(1). We topologize PU(H) by using the

the operator norm topology on U(H). Then, for n ≥ 0, the group PU(H)

acts on Fn(Hn) = Fn(H⊗∆n) by conjugation, and we can associate a fiber

bundle Fn(τ) = τ ×PU(H) Fn to a given principal PU(H)-bundle τ over a

space X. (In the case that we employ the model of the classifying space of

K-theory in [5], we give PU(H) a compact open topology.)

Let Γ(X,Fn(τ)) be the space of sections of this fiber bundle Fn(τ) → X.

For a section A ∈ Γ(X,Fn(τ)), we define the support of A to be the closure

of the set of points x ∈ X at which Ax in not invertible:

Supp(A) = {x ∈ X| Ax is not invertible}.
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For a closed subspace Y ⊂ X, we denote by Γ(X,Y,Fn(τ)) the set of sections

A ∈ Γ(X,Fn(τ)) such that Supp(A) ∩ Y = ∅.
Now, we define Kτ

Cl(n)(X,Y ) to be the homotopy classes of A ∈
Γ(X,Y,Fn(τ)). Two sections A0,A1 ∈ Γ(X,Y,Fn(τ)) are said to be ho-

motopic if there exists a section Ã ∈ Γ(X × I, Y × I,Fn(τ) × I) such that

Ã|X×{i} = Ai, (i = 0, 1). (We denote by I = [0, 1] the unit interval.)

A choice of an identification Hn ⊕ Hn
∼= Hn makes Kτ

Cl(n)(X,Y ) into an

abelian group. In view of the homotopy equivalence Fn → ΩFn−1, the group

Kτ
Cl(n)(X,Y ) is isomorphic to Kτ−n(X,Y ) = Kτ (X×In, Y ×In∪X×∂In),

the τ -twisted K-group [5, 7] of degree −n.

3.2. Axioms of twisted K-theory

To lift the group Kτ
Cl(n)(X,Y ) into a generalized cohomology theory,

we introduce a category Ĉ as follows: an object in Ĉ is a triple (X,Y, τ)

consisting of a CW pair (X,Y ) and a principal PU(H)-bundle τ → X. A

morphism (f, F ) : (X ′, Y ′, τ ′) → (X,Y, τ) in Ĉ consists of a continuous map

f : X ′ → X such that f(Y ′) ⊂ Y and a bundle isomorphism F : τ ′ → f∗τ
covering the identity of X ′.

For (X,Y, τ) ∈ Ĉ, we define the group Kτ−j
Cl(n)(X,Y ) by

Kτ−j
Cl(n)(X,Y ) =

{
Kτ×Ij

Cl(n)(X × Ij , Y × Ij ∪X × ∂Ij), (j ≥ 0)

Kτ+j
Cl(n)(X,Y ). (j < 0)

A morphism (f, F ) : (X ′, Y ′, τ ′) → (X,Y, τ) clearly induces a homomor-

phism (f, F )∗ : Kτ−j
Cl(n)(X,Y ) → Kτ ′−j

Cl(n)(X
′, Y ′). Thus, the assignment

(X,Y, τ) → Kτ−j−n(X,Y ) gives rise to a functor from Ĉ to the category of

abelian groups. Since Kτ−j
Cl(n)(X,Y ) ∼= Kτ−j−n(X,Y ), we see the following

properties from [7]:

Proposition 3.1. The functors assigning Kτ+j
Cl(n)(X,Y ) to (X,Y, τ) ∈

Ĉ, (j ∈ Z) have the following properties:

(1) (Homotopy axiom) If (fi, Fi) : (X ′, Y ′, τ ′) → (X,Y, τ), (i = 0, 1) are

homotopic, then the induced homomorphisms coincide: (f0, F0)
∗ =

(f1, F1)
∗.
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(2) (Excision axiom) For subcomplexs A,B ⊂ X, the inclusion map in-

duces the isomorphism:

Kτ+j
Cl(n)(A ∪B,B) ∼= Kτ+j

Cl(n)(A,A ∩B).

(3) (Exactness axiom) There is the natural long exact sequence:

· · · → Kτ+j−1
Cl(n) (Y )

δj−1→ Kτ+j
Cl(n)(X,Y ) → Kτ+j

Cl(n)(X) → Kτ+j
Cl(n)(Y )

δj→ · · · .

(4) (Additivity axiom) For any family {(Xλ, Yλ, τλ)}λ∈Λ in Ĉ, the inclu-

sion maps Xλ →
∐

λXλ induce the natural isomorphism:

K
∐

λ τλ+j

Cl(n) (
∐

λXλ,
∐

λYλ)
∼=

∏
λ

Kτλ+j
Cl(n)(Xλ, Yλ).

We notice that the proof of the exactness axiom uses the Bott periodicity

Kτ−j
Cl(n)(X,Y ) ∼= Kτ−j−2

Cl(n) (X,Y ).

This isomorphism is given by multiplying a generator of K−2(pt) =

K0(D2, S1) ∼= Z. (For k > 0, we denote by Dk the unit disk in R
k, and by

Sk−1 = ∂Dk the unit sphere.): In general, there exists a multiplication

Kτ−j
Cl(n)(X,Y ) ×K−k

Cl(m)(X,Y
′) −→ Kτ−j−k

Cl(n+m)(X,Y ∪ Y ′).

This is induced from the map Fn(Hn)×Fm(Hm) → Fn+m(Hn⊗Hm) given

by (A,A′) 
→ A ⊗ 1 + 1 ⊗ A′, where the tensor products are taken in the

graded sense.

4. Vectorial Bundles with Clifford Actions

4.1. Definitions

Definition 4.1. Let n be a positive integer and X a topological space.

For a subset U ⊂ X, we define the category HFCl(n)(U) as follows. An

object in HFCl(n)(U) is a pair (E, h) consisting of a finite-rank Z/2-graded

Hermitian vector bundle E → U equipped with bundle maps ei : E → E,

(i = 1, . . . , n) of degree 1 satisfying eiej + ejei = −2δi,j and of a Hermitian
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map h : E → E of degree 1 satisfying hei + eih = 0, (i = 1, . . . , n). The

homomorphisms in HFCl(n)(U) are

HomHFCl(n)(U)((E, h), (E
′, h′))

=

{
φ : E → E′

∣∣∣∣ degree 0, φh = h′φ,
eiφ = φei for i = 1, . . . , n

}
/ �,

where the meaning of the equivalence relation φ � φ′ is as follows:

For each point x ∈ U , there are a positive number µ > 0 and an

open subset V ⊂ U containing x such that: for all y ∈ V and

ξ ∈ (E, h)y,<µ, we have φ(ξ) = φ′(ξ).

In the above, we put

(E, h)y,<µ =
⊕
λ<µ

Ker(h2
y − λ) =

⊕
λ<µ

{ξ ∈ Ey| h2
yξ = λξ}.

We will just write φ to mean the homomorphism in the category

HFCl(n)(U) represented by φ : (E, h) → (E′, h′).

Definition 4.2. Let X be a topological space, τ → X a principal

PU(H)-bundle, and U ⊂ X a subset.

(a) We define the category Pτ (U) as follows. The objects in Pτ (U) consist

of sections s : U → τ |U . The morphisms in Pτ (U) are defined by

HomPτ (U)(s, s
′) = {g : U → U(H)| s′π(g) = s},

where π : PU(H) → U(H) is the projection. The composition of

morphisms is defined by the pointwise multiplication.

(b) We define the category HFτ
Cl(n)(U) as follows. The objects in

HFτ
Cl(n)(U) are the same as those in Pτ (U) ×HFCl(n)(U):

Obj(HFτ
Cl(n)(U)) = Obj(Pτ (U)) × Obj(HFCl(n)(U)).

The homomorphisms in HFτ
Cl(n)(U) are defined by:

HomHFτ
Cl(n)(U)((s, (E, h)), (s

′, (E′, h′)))

= HomPτ (U)(s, s
′) × HomHFCl(n)(U)((E, h), (E

′, h′))/ ∼,
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where the equivalence relation ∼ identifies (g, φ) with (gζ, φζ) for any

U(1)-valued map ζ : U → U(1).

Definition 4.3. For a positive integer n and a principal PU(H)-

bundle τ over a topological space X, we define the category KFτ
Cl(n)(X)

as follows.

(1) An object (U , Eα,Φαβ) in KFτ
Cl(n)(X) consists of an open cover U =

{Uα}α∈A of X, objects Eα in HFτ
Cl(n)(Uα), and homomorphisms Φαβ :

Eβ → Eα in HFτ
Cl(n)(Uαβ) such that:

ΦαβΦβα = 1 in HFτ
Cl(n)(Uαβ);

ΦαβΦβγ = Φαγ in HFτ
Cl(n)(Uαβγ),

where Uαβ = Uα ∩ Uβ and Uαβγ = Uα ∩ Uβ ∩ Uγ as usual. We call an

object in the category KFτ
Cl(n)(X) a τ -twisted Cl(n)-vectorial bundle

over X.

(2) A homomorphism ({U ′
α′}, E ′

α′ ,Φ′
α′β′) → ({Uα}, Eα,Φαβ) consists of

homomorphisms Ψαα′ : E ′
α′ → Eα in HFτ

Cl(n)(Uα ∩ U ′
α′) such that

the following diagrams commute in HFτ
Cl(n)(Uα ∩ U ′

α′ ∩ U ′
β′) and

HFτ
Cl(n)(Uα ∩ Uβ ∩ U ′

β′), respectively.

E ′
α′

Ψαα′ �� Eα

E ′
β′

Ψαβ′

����������
Φ′

α′β′

��
Eα

E ′
β′

Ψαβ′
���������

Ψββ′
�� Eβ

Φαβ

��

In the case of n = 0, we can identify KFτ
Cl(0)(X) = KFτ (X) with the

category of τ -twisted vectorial bundles ([10]) on X. Also, in the case that τ

is the trivial PU(H)-bundle τ = X×PU(H), we can identify KFτ
Cl(n)(X) =

KFCl(n)(X) with the category of (Z/2-graded) Cl(n)-vectorial bundles

([9]) on X.

By definition, we can specify an object E ∈ KFτ
Cl(n)(X) by the data

(U , sα, gαβ , (Eα, hα), φαβ)

consisting of:
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• an open cover U = {Uα} of X;

• local sections sα : Uα → τ |Uα , which define the transition functions

ḡαβ : Uαβ → PU(H) by sαḡαβ = sβ;

• functions gαβ : Uαβ → U(H) such that π ◦ gαβ = ḡαβ , which define

zαβγ : Uαβγ → U(1) by gαβgβγ = zαβγgαγ ;

• Z/2-graded Hermitian vector bundles Eα → Uα of finite rank whose

fibers are Cl(n)-modules by means of bundle maps ei : Eα → Eα,

(i = 1, . . . , n) of degree 1 satisfying eiej + ejei = −2δi,j .

• Hermitian maps hα : Eα → Eα of degree 1 such that hαei + eihα = 0

for all i = 1, . . . , n;

• maps φαβ : Eβ|Uαβ
→ Eα|Uαβ

of degree 0 such that hαφαβ = φαβhβ,

eiφαβ = φαβei for i = 1, . . . , n and:

φαβφβα � 1 on Uαβ ;

φαβφβγ � zαβγφαγ on Uαβγ .

The support of E is defined by

Supp(E) = {x ∈ X| (hα)x is not invertible for some α}.

For a subspace Y ⊂ X, we define KFτ
Cl(n)(X,Y ) to be the full subcategory

consisting of the objects E ∈ KFτ
Cl(n)(X) such that Supp(E) ∩ Y = ∅.

Now, for (X,Y, τ) ∈ Ĉ, we define KF τ
Cl(n)(X,Y ) to be the homotopy

classes of τ -twisted Cl(n)-vectorial bundles E ∈ KFτ
Cl(n)(X,Y ): we say E0

and E1 are homotopic if there exists Ẽ ∈ KFτ×I
Cl(n)(X × I, Y × I) such that

E|X×{i} is isomorphic to Ei in KFτ
Cl(n)(X,Y ) for each i = 0, 1. In the same

way as in the case without Cl(n)-actions [9, 10], KF τ
Cl(n)(X,Y ) gives rise to

an abelian group.

4.2. Axioms

For (X,Y, τ) ∈ Ĉ and j ≥ 0, we put:

KF τ−j
Cl(n)(X,Y ) = KF τ×Ij

Cl(n)(X × Ij , Y × Ij ∪X × ∂Ij).
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We also put KF τ+1
Cl(n)(X,Y ) = KF τ−1

Cl(n)(X,Y ). Then, the argument in [10]

applies to Cl(n)-vectorial bundles, and we have a “cohomology theory”:

Proposition 4.4. The functors assigning KF τ+j
Cl(n)(X,Y ) to

(X,Y, τ) ∈ Ĉ, (j ≤ 1) have the following properties:

(1) (Homotopy axiom) If (fi, Fi) : (X ′, Y ′, τ ′) → (X,Y, τ), (i = 0, 1) are

homotopic, then the induced homomorphisms coincide: (f0, F0)
∗ =

(f1, F1)
∗.

(2) (Excision axiom) For subcomplexs A,B ⊂ X, the inclusion map in-

duces the isomorphism:

KF τ+j
Cl(n)(A ∪B,B) ∼= KF τ+j

Cl(n)(A,A ∩B).

(3) (“Exactness” axiom) There is the natural complex of groups:

· · · δ−1→ KF τ+0
Cl(n)(X,Y ) → KF τ+0

Cl(n)(X) → KF τ+0
Cl(n)(Y )

δ0→ KF τ+1
Cl(n)(X,Y ).

This complex is exact except at the term KF τ+0
Cl(n)(Y ).

(4) (Additivity axiom) For a family {(Xλ, Yλ, τλ)}λ∈Λ in Ĉ, the inclusion

maps Xλ →
∐

λXλ induce the natural isomorphism:

KF
∐

λ τλ+j

Cl(n) (
∐

λXλ,
∐

λYλ)
∼=

∏
λ

KF τλ+j
Cl(n)(Xλ, Yλ).

Notice that, in constructing δ0 above, we use the multiplication

KF τ
Cl(n)(X,Y ) ×KF (D2, S1) → KF τ

Cl(n)(X ×D2, Y ×D2 ∪X × S1).

In general, we can define a multiplication

⊗ : KF τ
Cl(n)(X,Y ) ×KFCl(m)(X,Y

′) −→ KF τ
Cl(n+m)(X,Y ∪ Y ′).

This is induced from the functor ⊗ : HFCl(n)(U) × HFCl(m)(U) →
HFCl(n+m)(U) given by (E, h) ⊗ (E′, h′) = (E ⊗ E′, h⊗ 1 + 1 ⊗ h′), where

the tensor products are taken in the Z/2-graded sense.
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5. Main Theorem

5.1. Finite-dimensional approximation

To begin with, we construct the following homomorphism via a “finite-

dimensional approximation”:

α : Kτ
Cl(n)(X) −→ KF τ

Cl(n)(X).

The construction is exactly the same as that performed in [10]: let A ∈
Γ(X,Fn(τ)) be a section given. We then make the following choice:

• an open cover {Uα} of X;

• local sections sα : Uα → τ |Uα of τ , which define the transition func-

tions ḡαβ : Uαβ → PU(H) by sαḡαβ = sβ;

• lifts gαβ : Uαβ → U(H) of the transition functions ḡαβ : Uαβ →
PU(H);

• positive numbers µα such that the family of vector spaces

Eα =
⋃

x∈Uα

(Hn, (Aα)x)<µα =
⋃

x∈Uα

⊕
λ<µα

{ξ ∈ Hn| (Aα)2xξ = λξ}

becomes a vector bundle of finite rank.

By means of the trivializations sα, the section A induces maps Aα : Uα →
Fn(Hn) such that gαβAβg

−1
αβ = Aα. Now, for i = 1, . . . , n, the action of

ei ∈ Cl(n) on Hn induces a vector bundle map ei : Eα → Eα of degree 1

satisfying eiej + ejei = −2δi,j . The restriction of Aα defines a Hermitian

map hα : Eα → Eα of degree 1 anti-commuting with ei. Finally, we define

a map φαβ : Eβ|Uαβ
→ Eα|Uαβ

by the composition of the following maps:

Eβ|Uαβ

inclusion−→ Uαβ ×Hn
id×gαβ−→ Uαβ ×Hn

projection−→ Eα|Uαβ
.

Then E = ({Uα}, sα, gαβ , (Eα, hα), φαβ) is a τ -twisted Cl(n)-vectorial bun-

dle on X, and a well-defined homomorphism α : Kτ
Cl(n)(X) → KF τ

Cl(n)(X)

is induced from the assignment A 
→ E

The construction above also induces α : Kτ
Cl(n)(X,Y ) → KF τ

Cl(n)(X,Y )

as well as αj : Kτ+j
Cl(n)(X,Y ) → KF τ+j

Cl(n)(X,Y ) for any (X,Y, τ) ∈ Ĉ and

j ≤ 1. Then, in the same way as in [10], we get:
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Proposition 5.1. The homomorphisms αj : Kτ+j
Cl(n)(X,Y ) →

KF τ+j
Cl(n)(X,Y ), (j ≤ 1) give rise to natural transformations from the func-

tors in Proposition 3.1 to those in Proposition 4.4.

5.2. Main theorem and its corollary

Theorem 1 in Section 1 is a corollary (Corollary 5.4) to:

Theorem 5.2. Let τ be any principal PU(H)-bundle over a CW

complex X. For any n, j ≥ 0, the homomorphism α−j : Kτ−j
Cl(n)(X) →

KF τ−j
Cl(n)(X) is bijective.

The key to this theorem is the following proposition, which we will prove

in the next subsection:

Proposition 5.3. For any k, j ≥ 0, the following homomorphism is

bijective:

α−j : K−j
Cl(n)(D

k, Sk−1) −→ KF−j
Cl(n)(D

k, Sk−1),

where (Dk, Sk−1) means (pt, ∅) when k = 0.

Proof of Theorem 5.2. In view of Proposition 3.1, 4.4, 5.1 and 5.3,

the proof is exactly the same as that of the main result of [10]: First, in

the case that X is a finite CW complex, we prove the bijectivity of α−j by

an induction on the number of cells in X. Then, the bijectivity of α−j in

the general case follows from that in the finite case through an argument

by using the telescope of X. �

Corollary 5.4. Suppose (X,Y, τ) ∈ Ĉ and j ≥ 0 are given.

(a) The finite-dimensional approximation induces the bijection:

α−j : Kτ−j
Cl(n)(X,Y ) −→ KF τ−j

Cl(n)(X,Y ).

(b) The multiplication of a generator of K(D2, S1) ∼= KF (D2, S1) ∼= Z

induces the bijection:

KF τ−j
Cl(n)(X,Y ) −→ KF τ−j−2

Cl(n) (X,Y ).

(c) There exists a natural isomorphism

Kτ−j−n(X,Y ) ∼= KF τ−j
Cl(n)(X,Y ).
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5.3. Key proposition

This subsection is devoted to the proof of Proposition 5.3, which is

clearly equivalent to:

Proposition 5.5. For any n, k ≥ 0, the following homomorphism is

bijective:

α : KCl(n)(D
k, Sk−1) −→ KFCl(n)(D

k, Sk−1).

Notice that the principal PU(H)-bundle τ is absent (or trivial) in the

present case. Therefore KCl(n)(D
k, Sk−1) is identified with the homotopy

classes of maps from the k-dimensional disk Dk to Fn which carry all points

in the sphere Sk−1 = ∂Dk into the subspace F∗
n ⊂ Fn consisting of invertible

operators:

KCl(n)(D
k, Sk−1) = [(Dk, Sk−1), (Fn,F∗

n)].

To prove Proposition 5.5, recall the homeomprhism Fn(Hn) →
Fn+2m(Hn+2m) given by A 
→ A⊗ id under the identification Hn ⊗ ∆+

2m
∼=

Hn+2m. Consequently, for any CW pair (X,Y ), we have a natural isomor-

phism

KCl(n)(X,Y ) −→ KCl(n+2m)(X,Y ).

There is a similar “periodicity” for vectorial bundles:

Lemma 5.6. Let n be a non-negative integer. For any CW pair (X,Y )

and m > 0, the tensor product of the irreducible Cl(2m)-module ∆+
2m in-

duces a natural isomorphism KFCl(n)(X,Y ) → KFCl(n+2m)(X,Y ) fitting in

the commutative diagram:

KCl(n)(X,Y ) −−−→ KCl(n+2m)(X,Y )

α

� �α

KFCl(n)(X,Y ) −−−→ KFCl(n+2m)(X,Y ).

Proof. The first part of this lemma, which is shown in [9], follows

from Lemma 2.1. The second part is clear by construction. �

As a consequence of this lemma, it suffices to consider the case of n = 0

and n = 1 only in Proposition 5.5. In the case of n = 0, the proposition is
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established in [10]. Hence we are left with the case of n = 1. To deal with

this case, we use the following fact (Remark 10.29 (2), [9]):

Proposition 5.7 ([9]). For n, k > 0, there is a natural isomorphism

KFCl(n)(pt) −→ KFCl(k+n)(D
k, Sk−1)

given by the multiplication of the “symbol of the k-dimensional supersym-

metric harmonic oscillator”.

The symbol of the 1-dimensional supersymmetric harmonic oscillator

([8]) is the Cl(1)-vectorial bundle (F, h) ∈ KFCl(1)(I, ∂I) defined by:

F = I × ∆1 = I × (C⊕̂C), h =

(
0 t

t 0

)
, (t ∈ I = [−1, 1]).

The symbol of the k-dimensional supersymmetric harmonic oscillator is the

Cl(k)-vectorial bundle ⊗k
i=1π

∗
i (F, h) ∈ KFCl(k)(I

k, ∂Ik), where πi : Ik → I

is the projection onto the ith factor.

Proposition 5.7 leads to the following computational result:

Corollary 5.8. For k ≥ 0, we have:

KFCl(1)(D
k, Sk−1) ∼=

{
Z, (k : odd)

0. (k : even)

Proof. First, we consider the case that k is an odd integer k = 2m+1.

By means of Lemma 5.6 and Proposition 5.7, we have

KFCl(1)(D
2m+1, S2m) ∼= KFCl(2m+1)(D

2m+1, S2m) ∼= KF (pt) ∼= Z.

In the even case k = 2m, we use Lemma 5.6 and Proposition 5.7 again to

have

KFCl(1)(D
2m, S2m−1) ∼= KFCl(2m+1)(D

2m, S2m−1) ∼= KFCl(1)(pt).

That KFCl(1)(pt) = 0 is shown as follows: any element in KFCl(1)(pt) can

be represented by a pair (E, h) of a Cl(1)-module E and a Hermitian map

h : E → E of degree 1 anti-commuting with the action of e1 ∈ Cl(1).
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Since the irreducible Cl(1)-module is unique up to an equivalence, we can

express E as E = V ⊗∆1, where V is a vector space of finite rank. Now we

define (Ẽ, h̃) ∈ KFCl(1)([0, 1]) by setting Ẽ = I × E and h̃t = (cos πt
2 )h +√

−1(sin πt
2 )1 ⊗ γ, where γ is a basis of HZ/2(∆1) = C such that γ2 = 1.

Then (Ẽ, h̃) is a homotopy between (E, h) and a Cl(1)-vectorial bundle

representing 0 ∈ KFCl(1)(pt). �

As is well-known, we have

KCl(1)(D
k, Sk−1) = [(Dk, Sk−1), (F1,F∗

1 )] = πk(F1) =

{
Z, (k : odd)

0. (k : even)

Therefore α : KCl(1)(D
k, Sk−1) → KFCl(1)(D

k, Sk−1) is apparently bijective

in the case of k even.

Now, it remains the case of k odd. Since we have KCl(1)(D
k, Sk−1) ∼= Z

and KFCl(1)(D
k, Sk−1) ∼= Z in this case, it suffices to see the correspondence

of generators through α. As is well-known [4], a self-adjoint Fredholm op-

erator whose spectral flow is 1 generates [(I, ∂I), (F1,F∗
1 )] ∼= π1(F1) ∼= Z.

Hence the bijectivity of α in the case of k = 1 (and n = 1) follows from:

Lemma 5.9. There is a continuous map A : (I, ∂I) → (F1,F∗
1 ) such

that:

(1) its spectral flow is 1;

(2) α([A]) = [(F, h)] in KFCl(1)(I, ∂I).

Proof. Let H be the Hilbert space with its complete orthonormal

basis {e�}�∈Z. For t ∈ R, we define a bounded self-adjoint operator at :

H → H by ate� = (t+ 3)/
√

(t+ 3)2 + 1. A computation shows

‖(at − at′)e�‖ ≤
∣∣∣∣∣ t+ 3√

(t+ 3)2 + 1
− t+ 3√

(t′ + 3)2 + 1

∣∣∣∣∣
+

∣∣∣∣∣ t+ 3√
(t′ + 3)2 + 1

− t′ + 3√
(t′ + 3)2 + 1

∣∣∣∣∣
≤ |t− t′|√

(t′ + 3)2 + 1

|t+ 3|√
(t+ 3)2 + 1

+
|t− t′|√

(t′ + 3)2 + 1
≤ 2|t− t′|.
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Thus, we get ‖(at−at′)u‖ ≤ 2|t−t′|‖u‖ for u ∈ H, so that ‖at−at′‖ ≤ 2|t−t′|.
This means the map a : R → B(H) is continuous. (HereB(H) is topologized

by the operator norm. In the case where the topology of B(H) is the

compact-open topology in the sense of [5], the map a : R → B(H) is still

continuous, since R × H → H, ((t, u) 
→ atu) is.) Now, we choose ε > 0

sufficiently small. Then, setting H1 = H ⊗ ∆1 = H⊕̂H, At =

(
0 at
at 0

)
and I = [−ε, ε], we get A : (I, ∂I) → (F1,F∗

1 ) such that its spectral flow

is 1 and its finite-dimensional approximation is a Cl(1)-vectorial bundle on

(I, ∂I) homotopic to (F, h). �

To establish the bijectivity of α in the case of general odd number k =

2m+1, we recall the map Fp(Hp)×Fq(Hq) → Fp+q(Hp⊗Hq) inducing the

ring structure on the K-cohomology theory: the explicit description of the

map is (A,B) 
→ A⊗ 1 + 1⊗B. From this description and that of vectorial

bundles, we see the commutative diagram

KCl(p)(X,Y ) ×KCl(q)(X,Y
′) −−−→ KCl(p+q)(X,Y ∪ Y ′)

α×α

� �α

KFCl(p)(X,Y ) ×KFCl(q)(X,Y
′)

⊗−−−→ KFCl(p+q)(X,Y ∪ Y ′).

This induces the following commutative diagram:∏2m+1
i=1 KCl(1)(I, ∂I) −−−→ KCl(2m+1)(I

2m+1, ∂I2m+1)

∏
α

� �α∏2m+1
i=1 KFCl(1)(I, ∂I) −−−→ KFCl(2m+1)(I

2m+1, ∂I2m+1).

By Proposition 5.7, KFCl(2m+1)(I
2m+1, ∂I2m+1) ∼= Z is generated by the

symbol of the (2m + 1)-dimensional supersymmetric harmonic oscillator,

which is the product of 2m+ 1 copies of (F, h) ∈ KFCl(1)(I, ∂I). Thus, by

Lemma 5.9 and the commutative diagram above, the homomorphism

α : KCl(2m+1)(I
2m+1, ∂I2m+1) −→ KFCl(2m+1)(I

2m+1, ∂I2m+1)

is surjective. Since any surjective homomorphism Z → Z is bijective, we

conclude that α above is bijective. Therefore the following homomorphism

is also bijective by Lemma 5.6:

α : KCl(1)(I
2m+1, ∂I2m+1) −→ KFCl(1)(I

2m+1, ∂I2m+1),
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which completes the proof of Proposition 5.5.

6. Applications

6.1. The Atiyah-Singer map

As is mentioned, the map of Atiyah-Singer [6]

AS : Fn(Hn) −→ ΩFn−1(Hn)

is a homotopy equivalence for n > 0, and induces the natural isomorphism

AS : Kτ−j
Cl(n)(X,Y ) −→ Kτ−j−1

Cl(n−1)(X,Y ).

The aim of this subsection is to introduce a counterpart of this construc-

tion to twisted Cl(n)-vectorial bundles: For any space U and (E, h) ∈
HFCl(n)(U), we can define an object (Ẽ, h̃) ∈ HFCl(n−1)(U × I) by setting

Ẽ = E × I, h̃(x, t) = h(x) +
√
−1ten,

where I = [−1, 1]. The assignment (E, h) 
→ (Ẽ, h̃) gives rise to a functor

AS : HFCl(n)(U) −→ HFCl(n−1)(U × I).

It is easy to globalize this construction to get the following functor for any

principal PU(H)-bundle τ over a space X and its subspace Y ⊂ X:

AS : KFτ
Cl(n)(X,Y ) −→ KFτ

Cl(n−1)(X × I, Y × I ∪X × ∂I).

This then induces a natural homomorphism for any j ≥ 0.

AS : KF τ−j
Cl(n)(X,Y ) −→ KF τ−j−1

Cl(n−1)(X,Y ).

Lemma 6.1. For any positive integer n > 0 and any principal PU(H)-

bundle τ over a space X and its subspace Y ⊂ X, the following diagram is

commutative:

Kτ
Cl(n)(X,Y )

AS−−−→ Kτ−1
Cl(n−1)(X,Y )

α

� �α

KF τ
Cl(n)(X,Y )

AS−−−→ KF τ−1
Cl(n−1)(X,Y ).
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Proof. Let A ∈ Γ(X,Y,Fn(τ)) represent an element in Kτ
Cl(n)(X,Y ).

Suppose that we apply the construction in Subsection 5.1 to A to have a

vectorial bundle

E = ({Uα}α∈A, sα, gαβ , (Eα, hα), φαβ) ∈ KFτ
Cl(n)(X,Y ).

Hence we have Eα =
⋃

x∈Uα
(Hn, (Aα)x)<µα under a choice of a positive

number µα. Without loss of generality, we can assume that there is εα > 0

satisfying

λ1(x) ≤ λ2(x) ≤ · · · ≤ λr(x) < µα − εα < µα + εα < λr+1(x)

for all x ∈ Uα, where r is the rank of the vector bundle Eα, and λi(x) is the

ith eigenvalue of (Aα)2x. Then the twisted Cl(n− 1)-vectorial bundle

AS(E) = ({Ũα}α∈A, s̃α, g̃αβ , (Ẽα, h̃α), φ̃αβ)

∈ KFτ×I
Cl(n−1)(X × I, Y × I ∪X × ∂I)

is given by setting Ũα = π−1(Uα) = Uα × I, s̃α = π∗sα, g̃αβ = π∗gαβ , Ẽ =

π∗Eα, h̃α(x, t) = hα(x) +
√
−1ten and φ̃αβ = π∗φαβ , where π : X × I → X

is the projection. Then AS(E) represents the image AS(α([A])).

Next, we describe the image α(AS([A])) applying the construction in

Subsection 5.1 to AS(A) ∈ Γ(X × I, Y × I ∪X ×∂I, π∗Fn(τ)). By means of

the local trivialization π∗sα of π∗τ = τ×I, the section AS(A) defines a map

Ãα : Ũα → Fn−1(Hn). By our definition of the Atiyah-Singer map, we have

(Ãα)(x,t) = (Aα)x +
√
−1ten. We here define an open cover {V (s; εα)}s∈I of

I = [−1, 1] by

V (s; εα) = {t ∈ I| s− εα < t2 < s+ εα}.

Then, for any (x, t) ∈ Uα × V (s; εα), the eigenvalues λ̃i(x, t) of (Ãα)2(x,t)
satisfy

λ̃1(x, t) ≤ λ̃2(x, t) ≤ · · · ≤ λ̃r(x, t) < µα + s < λ̃r+1(x, t),

since λ̃i(x, t) = λi(x) + t2. This implies⋃
(x,t)∈Uα×V (s;εα)

(Hn, Ã(x,t))<µα+s = Ẽα|Uα×V (s;εα).
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Thus, α(AS([A])) is represented by the twisted Cl(n − 1)-vectorial bun-

dle obtained from AS(E) through the refinement {Uα × V (s; εα)} of the

open cover {Ũα}, which is isomorphic to AS(E) itself. Hence AS(α([A])) =

α(AS([A])). �

Theorem 6.2. For any (X,Y, τ) ∈ Ĉ, j ∈ Z and n > 0, the homomor-

phism

AS : KF τ−j
Cl(n)(X,Y ) −→ KF τ−j−1

Cl(n−1)(X,Y )

is bijective.

Proof. Lemma 6.1 provides us the commutative diagram

Kτ−j
Cl(n)(X,Y )

AS−−−→ Kτ−j−1
Cl(n−1)(X,Y )

α

� �α

KF τ−j
Cl(n)(X,Y )

AS−−−→ KF τ−j−1
Cl(n−1)(X,Y ).

Since AS in the upper row is bijective by [6], Theorem 5.2 implies the

conclusion. �

Lemma 5.6 is generalized to the twisted case, so that we have a natu-

ral isomorphism KF τ−j
Cl(n)(X,Y ) → KF τ−j

Cl(n+2m)(X,Y ). The composition of

maps

KF τ−j
Cl(n)(X,Y ) −→ KF τ−j

Cl(n+2)(X,Y )
AS2

−→ KF τ−j−2
Cl(n) (X,Y )

is readily identified with the multiplication of a generator of K(D2, S1).

Thus, Theorem 6.2 reproduces Corollary 5.4 (b).

6.2. Twisted K-theory with coefficients Z/p

Let p be a positive integer. The aim of this subsection is to provide a

model of twisted K-theory with its coefficients Z/p, or twisted mod p K-

theory by using twisted vectorial bundles. For this aim, we begin with a

formulation of twisted mod p K-theory based on an idea in [3].

Definition 6.3. Let τ be a principal PU(H)-bundle over a space X.
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(a) For a non-negative integer n, we define a τ -twisted mod p K-cocycle of

degree −n−1 on X to be a pair (A, T ) consisting of A ∈ Γ(X, τ×PU(H)

Fn(Hn)) and T ∈ Γ(X × [0, 1], (τ × [0, 1])×PU(H) Fn(H⊕p
n )) such that

T |t=0 = A⊕p and Supp(T |t=1) = ∅.

(b) We define a homotopy between τ -twisted mod p K-cocycles (A0, T0)

and (A1, T1) of degree −n−1 on X to be a τ -twisted mod p K-cocycle

(Ã, T̃ ) of degree −n − 1 on X × [0, 1] such that (Ã, T̃ )|t=i = (Ai, Ti)

for i = 0, 1.

(c) We define Kτ−1
Cl(n)(X; Z/p) to be the group of homotopy classes of mod

p K-cocycles of degree −n− 1 on X. (The group structure is defined

in the same way as Kτ
Cl(n)(X).)

Lemma 6.4. There exists a natural exact sequence:

Kτ−1
Cl(n)(X)

mp−→ Kτ−1
Cl(n)(X)

ρp−→ Kτ−1
Cl(n)(X; Z/p)

δp−→ Kτ
Cl(n)(X)

mp−→ Kτ
Cl(n)(X).

Proof. We define δp by δp([(A, T )]) = [A] and mp by mp([A]) =

[A⊕p] = p[A]. To define ρp, we represent an element in Kτ−1
Cl(n)(X) by a sec-

tion B ∈ Γ(X × I,X × ∂I, (τ × I) ×PU(H) Fn(H⊕p
n )), where I = [0, 1]. The

section B|t=0 takes values in the space of invertible operators in Fn(H⊕p
n ).

Hence we can assume B|t=0 = J⊕p for some invertible operator J ∈ F∗
n(Hn).

If we put ρp([B]) = [(J,B)], then ρp gives rise to a well-defined a homomor-

phism.

Now, if [B] ∈ Kτ−1
Cl(n)(X) is such that ρp([B]) = 0, then there exists a

homotopy (Ã, T̃ ) between (J,B) and (J, J⊕p). By a reparametrization of T̃ ,

we can construct a homotopy connecting B and Ã⊕p, so that the exactness

at the second term Kτ−1
Cl(n)(X) holds. To see the exactness at the third term

Kτ−1
Cl(n)(X; Z/p), let (A, T ) be such that [A] = 0 in Kτ (X). Then there is a

homotopy H between A ∈ Fn(Hn) and an invertible operator J ∈ F∗
n(Hn).

Concatenating H⊕p and T , we have B such that ρp([B]) = [(A, T )]. The

exactness at the forth term Kτ (X) directly follows from the definitions of

δp and mp. �
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Since Kτ−1
Cl(n)(X) ∼= Kτ−n−1(X), the group Kτ−1

Cl(n)(X; Z/p) fits into

Kτ−n−1(X)
mp−→ Kτ−n−1(X)

ρp−→ Kτ−1
Cl(n)(X; Z/p)

δp−→ Kτ−n(X)
mp−→ Kτ−n(X).

Thus, the τ -twisted mod p K-theory Kτ−n−1(X; Z/p) of X of degree −n−1

can be defined as Kτ−n−1(X; Z/p) = Kτ−1
Cl(n)(X; Z/p). (By the help of

the Bott periodicity, we can actually give an isomorphism between

Kτ−1
Cl(n)(X; Z/p) and the group Kτ−n−1(X; Z/p) constructed out of the so-

called Moore space.)

Now, we introduce our finite-dimensional model of Kτ−1
Cl(n)(X; Z/p).

Definition 6.5. Let τ be a principal PU(H)-bundle over a space X.

(a) For a non-negative integer n, we define a τ -twisted mod p Cl(n)-

vectorial bundle on X to be a pair (E,H) consisting of E ∈ KFτ
Cl(n)(X)

and H ∈ KFτ×I
Cl(n)(X × I) such that H|t=0 is isomorphic to E and

Supp(H|t=1) = ∅.

(b) We define a homotopy between τ -twisted mod p Cl(n)-vectorial bun-

dles (E0,H0) and (E1,H1) on X to be a (τ × I)-twisted mod p Cl(n)-

vectorial bundle (Ẽ, H̃) on X × I such that Ẽ|t=i and H̃|t=i are iso-

morphic to Ei and Hi respectively, for i = 0, 1.

(c) We defineKF τ−1
Cl(n)(X) to be the group of homotopy classes of τ -twisted

mod p Cl(n)-vectorial bundles on X.

Lemma 6.6. There exists a natural exact sequence:

KF τ−1
Cl(n)(X)

mp→ KF τ−1
Cl(n)(X)

ρp→ KF τ−1
Cl(n)(X; Z/p)

δp→ KF τ
Cl(n)(X)

mp→ KF τ
Cl(n)(X).

Proof. We define δp by δp([E,H]) = [E] and mp([F]) = [F⊕p] = p[F].

To define ρp, let F ∈ KFτ×I
Cl(n)(X × I,X × ∂I) represent an element in

KF τ−1
Cl(n)(X). Then Supp(F|t=0) = ∅, so that F|t=0 is isomorphic to O

⊕p,

where O ∈ KFτ
Cl(n)(X) is such that Supp(O) = ∅, or equivalently [O] =

0 in KF τ
Cl(n)(X). If we put ρp([F]) = [(O,F)], then ρp is a well-defined

homomorphism. Now, the exactness of the sequence can be shown by using

the argument in the proof of Lemma 6.4: The only thing to notice is that we
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apply a Mayer-Vietoris construction (Lemma 4.2, [10]) to a “concatenation”

of twisted Cl(n)-vectorial bundles. �

Lemma 6.7. There exists a natural homomorphism

α : Kτ−1
Cl(n)(X; Z/p) −→ KF τ−1

Cl(n)(X; Z/p)

making the following diagram commutative:

Kτ−1
Cl(n)(X)

ρp−−−→ Kτ−1
Cl(n)(X; Z/p)

δp−−−→ Kτ
Cl(n)(X)� �α

�
KF τ−1

Cl(n)(X)
ρp−−−→ KF τ−1

Cl(n)(X; Z/p)
δp−−−→ KF τ

Cl(n)(X),

where the vertical maps other than α are those constructed in Subsection

5.1.

Proof. We define α in question based on the construction in Subsec-

tion 5.1: Suppose that a τ -twisted mod p K-cocycle (A, T ) of degree −n−1

on X is given. By definition, Ax = T(x,0) holds for all x ∈ X. To have

a finite-dimensional approximation of A, we choose an open cover {Uα} of

X, local trivializations sα of τ , lifts of transition functions gαβ and posi-

tive numbers µα so that
⋃

x∈Uα
(Hn, (Aα)x)<µα gives rise to a vector bundle.

Also, to have a finite-dimensional approximation of T , we choose an open

cover {Ũα̃} of X × I, local trivializations s̃α̃ of τ × I, lifts of transition

functions g̃α̃β̃, and positive numbers µ̃α̃ so that
⋃

(x,t)∈Ũα̃
(H⊕p

n , (Tα̃)(x,t))<µ̃α̃

gives rise to a vector bundle. We can choose these data for T in a way

compatible with the data for A, that is,

• the open cover {Uα} agrees with the open cover {Ũα̃|t=0} of X ×{0};

• If Uα = Ũα̃|t=0, then sα = s̃α̃|t=0, gαβ = g̃α̃β̃|t=0 and µα = µ̃α̃.

Such a choice is possible because the eigenvalues of (Tα̃)2(x,t) are continu-

ous in (x, t). Under the choice above, we get a τ -twisted mod p Cl(n)-

vectorial bundle (E,H) as a finite-dimensional approximation of (A, T ). We

put α([(A, T )]) = [(E,H)] and define the homomorphism α. Once α is de-

fined, the commutativity of the diagram is obvious from the construction. �
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Theorem 6.8. For any (X, ∅, τ) ∈ Ĉ, the homomorphism in Lemma

6.6

α : Kτ−1
Cl(n)(X; Z/p) −→ KF τ−1

Cl(n)(X; Z/p)

is bijective, so that there is an isomorphism Kτ−n−1(X; Z/p) ∼=
KF τ−1

Cl(n)(X; Z/p).

Proof. The theorem follows from Lemma 6.4, 6.6, 6.7 and Theorem

5.2. �

Though will not be detailed anymore, we can take into account addi-

tional support conditions to define the relative versions Kτ−1
Cl(n)(X,Y ; Z/p)

as well as KF τ−1
Cl(n)(X,Y ; Z/p) for any (X,Y, τ) ∈ Ĉ. Then, in the same way

as above, we get isomorphisms Kτ−1
Cl(n)(X,Y ; Z/p) ∼= KF τ−1

Cl(n)(X,Y ; Z/p) and

Kτ−j−n−1(X,Y ; Z/p) ∼= KF τ−1
Cl(n)(X × Ij , Y × Ij ∪X × ∂Ij ; Z/p).
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