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Abstract

A system of a Dirac particle interacting with the radiation field is considered. The Hamil-
tonian of the system is defined by H = α · (p̂ − qA(x̂)) + mβ + Hf , where q ∈ R is a
coupling constant, A(x̂) the quantized vector potential and Hf the free photon Hamilto-
nian. Since the total momentum is conserved, H is decomposed with respect to the total
momentum with fiber Hamiltonian H(p), (p ∈ R3). Since the self-adjoint operator H(p)
is bounded from below, one can define the lowest energy E(p,m) := inf σ(H(p)). We
prove that E(p,m) is an eigenvalue of H(p) under the following conditions: (i) infrared
regularization and (ii) E(p,m) < E(p, 0). We also discuss the polarization vectors and
the angular momentums.
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§1. Introduction

We consider a quantum system of a Dirac particle interacting with the radiation

field. An example of a Dirac particle is the free electron. The Hilbert space for the

Dirac particle is

Hp := L2(R3
x;C4),(1.1)

and the free Hamiltonian for the Dirac particle is the free Dirac operator α·p̂+mβ
acting on Hp, where p̂ = −i∇x denotes the momentum for the Dirac particle. The

Hilbert space for the radiation field is the Fock space:

Frad :=

∞⊕
n=0

n⊗
sym

L2(R3
k × {1, 2}),(1.2)
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where⊗n
sym means the n-fold symmetric tensor product with⊗0

sym L
2(R3

k×{1, 2}) :=
C. The Hilbert space for the total system is defined by

H := Hp⊗Frad.(1.3)

In this paper, we consider the quantum system described by the Hamiltonian

(1.4) H := α · (p̂− qA(x̂)) +mβ +Hf ,

where q ∈ R is a coupling constant, A(x̂) denotes the quantized magnetic vector

potential in the Coulomb gauge and Hf denotes the free photon Hamiltonian. We

impose an ultraviolet cutoff in the quantized vector potential. We call the quantum

system defined by (1.4) the Dirac-Maxwell model. The Hamiltonian (1.4) was

introduced and discussed in the early days in quantum theory(e.g., [He]). By an

informal perturbation theory, the Klein-Nishina formula (which gives a differential

cross section for the Compton scattering) can be derived from the Dirac-Maxwell

model[He]. A mathematical analysis of the Dirac-Maxwell model was initiated by

A. Arai [A1, A2]. In the paper [A3], A. Arai proved that a non-relativistic limit of

the Dirac-Maxwell model converges to the Pauli-Fierz model(the non-relativistic

QED). See also [A4]. The essential self-adjointness of the Hamiltonian (1.4) with

an external potential was discussed by E. Stockmayer and H. Zenk [SZ].

Since the Hamiltonian H is translation invariant, the total momentum of the

system conserved, i.e., the Hamiltonian of the system strongly commutes with the

total momentum operator

P := p̂+ dΓ(k),(1.5)

where dΓ(k) denotes the momentum operator of the radiation field. Hence the

Hamiltonian can be decomposed as

H ∼=
∫ ⊕

R3

H(p)dp,(1.6)

P ∼=
∫ ⊕

R3

pdp,(1.7)

where the symbol ∼= means a unitary equivalence. In this paper, we mainly study

the fiber HamiltonianH(p) which describes the dynamics of the relativistic particle

dressed in photons with total momentum p. We call the quantum system described

by H(p) the Dirac polaron. As shown in [A2, A1], for p ∈ R3, H(p) has the form

(1.8) H(p) = α · p+mβ +Hf −α · dΓ(k)− qα ·A,

which acts on C4⊗Frad, where A denotes the quantized vector potential at the

origin(= A(0)). The fourth term −α · dΓ(k) describes the reaction due to the
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radiation field, and the last term −qα · A is the electromagnetic interaction. It

should be noted that −qα ·A is not H(p)|q=0-bounded for any nonzero q, because

the reaction term −α ·dΓ(k) is comparable to Hf and −qα ·A is unbounded. This

fact implies that −qα ·A is not a small perturbation no matter how q is small. One

of the important fact on the Dirac polaron is that H(p) is bounded from below for

all values of all constants: the total momentum p, the mass m and the coupling

constant q(see [S1]). Hence, one can define the lowest energy by

(1.9) E(p,m) := inf σ(H(p)) > −∞,

where σ(A) denotes the spectrum of A. If H(p) has an eigenvalue E for q ̸= 0,

we say that an dressed particle state exists and the corresponding eigenvector is

called a dressed particle state. In Section 4, we show that a dressed particle state

exists under suitable conditions including (i) infrared regularization and (ii) the

inequality

(1.10) E(p,m) < E(p, 0).

The condition (1.10) will be assumed in Theorem 4.1, 4.2 and 4.4 below. One

can observe that there exist m∗ > 0 such that (1.10) holds for all |m| > m∗.

We expect that m∗ = 0, but we don’t have its proof. In Section 5, we study the

angular momentum and degeneracy of eigenvalues of the Dirac polaron H(p). We

will show that the angular momentum of the p-direction commutes with H(p),

and any eigenvalue of H(p) has an even multiplicity(admit infinity). Therefore

E(p,m) is degenerate if it is an eigenvalue of H(p).

This paper has three appendices. In Appendix A, we show that all spectral

properties of the Dirac-Maxwell model and the Dirac polarons are independent of

the choice of polarization vectors. Namely, two Hamiltonians which are defined by

different polarization vectors are unitarily equivalent to each other. The discussions

in the Appendix A can be applicable for various QED models(e.g., Pauli-Fierz

model). In Appendix B, we propose a general definition of the angular momentum.

Although the spectral properties of the QED Hamiltonians are independent of the

choice of the polarization vectors, the definition of the angular momentum depends

on the polarization vectors.

In Appendix C, we show some properties of the lowest energy E(p) which is

used in proofs of Theorems 4.1-4.4.

§2. Definitions of the Model

In this paper, unless confusion arise, we omit the symbol “⊗” between two op-

erators, for example, we write A⊗ I as A and I ⊗B as B, where I denotes the
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identity operator. For a closable operator T on L2(R3
k × {1, 2}), we denote by

dΓ(T ) and Γ(T ) the second quantization operators of T (see [RS2]), which acts

on Frad. For f ∈ L2(R3
k × {1, 2}), we denote by a(f) and a(f)∗ the annihilation

operator and the the creation operator, respectively(see [RS2]), which are closed

operators acting on Frad. Let e
(λ) : R3 7→ R3, λ = 1, 2, be polarization vectors:

e(λ)(k) · e(µ)(k) = δλ,µ, e(λ)(k) · k = 0, k ∈ R3, λ, µ ∈ {1, 2}.

We write as e(λ)(k) = (e
(λ)
1 (k), e

(λ)
2 (k), e

(λ)
3 (k)), and we suppose that each com-

ponent e
(λ)
j (k) is a Borel measurable function in k. For objects a = (a1, a2, a3)

and b = (b1, b2, b3), we set a · b :=
∑3

j=1 ajbj . For a linear F (·) we set F (a) :=

(F (a1), F (a2), F (a3)). Let ω be a multiplication by the function

(2.1) ω(k) = |k|.

We choose a function

(2.2) ρ̂ ∈ L2(R3
k) ∩Dom(ω−1),

where Dom means the operator domain. For j = 1, 2, 3 and x ∈ R3, we set

gj(k, λ;x) := |k|−1/2ρ̂(k)e
(λ)
j (k)e−ik·x, (k, λ) ∈ R3

k × {1, 2}.

For each fixed x ∈ R3, the function gj(x)(·) := gj(· ;x) is a function in L2(R3
k ×

{1, 2}). The quantized magnetic vector potential at x ∈ R3 is defined by

A(x) := (A1(x)), A2(x), A3(x)),

Aj(x) :=
1√
2
[a(gj(x)) + a(gj(x))∗], j = 1, 2, 3,

where, for a closable operator T , T̄ denotes its closure. For each x ∈ R3, Aj(x) is

a self-adjoint operator on Frad(see [RS2]). Since e(λ)(k)’s are perpendicular to k,

the operators A(x) satisfy the Coulomb gauge condition:

(2.3) divA(x) =
3∑

j=1

∂xjAj(x) = 0.

Remark 2.1. The function ρ̂ is called an ultraviolet cutoff function. An typical

example of ρ̂ is the characteristic function of the region {k ∈ R3|κ ≤ |k| ≤ Λ},
where κ and Λ are non-negative constants. Λ is called an ultraviolet cutoff. κ is

called an infrared cutoff if it is strictly positive.

The Hilbert space H can be identified as

(2.4) H = L2(R3
x;C4⊗Frad) =

∫ ⊕

R3

C4⊗Fraddx.
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Under this identification, we define the quantized vector potential in the following

way. Since gj(x) ∈ L2(R3
k × {1, 2}) is strongly continuous in x ∈ R3, the map

x 7→ Aj(x) is a self-adjoint operator valued measurable function. Then we can

define a self-adjoint operator on H by

(2.5) Aj(x̂) :=

∫ ⊕

R3

Aj(x)dx.

Namely, when we identify Ψ ∈ D(Aj(x̂)) as the Frad-valued square integrable func-

tion and the operator, the action of the operator Aj(x̂) is given by (Aj(x̂)Ψ)(x) =

Aj(x)Ψ(x), x ∈ R3. The operator valued vector

A(x̂) := (A1(x̂), A2(x̂), A3(x̂))(2.6)

is also called the quantized vector potential.

The free photon Hamiltonian as the second quantization of ω:

(2.7) Hf := dΓ(ω).

The Dirac-Maxwell Hamiltonian is defined by

(2.8) H := α · (p̂− qA(x̂)) +mβ +Hf ,

where p̂ = −i∇x and ∇x is the gradient operator acting in Hp, α = (α1, α2, α3)

and β are Dirac matrices satisfying α1, α2, α3, β ∈M4(C) and

αjαk + αkαj = 2δjk,(2.9)

αjβ + βαj = 0,(2.10)

β2 = IC4 ,(2.11)

the constant m ∈ R is the rest mass of the Dirac particle, q ∈ R is a coupling

constant. In the right hand side of (2.8), we omit the symbols ⊗ I and I ⊗, i.e.,
the expression (2.8) is an abbreviation for

H = (α · p̂+mβ)⊗ IFrad
− q

3∑
j=1

(αj ⊗ IL2(R3
x)
) ·Aj(x̂) + IHp ⊗Hf .

In this paper, we use the Weyl representation for the Dirac matrices. Since all

representations of the Dirac matrices are unitarily equivalent to each other, this

choice does not affect the spectral properties of H(see [T, Lemma 2.25]).

It is easy to see that H is symmetric. Although the essential self-adjointness

of H was proven in [A1], we give a slightly improved result:

Proposition 2.2 (Essential self-adjointness). H̄ is a self-adjoint operator and es-

sentially self-adjoint on any core for
√
−△+Hf .
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Proof of Proposition 2.2. The proof is a simple application of Nelson’s commutator

theorem. Our choice of a comparison operator for Nelson’s commutator theorem

is
√
−△+Hf . See [S2] for details.

§3. Momentum Conservation and Fiber Hamiltonian H(p)

The total momentum operator is defined by

(3.1) P := p̂+ dΓ(k).

The Hamiltonian H strongly commutes with P (see [A1]). To construct the fiber

Hamiltonian, we define a self-adjoint operator

(3.2) Q := x · dΓ(k).

Let UF be the Fourier transform from L2(R3
x) to L

2(R3
p). We set

U := (UF ⊗ IC4) exp(iQ).(3.3)

Then we can identify UH as a constant fiber direct integral

(3.4) UH ∼=
∫ ⊕

R3

C4⊗Fraddp.

For every p ∈ R3, we define

(3.5) H(p) := α · p+mβ +Hf −α · dΓ(k)− qα ·A,

which acts on C4⊗Frad, where A := A(0).

Proposition 3.1. For all p ∈ R3, H(p) is essentially self-adjoint and

UH̄U∗ =

∫ ⊕

R3

H(p)dp,(3.6)

UPU∗ =

∫ ⊕

R3

pdp.(3.7)

hold, where
∫ ⊕

(· · · ) denotes fiber direct integral operator with respect to (3.4).

Proof. See [A2].

Remark 3.2. Physically H(p) is the Hamiltonian of the fixed total momentum

p ∈ R3. One can show that the spectral properties of H(p) is independent of the

choice of polarization vectors, because the Hamiltonians with different polarization

vectors are unitarily equivalent each other. See Appendix A.
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Remark 3.3. We call H(p) the Dirac polaron Hamiltonian, which was intro-

duced in [A4]. It is expected that, as in the model of the H. Fröhlich polaron, the

electromagnetic interaction forms a quasiparticle where the bare Dirac particle is

surrounded by the photon clouds. Such a quasiparticle with momentum p ∈ R3 is

considered as the ground state of H(p), if it exist. The existence of ground state

of H(p) is the main subject of our paper.

Remark 3.4. Note that Dom(α·dΓ(k)) ⊂ Dom(Hf ). Hence Dom(Hf ) = Dom(H(p))

and H(p) is essentially self-adjoint on Dom(Hf ).

One of the most important fact of H(p) is the semi-boundedness:

Theorem 3.5. ([S1]) For any p, H(p) is bounded from below. Moreover H(p) is

essentially self-adjoint on any core for Hf .

Proof. The first statement was shown in [S1], where it is assumed the condition

ρ̂ ∈ Dom(ω1/2). But one can remove this condition in the following procedure. In

[S1, ineq. (24)], it is shown that H(p) is bounded from below and the lower bound

is a function of ∥ω1/2g∥L2(R3) but ∥ωg∥L2(R3). Therefore, firstly, we regularize

ρ̂ as ρ̂λ(k) := ρ̂(k)χ|k|≤λ, then we obtain the lower bound of the regularized

Hamiltonian Hλ(p) ≥ Cλ. Since Cλ converges as λ→∞ and Hλ(p) converges to

H(p) on a finite particle subspace, we get H(p) ≥ limϵ→+0 Cϵ > −∞. The second

statement follows from the Wüst’s Theorem([RS2]) and the bound

∥α · (dΓ(k)− qA)Ψ∥2 ≤ ∥(Hf + E)Ψ∥2, Ψ ∈ Dom(Hf )(3.8)

for some E > 0. The bound (3.8) was given in [S1].

Thus we can define the lowest energy of the Dirac polaron with total momen-

tum p by:

(3.9) E(p,m) := inf σ(H(p)).

The energy E(p,m) depends on all parameters (p,m, q) ∈ R3 × R × R. When m

dependence in E(p,m) is not important, we write E(p,m) as E(p).

§4. Existence of a Ground State

For a self-adjoint operator bounded below, T , we say that T has a ground state if

inf σ(T ) is an eigenvalue of T . In this section, we give criteria for H(p) to have a

ground state.



8 I. Sasaki

Theorem 4.1. Suppose that ρ̂ is spherically symmetric and the bound

(4.1)

∫
R3

q2

(E(p− k)− E(p) + |k|)2
|ρ̂(k)|2

|k|
dk < 1

holds. Assume that E(p,m) < E(p, 0). Then the Dirac polaron Hamiltonian H(p)

has a ground state.

Using the lower bound on E(p−k)−E(p)+ |k|, which is proved in Theorem

Appendix C.10 below, we obtain the following result:

Theorem 4.2. Assume that ρ̂ be spherically symmetric and that E(p,m) < E(p, 0).

Assume the infrared regular condition ρ̂ ∈ Dom(ω−3/2). Then there exists a con-

stant q0 > 0 such that for all q with |q| < q0, H(p) has a ground state.

Remark 4.3. Since E(p,m) is concave in m(Proposition Appendix C.1) and

limm→∞E(p,m) = −∞, there exist m∗ ≥ 0 such that E(p,m) < E(p, 0) for

all |m| > m∗.

A proof of Theorem 4.1 is based on the estimates of a photon number bound.

The condition (4.1) can be considered as a restriction on the coupling constant

q. There are two ways to remove this restriction. The first one is the method

discovered by C. Gérard in [Ge] and another one is the photon derivative bound

developed in [GLL]. In this paper, we use the photon derivative bound. We need

the additional assumptions:

(Λ) (i) ρ̂ is a spherically symmetric function. (ii) There is an open set S ⊂ R3 such

that S̄ = supp ρ̂ and ρ̂ is continuously differentiable on S. (iii) For all R > 0,

the bounded region SR := {k ∈ S||k| < R} has the cone property(see [LL] for

the definition).

The theorem below proves the existence of ground state of the Dirac polaron

for all values of coupling constant q:

Theorem 4.4. Assume the condition (Λ). Moreover we assume that

ρ̂ ∈ Dom(ω−3/2), |k|−5/2ρ̂(k) ∈ Lp(SR), |k|−3/2|∇ρ̂(k)| ∈ Lp(SR),(4.2)

for all p ∈ [1, 2) and R > 0. Suppose that E(p,m) < E(p, 0). Then H(p) has a

ground state.

Remark 4.5. The followings are examples Let χκ,Λ(k) be a characteristic func-

tion of the region {k ∈ R3|κ < |k| < Λ}. For all κ > 0 and Λ < ∞, the

cutoff function ρ̂ = χκ,Λ satisfies the conditions (Λ) and (4.2). The function

ρ̂(k) = |k| exp(−λ|k|) (λ > 0) also satisfies the conditions (Λ) and (4.2).
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Remark 4.6. It is known that, in non-relativistic QED, the existence of a dressed

particle requires the restriction |p|/m ≤ 1 (see [C]). On the other hand, Theorems

4.1-4.4 does not require restriction on |p|/m. This fact is a crucial difference be-

tween relativistic and non-relativistic dynamics. This result can be interpreted as

follows. In general, the velocity operator is defined by i =
√
−1 times the commu-

tator of the energy Hamiltonian with the position. Hence, the velocity operators

of the non-relativistic particle and Dirac particle are defined by

p̂/m = i[p̂2/2m,x],(4.3)

α = [α · p̂+mβ,x],(4.4)

respectively. Hence the non-relativistic particle can move faster than the light, and

the particle with velocity |p|/m > 1 makes a shock wave of light and lose their

kinetic energy. Therefore such a non-relativistic particle is unstable in the presence

of the electromagnetic interaction. On the other hand, since the speed of the Dirac

particle is smaller than that of light, ∥α∥ ≤ 1, this kind of catastrophe does not

occur, and the dressed electron state is stable for all |p|.

Remark 4.7. It is easy to see that the Hermitian matrix α · p + mβ has two

eigenvalues ±
√
p2 +m2, each of which is two-fold degenerate. Let u

(±)
i ∈ C4,

i = 1, 2 be the corresponding normalized eigenvectors:

(α · p+mβ)u
(±)
i = ±

√
p2 +m2u

(±)
i , i = 1, 2.

Let Ω := (1, 0, 0, . . .) ∈ Frad be the vacuum. Ω is the unique eigenvector of both

Hf and dΓ(kj), j = 1, 2, 3. We set Φ
(±)
i := u

(±)
i ⊗Ω, j = 1, 2. Clearly,

H(p)|q=0Φ
(±)
i = ±

√
p2 +m2Φ

(±)
i , i = 1, 2.

Thus, in the case q = 0, H(p)|q=0 has two eigenvalues ±
√
p2 +m2. These eigen-

vectors Φ
(+)
i , i = 1, 2 (resp. Φ

(−)
i , i = 1, 2) describe states of a freely moving

positive(resp. negative) energy particle with momentum p. Hence, if photons and

the Dirac particle are decoupled, a Dirac particle associated with a positive eigen-

value exists and the positive eigenvalue is embedded. We are interested in the fate

of these eigenvalues when the interaction is switched on. As is shown in Fig.1,

the lowest energy E(p,m) converges to −
√
p2 +m2 as q → 0. As is written in

textbooks of physics(e.g. [B, He]), it is expected that any positive energy electron

falls down to a negative energy states by a spontaneous emission of photons. Hence

it is expected that the eigenvalue +
√

p2 +m2 is unstable under the perturbation

qα ·A. Theorems 4.1-4.4 ensure that the negative energy dressed electron exists

under some conditions. But the instability of
√
p2 +m2 has not been proved yet.
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Figure 1. Spectrum of H(p)|q=0 and H(p).

§5. Angular Momentum and Degeneracy of Eigenvalues

In this section we show that the angular momentum around j-axis (j ∈ R3\{0})
of the Dirac polaron is conserved if p is parallel to j and ρ̂(k) has axial symmetry

around j. Let (H(p), e) be a Dirac polaron model with an arbitrarily given polar-

ization vectors e = (e(1), e(2)). The total angular momentum around j-axis in the

system (H(p), e) is defined by

Jj(e) := Sj + Lj(e),

where Sj := ⊕2(j · σ⃗)/2, σ⃗ = (σ1, σ2, σ3) are the Pauli matrices, and Lj(e) is a

angular momentum for the radiation field, which is defined in Appendix B.

Proposition 5.1. The spectrum of Jj(e) is the set of half-integers:

σ(Jj(e)) = Z1/2 := {±1/2,±3/2,±5/2, · · · }.

In particular, Jj(e) is decomposable as

Jj(e) ∼=
⊕

z∈Z1/2

z.(5.1)

with respect to the identification/

C4⊗Frad
∼=

⊕
z∈Z1/2

F(z).

The conclusion in this section is the following:

Theorem 5.2. Let j be a unit vector being parallel with p. Assume that ρ̂(k) =

ρ̂(Rk),k ∈ R3, for all R ∈ O(3) with Rj = j. Then H(p) strongly commutes with

Jj(e). In particular, H(p) is decomposable as

H(p) ∼=
⊕

z∈Z1/2

H(p : z),
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corresponding to the decomposition (5.1). Moreover, for all z ∈ Z1/2, H(p : z) is

unitarily equivalent to H(p : −z), and the multiplicity of any eigenvalue of H(p)

is even.

Remark 5.3. In the paper [Hi], F. Hiroshima defines an angular momentum in

QED, which differs from our definition.

§6. Proof of Theorems 4.1 - 4.4

For a constant ν ≥ 0, we define a regularized Hamiltonian to avoid the risk of

infrared divergence:

(6.1) Hν(p) := α · p+mβ +Hf (ν)−α · dΓ(k)− qα ·A,

where

(6.2) Hf (ν) := dΓ(ων), ων(k) = (1 + ν)|k|+ ν.

Let Nf := dΓ(1) be the photon number operator. Note that Hf (ν) = Hf +ν(Hf +

Nf ) and H0(p) = H(p). By the Kato-Rellich theorem, one can easily show that,

for all ν > 0, Hν(p) is self-adjoint on Dom(Hf (ν)), and essentially self-adjoint on

any core for Hf (ν). Since Hν(p) ≥ H(p), Hν(p) is also bounded from below. We

set D := Dom(Hf )∩Dom(Nf ). Then D is a common core for Hν(p), (ν ≥ 0). We

set

(6.3) Eν(p) := inf σ(Hν(p)).

For ν > 0, the massive Hamiltonian Hν(p) was studied in [A1, A2], in which A.

Arai showed that Hν(p) has a ground state for all ν > 0.

Lemma 6.1 (Existence of ground state for ν > 0). Assume that ν > 0. Then

inf σess(Hν(p))− Eν(p) ≥ ν.(6.4)

In particular, Hν(p) has a ground state.

Proof. See [A2].

By Lemma 6.1, for all ν > 0, Hν(p) has a normalized ground state Φν(p) ∈
Dom(Hf (ν)). In the following, we construct a ground state of H0(p) as suitable

limits of Φν(p). Since Φν(p) is normalized, there exists a sequence {Φνj (p)}∞j=1

with limj→∞ νj = 0 such that {Φνj}j has a weak limit.

Lemma 6.2. Let {νj}∞j=1 be a sequence such that Φνj has a weak limit Φ0(p) :=

w-limj→∞ Φνj . Assume Φ0 ̸= 0. Then Φ0 ∈ Dom(H(p)) and Φ0 is a ground state

of H(p).
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Proof. For all Ψ ∈ D, one has

(6.5)

⟨H(p)Ψ,Φ0⟩ = lim
j→∞

⟨
Ψ, H(p)Φνj

⟩
= lim

j→∞

⟨
Ψ, {Eνj (p)− νj(Hf +Nf )}Φνj

⟩
.

By Proposition Appendix C.9, we have Eνj (p)→ E0(p) as j →∞. By assumption

(2), we have

(6.6) lim
j→∞

νj |
⟨
Ψ, (Hf +Nf )Φνj

⟩
| ≤ lim

j→∞
νj∥(Hf +Nf )Ψ∥ · ∥Φνj

∥ = 0.

Hence ⟨H(p)Ψ,Φ0⟩ = ⟨Ψ, E(p)Φ0⟩ for all Ψ ∈ D. Since D is a core for H(p),

Φ0 ∈ Dom(H(p)) and H(p)Φ0 = E(p)Φ0 holds.

Hν(p) and Eν(p) depend on p,m, ν, etc. When we need to indicate its de-

pendence, we write Eν(p,m, · · · ) and Hν(p,m, q, · · · ) for Eν(p) and Hν(p), re-

spectively.

In this section, we use the following identification

C4⊗Frad =
∞⊕

n=0

C4⊗F (n), F (n) :=
n
⊗
s
L2(R3

k × {1, 2}),

and each vector Ψ(n) ∈ C4⊗F (n) is identified with a Hilbert space valued function

Ψ(n)(k, λ; ·) : R3
k × {1, 2} 7→ C4⊗F (n−1). For all(k, λ) ∈ R3 × {1, 2}, we define a

map

aλ(k) : C4⊗Frad →
∞∏

n=0

C4⊗F (n) := {(Φ(n))∞n=0|Φ(n) ∈ C4⊗F (n)}

(6.7)

aλ(k)Ψ := (Ψ(1)(k, λ),
√
2Ψ(2)(k, λ; ·), . . . ,

√
nΨ(n)(k, λ; ·), . . .) ∈

∞∏
n=0

C4⊗F (n).

(6.8)

For almost every (k, λ), aλ(k) is well-defined as a linear map. The smeared anni-

hilation operator a(f) formally satisfies

a(f)Ψ =
∑
λ=1,2

∫
R3

dkf(k, λ)∗aλ(k)Ψ.(6.9)

It is not necessary to consider that aλ(k) is an operator valued distribution. This

definition of aλ(k) is useful for our purpose below(Proposition 6.3). In general,

aλ(k)Ψ /∈ C4⊗Frad, but one can show that aλ(k)Ψ ∈ C4⊗Frad for a class of

vectors Ψ ∈ C4⊗Frad. Let w : R3 → [0,∞) be an almost positive Borel measurable

function. Then, for any Ψ ∈ Dom(dΓ(w)1/2) and for almost every (k, λ) ∈ R3 ×
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{1, 2}, the vector aλ(k)Ψ is a C4⊗Frad-valued function. Because, for any Ψ ∈
Dom(dΓ(w)1/2), one has

(6.10) ∥dΓ(w)1/2Ψ∥2 =
∞∑

n=1

∑
λ=1,2

∫
R3

dkw(k)n∥Ψ(n)(k, λ; ·)∥2C4 ⊗F(n−1) <∞,

and hence
∑∞

n=1 n∥Ψ(n)(k, λ; ·)∥2C4 ⊗F(n−1) <∞ for almost every (k, λ).

We set g(k, λ) := g(k, λ; 0).

Proposition 6.3. Let ν > 0. Then aλ(k)Φν(p) ∈ Dom(Hν(p)) and

(6.11) aλ(k)Φν(p) =
q√
2
(Hν(p− k)− Eν(p) + ων(k))

−1α · g(k, λ)Φν(p),

for almost every (k, λ) ∈ R3 × {1, 2}.

Proof. For all f ∈ Dom(ων) and Ψ ∈ D, we have

⟨(Hν(p)− Eν(p))Ψ, a(f)Φν(p)⟩ =
⟨
Ψ,

{
− a(ωνf) +α · a(kf) + q√

2
α · ⟨f,g⟩

}
Φν(p)

⟩
.

Hence∑
λ=1,2

∫
R3

dkf(k, λ)∗ ⟨(Hν(p)− Eν(p))Ψ, aλ(k)Φν(p)⟩ =

∑
λ=1,2

∫
R3

dkf(k, λ)∗
⟨
Ψ,−ων(k)aλ(k)Φν(p) +α · kaλ(k)Φν(p) +

q√
2
α · g(k, λ)Φν(p)

⟩
.

Since Dom(ων) is dense in L2(R3
k × {1, 2}), we have

⟨(Hν(p)− Eν(p))Ψ, aλ(k)Φν(p)⟩
= ⟨Ψ, (−ων(k)aλ(k) +α · kaλ(k) + q√

2
α · g(k, λ))Φν(p)⟩,

for almost every (k, λ) ∈ R3×{1, 2}, and all Ψ ∈ D. This means that aλ(k)Φν(p) ∈
D(Hν(p)) and

(Hν(p)− Eν(p) + ων(k)−α · k)aλ(k)Φν(p) =
q√
2
α · g(k, λ)Φν(p).

Hence (6.11) follows.

Lemma 6.4. Suppose that ρ̂ is spherically symmetric and ρ̂ ∈ Dom(ω−3/2). As-

sume that E(p,m) < E(p, 0). Then

lim sup
ν→0

∥N1/2
f Φν(p)∥2 ≤

∫
R3

dk
q2

(E(p− k)− E(p) + |k|)2
|ρ̂(k)|2

|k|
<∞(6.12)

lim sup
ν→0

∥H1/2
f Φν(p)∥2 ≤

∫
R3

dk
q2

(E(p− k)− E(p) + |k|)2
|ρ̂(k)|2 <∞.(6.13)
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Proof. By Proposition 6.3 and (6.10) with w = 1, we have

∥N1/2
f Φν(p)∥2 ≤

2∑
λ=1

∫
R3

q2

2

∥α · g(k, λ)Φν(p)∥2

(Eν(p− k)− Eν(p) + |k|+ ν)2
dk

=

∫
R3

q2

(Eν(p− k)− Eν(p) + |k|+ ν)2
|ρ̂(k)|2

|k|
dk.

By Theorem Appendix C.10 and ρ̂ ∈ Dom(ω−3/2), the right hand side of (6.12) is

finite. Hence, by Proposition Appendix C.9 and the Lebesgue convergence theo-

rem, one has (6.12). The proof of (6.13) is similar. The only thing we have to do

is setting w(k) = ω(k).

Proof of Theorem 4.1. By Proposition Appendix C.2 , we have

0 ≤ E(p− k)− E(p) + |k| ≤ 2|k|.

Hence, by (4.1),

q2

4

∫
R3

|ρ̂(k)|2

|k|3
dk ≤

∫
R3

q2

(E(p− k)− E(p) + |k|)2
|ρ̂(k)|2

|k|
dk < 1,

which implies ρ̂ ∈ Dom(ω−3/2). Hence (6.12) and (6.13) holds.

Since Φν(p) is a unit vector, there exists a subsequence νj such that νj → 0

as j → ∞ and Φ0(p) := w-limj→∞ Φνj (p) exists. Then, by (6.12) and (6.13), we

have

lim
j→∞

∥N1/2
f Φνj∥ < 1, lim

j→∞
∥H1/2

f Φνj∥ <∞,

which implies that Φ0(p) ∈ Dom(N
1/2
f ) ∩ Dom(H

1/2
f ). Hence Φ0(p) ∈ Q(H(p)),

where Q denotes the form domain. For any φ ∈ Dom(H(p)), we have

⟨(H(p)− E(p))φ,Φ0(p)⟩ = lim
j→∞

⟨
(H(p)− E(p))φ,Φνj

(p)
⟩

= lim
j→∞

⟨
φ, (Eνj (p)− E(p)− νj(Hf +Nf ))Φνj (p)

⟩
= 0.

Thus Φ0(p) ∈ Dom(H(p)) and (H(p)−E(p))Φ0(p) = 0. Therefore, if Φ0(p) ̸= 0,

then Φ0(p) is a ground state of H(p). Since C4 is a finite dimensional space, the

vacuum component Φνj (p)
(0) strongly converges to Φ0(p)

(0). Hence

(6.14) ∥Φ0(p)∥2 ≥ ∥Φ0(p)
(0)∥2 = lim

j→∞
∥Φνj (p)

(0)∥2 = lim
j→∞

⟨
Φνj (p), PΩΦνj (p)

⟩
,
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where PΩ is the orthogonal projection on the vacuum (1, 0, 0, . . .) ∈ Frad. Thus,

using (6.14) and Nf ≥ 1− PΩ, we have

∥Φ0(p)∥2 ≥ 1− lim
j→∞

∥N1/2
f Φνj (p)∥2 > 0.

This means that Φ0(p) ̸= 0 and Φ0(p) is a ground state of H(p).

Proof of Theorem 4.2. Theorem 4.2 is immediately derived from Theorem 4.1 and

Theorem Appendix C.10.

Next, we prepare some lemmata for the proof of Theorem 4.4. For a Hilbert

space K, we denote by B(K) the set of all bounded operators on K. The next

lemma is followed by the second resolvent equation.

Lemma 6.5. Let ν > 0. For each j ∈ R3 with |j| = 1, the operator valued function

R3\{0} : k→ (Hν(p− k)− Eν(p) + ων(k))
−1 ∈ B(C4⊗Frad) is differentiable in

the sense of operator norm, and

∂j(Hν(p− k)− Eν(p) + ων(k))
−1 =

(Hν(p− k)− Eν(p) + ων(k))
−1

(
α · j− (1 + ν)

k · j
|k|

)
(Hν(p− k)− Eν(p) + ων(k))

−1,

where ∂j means the j-direction derivative.

We fix the following polarization vectors in the rest of this section:

(6.15) e(1)(k) =
(k2,−k1, 0)√

k21 + k22
, e(2)(k) :=

k

|k|
∧ e(1)(k).

Now, remember the definition of the set S (which is defined in condition (Λ)). We

set X := S\{k ∈ R3|k1 = k2 = 0}, XR := SR ∩ X. By Lemma 6.5 and (6.15), we

obtain the following result:

Lemma 6.6. Assume the same assumptions as in Theorem 4.4. Then aλ(k)Φν(p)

is strongly continuously differentiable in X and

∂jaλ(k)Φν(p)

=
q√
2
(Hν(p− k)− Eν(p) + ων(k))

−1

(
αj − (1 + ν)

kj
|k|

)
× (Hν(p− k)− Eν(p) + ων(k))

−1α · g(k, λ)Φν(p)

+
q√
2
(Hν(p− k)− Eν(p) + ων(k))

−1α · (∂jg(k, λ))Φν(p),

where ∂j denotes the strong derivative in kj , (j = 1, 2, 3).
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We set

Ψj(k, λ) = (Ψ
(n)
j (k, λ; ·))∞n=0 := ∂jaλ(k)Φν(p).

Lemma 6.7. Assume the same assumptions as in Theorem 4.4. Then

∂jΦ
(n)
ν (p)(k, λ;X; k2, . . . , kn) =

1√
n
Ψ

(n−1)
j (k, λ;X; k2, . . . , kn), kℓ = (kℓ, λℓ),

for all X ∈ {1, 2, 3, 4}, k,kℓ ∈ X, n ∈ N, λ, λℓ = 1, 2 and j = 1, 2, 3, where ∂j is

the distributional derivative in kj.

Note that ∂j in the left hand side is a distributional derivative and that in Ψj

is a strong derivative.

Proof. In this proof, for simplicity, we do not indicate X,λ, λℓ and p. The op-

erator δh is defined by δhf(k) := f(k + hj) − f(k) for all functions f(k). Let

ψ(k,k2, . . . ,kn) ∈ C∞
0 (Xn+1) be arbitrarily. Clearly, (∂jψ)(k,K) = limh→0 h

−1(ψ(k+

hj,K) − ψ(k,K)) uniformly, where K = (k2, . . . ,kn) and j is the unit vector of

j-th axis. By the definition of the distributional derivative, we have∫
R3n

dkdKψ(k,K)∂jΦ
(n)
ν (k,K) = −

∫
R3n

dkdK(∂jψ)(k,K)Φ(n)
ν (k,K)

= − lim
h→0

∫
R3n

dkdK
1

−h
(δ−hψ)(k,K)Φ(n)

ν (k,K)

= lim
h→0

∫
R3n

dkdKψ(k,K)
1

h
(δhΦ

(n)
ν )(k,K).

By Schwarz’ inequality, we have∣∣∣∣∫
R3

dk

[∫
R3(n−1)

dKψ(k,K)

{
1

h
[Φ(n)

ν (k+ hj,K)− Φ(n)
ν (k,K)]− 1√

n
Ψ(n−1)(k,K)

}]∣∣∣∣
≤

∫
R3

dk∥ψ(k, ·)∥L2(R3(n−1))

∥∥∥δh
h
Φ(n)

ν (k, ·)− 1√
n
Ψ(n−1)(k, ·)

∥∥∥
L2(R3(n−1))

.

(6.16)

Note that, for all k ∈ X, h−1δhΦ
(n)
ν (k, ·) strongly converges to 1√

n
Ψ(n−1)(k, ·) in

L2(X3(n−1)) by Lemma 6.6. Moreover, by Lemma 6.6 and the assumption that ρ̂

is continuously differentiable, the function k→ Ψ(n−1)(k, ·) is strongly continuous

in X. Set D be the closure of {k ∈ R3|∥ψ(k, ·)∥L2(R3(n−1)) ̸= 0}. Note that D ⊂ X

is a compact set and d := dist(D,Xc) > 0.

For every k ∈ D and h with |h| < d, we have

δh
h
Φ(n)

ν (k, ·) = s-

∫ 1

0

1√
n
Ψ(n−1)(k+ thj, ·)dt,
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where s-
∫
means the strong integral in L2(X3(n−1)). Since ∥Ψ(n−1)(k, ·)∥L2(R3(n−1))

is continuous in k ∈ X, it is bounded on the compact set D. For any k ∈ D and

|h| < d, we have

∥∥∥ δh|h|Φ(n)
ν (k, ·)− 1√

n
Ψ(n−1)(k, ·)

∥∥∥
L2(R3(n−1))

≤ sup
|t|≤1

1√
n
∥Ψ(n−1)(k+ thj, ·)∥L2(R3(n−1)) +

1√
n
∥Ψ(n−1)(k, ·)∥L2(R3(n−1))

≤ const.,

where “const” means the constant independent of k and h. Applying the Lebesgue

dominated convergence theorem, we can see the right hand side of (6.16) converges

to zero as |h| → 0.

By Lemmas 6.5-6.6 and direct calculations, we obtain the following inequality

Lemma 6.8. Assume the same assumptions as in Theorem 4.4. Then

∥∂jaλ(k)Φν(p)∥

≤ |q|√
2
(2 + ν)(Eν(p− k)− Eν(p) + ων(k))

−2 |ρ̂(k)|
|k|1/2

+
|q|√
2
(Eν(p− k)− Eν(p) + ων(k))

−1 |∂j ρ̂(k)|
|k|1/2

+
|q|√
2
(Eν(p− k)− Eν(p) + ων(k))

−1 |ρ̂(k)|
|k|3/2

+
|q|√
2
(Eν(p− k)− Eν(p) + ων(k))

−1 |ρ̂(k)|
|k|1/2

|∂je(λ)(k)|

for all k ∈ X, λ = 1, 2, j = 1, 2, 3.

Our polarization vectors (6.15) satisfy that

(6.17) |∂je(λ)(k)| ≤
2√

k21 + k22
, for k ∈ R3\{k′ ∈ R3|k′1 = k′2 = 0}.
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We set

f (1)ν (k) := (Eν(p− k)− Eν(p) + ων(k))
−2 |ρ̂(k)|
|k|1/2

f (2)ν (k) := (Eν(p− k)− Eν(p) + ων(k))
−1 |∂j ρ̂(k)|
|k|1/2

f (3)ν (k) := (Eν(p− k)− Eν(p) + ων(k))
−1 |ρ̂(k)|
|k|3/2

f (4)ν (k) := (Eν(p− k)− Eν(p) + ων(k))
−1 |ρ̂(k)|
|k|1/2

|∂je(λ)(k)|.

Lemma 6.9. Assume the conditions in Theorem 4.4. Then

(6.18) sup
0<ν≤1

∥f (j)ν ∥Lp(SR) <∞, j = 1, 2, 3, 4, p ∈ [1, 2).

Proof. First we consider the case p ̸= 0. Let bν(p) be the constant defined in

Theorem Appendix C.10. Since bν(p) is continuous in ν for fixed p, Theorem

Appendix C.10 guarantees sup0≤ν≤1 bν(p) = max0≤ν≤1 bν(p) < 1. By Theorem

Appendix C.10, we have

(Eν(p− k)− Eν(p) + |k|)−1 ≤ 1

1− bν(p)
max

{ 1

|k|
,
1

|p|

}
≤ Cmax

{ 1

|k|
,
1

|p|

}
,

where

C := sup
0<ν≤1

1

1− bν(p)

is a finite constant. Hence

f (1)ν (k) ≤ C2
{ 1

|k|2
+

1

|p|2
} |ρ̂(k)|
|k|1/2

.

Since SR is a bounded region, by the assumption |k|−5/2|ρ̂(k)| ∈ Lp(SR), we obtain

that

sup
0<ν≤1

∥f (1)ν ∥Lp(SR) <∞.

Similarly, we obtain that

sup
0<ν≤1

∥f (j)ν ∥L2(SR) <∞, j = 2, 3.

By (6.17), we have

f (4)ν (k) ≤ C2
{ 1

|k|
+

1

|p|

} 1√
k21 + k22

|ρ̂(k)|
|k|1/2

.
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By using the polar coordinate, we have∫
SR

|f (4)ν (k)|pdk

≤ 2πC2p

∫
[0,π)

sin θdθ

[
1

sin θ

]p ∫
[0,R)

|k|2−p

(
|k|+ |p|
|k| · |p|

)p |ρ̂(k)|p

|k|
d|k|

<∞.

Next we consider the case p = 0. By (Appendix C.4) in Proposition Appendix C.10,

we have

(Eν(−k)− Eν(0) + ων(k))
−1 ≤


P

aν(P )|k|
, if |k| ≤ P

aν(P )
−1, if |k| > P,

for any P > 0. By the similar arguments as above, one can prove (6.18). This

completes the proof.

Let W 1,p(X ) be the Sobolev space on the configuration space X , i.e., the set

of all Lp-functions with its first derivatives are also in Lp.

Lemma 6.10. Suppose the same assumptions as in Theorem 4.4. Then the n-th

component of the massive ground state satisfies Φ
(n)
ν ∈ ⊕4W 1,p((XR × {1, 2})n)

for all p ∈ [1, 2) and all R > 0, and

sup
0<ν<1

∥Φ(n)
ν (p)∥⊕4W 1,p((XR×{1,2})n) <∞.

Proof. By Lemma 6.7, we have

(∇kaλ(k)Φν(p))
(n−1)(X;k1, λ1; . . . ;kn−1, λn−1)

=
√
n∇kΦ

(n)
ν (p;X;k, λ;k1, λ1; . . . ;kn−1, λn−1).

Using Hölder’s inequality and making a change of variables, one has, for all p < 2,

4∑
X=1

∑
λ1,··· ,λn∈{1,2}

∫
(XR)n

dk1 · · · dkn

n∑
i=1

∣∣∣∇kiΦ
(n)
ν (p;X;k1, λ1; · · · ;kn, λn)

∣∣∣p

≤ C
∫
XR

dk∥∇kaλ(k)Φν(p)∥p,

(6.19)

where C is a constant independent of ν. By Lemma 6.8 and Lemma 6.9, the right

hand side of (6.19) is finite uniformly in ν > 0.
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Proof of Theorem 4.4. As shown in the Proof of Theorem 4.1, there exists a se-

quence {νj}∞j=1 such that Φ0(p) := w-limj→∞ Φνj (p) exists, and Φ0(p) ∈ Dom(H
1/2
f )∩

Dom(N
1/2
f ). Then, Φ0 ∈ Q(H(p)). If Φ0(p) ̸= 0, then Φ0(p) is a ground state of

H(p). In the following, we show that Φ0(p) ̸= 0.

Any vector Ψ ∈ ⊕4Fn = C4⊗Fn is a function of the particle helicity

X ∈ {1, 2, 3, 4}, the n-photon wave number (k1, . . . ,kn) ∈ R3n, and the photon

polarization λ1, . . . , λn ∈ {1, 2}. For simplicity, we set

Φ
(n)
j (k1, . . . ,kn) := Φνj (p)

(n)(X;k1, λ1; · · · ;kn, λn),

Φ
(n)
0 (k1, . . . ,kn) := Φ0(p)

(n)(X;k1, λ1; . . . ;kn, λn).

for X ∈ {1, 2, 3, 4} and λ1, . . . , λn ∈ {1, 2}. Note that Φ
(n)
j ,Φ

(n)
0 ∈ L2(R3n). We

show that s-limj→∞ Φ
(n)
j = Φ

(n)
0 for all n ∈ N, X ∈ {1, 2, 3, 4} and λ1, . . . , λn ∈

{1, 2}.
By Lemma 6.10 and the Rellich-Kondrashov theorem, it holds that

lim
j→∞

∥Φ(n)
j − Φ

(n)
0 ∥L2(Xn

R) = 0(6.20)

for all R > 0(we refer [GLL, page 578] for details). We set Φj := (Φ
(n)
j )∞n=0,Φ0 :=

(Φ
(n)
0 )∞n=0 ∈ ⊕4Frad. Let χR be the characteristic function of the ball {k ∈ R3||k| <

R}. We denote the orthogonal projection onto ⊕n
j=0C4⊗Fj by Pn. Then we have

∥Γ(χR)(Φj − Φ0)∥2 = ∥PnΓ(χR)(Φj − Φ0)∥2 + ∥(1− Pn)Γ(χR)(Φj − Φ0)∥2

≤ ∥PnΓ(χR)(Φj − Φ0)∥2 +
1

n
∥N1/2

f Γ(χR)(Φj − Φ0)∥2.

Since each component (Γ(χR)Φj)
(n) converges to (Γ(χR)Φ0)

(n) strongly as j →∞,

we have

lim sup
j→∞

∥Γ(χR)(Φj − Φ0)∥2 ≤
1

n
lim sup
j→∞

∥N1/2
f (Φj − Φ0)∥2

for all n ∈ N. By Lemma 6.4, lim supj→∞ ∥N
1/2
f (Φj − Φ0)∥2 <∞. Thus we obtain

that

(6.21) s-lim
j→∞

Γ(χR)Φj = Γ(χR)Φ0.

Therefore for all R > 0 we have

∥Φj − Φ0∥ = ∥Γ(χR)(Φj − Φ0)∥+ ∥(1− P0)(Γ(χR)− 1)(Φj − Φ0)∥2

≤ ∥Γ(χR)(Φj − Φ0)∥+ ∥(1− P0)(1− Γ(χR))H
−1/2
f ∥ · ∥H1/2

f (Φj − Φ0)∥

≤ ∥Γ(χR)(Φj − Φ0)∥+
C

R1/2
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where C is a constant independent of R > 0. By (6.21), we obtain

s-lim
j→∞

Φj = Φ0,

which implies that Φ0 is a normalized ground state of H(p).

§7. Proof of Theorem 5.2

In this section we assume the assumptions in Theorem 5.2. By Appendices A and

B, it suffices to prove Theorem 5.2 in the case e = ē. Here ē is the polarization

vector defined in (Appendix B.1). Note that ē depends on j. By assumption, there

exists a non-negative constant t such that p = tj. We choose a matrix T ∈ SO(3)

such that T−1p = (0, 0, |p|) and T−1j = (0, 0, 1). Let U be the unitary operator

defined in the proof of Proposition Appendix C.4. By (Appendix C.1), we obtain

that

UH(p)U∗ = (|p|α3 +mβ +Hf −α · dΓ(k)− qα · ΦS(λ⃗)),

where

λ⃗ = (λ1, λ2, λ3) =
ρ̂(Tk)

|k|1/2
(T−1ē(1)(Tk), T−1ē(2)(Tk)) ∈ (L2(R3

k × {1, 2}))3.

Since T ∈ SO(3), we have

T−1ē(1)(Tk) =
T−1[(Tk) ∧ j]

|(Tk) ∧ j|
=

k ∧ (0, 0, 1)

|k ∧ (0, 0, 1)|
,

T−1ē(2)(Tk) =
k

|k|
∧ (T−1ē(1)(Tk)).

It is easy to see that ρ̂(TR′k) = ρ̂(Tk),k ∈ R3 for all R′ ∈ O(3) such that

R′(0, 0, 1) = (0, 0, 1). Since S = (i/4)α ∧α, we have

U(j · S)U∗ =
i

4
j · [(Tα) · (Tα)] =

i

4
j · [T (α ∧α)] =

i

4
(α ∧α)3 = S3.

Moreover, one can show that U(j · dΓ(ℓ⃗))U∗ = dΓ(ℓ3). Therefore,

UJj(ē)U
∗ = S3 + dΓ(ℓ3),

and, hence, we conclude that it is sufficient to prove Theorem 5.2 in the case

(7.1) p = (0, 0, |p|), j = (0, 0, 1).

Proof of Theorem 5.2. We assume (7.1) to the end of this proof. We put

ě(1)(k) :=
(k2,−k1, 0)√

k21 + k22
, ě(2)(k) :=

k

|k|
∧ ě(1)(k).
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For a real parameter θ ∈ R, we set

W := exp[iθJj(ě)], Θ :=

cos θ− sin θ 0

sin θ cos θ 0

0 0 1

 .
Then we obtain that

WαW ∗ = Θα, WβW ∗ = β,(7.2)

WdΓ(k)W ∗ = ΘdΓ(k), WHf (m)W ∗ = Hf (m),(7.3)

WAW ∗ = ΘA.(7.4)

Here, to show (7.4), we used the specific form of ě:

ě(λ)(Θk) = Θě(λ)(k), λ = 1, 2.

Since θ ∈ R is arbitrary, (7.2),(7.3) and (7.4) imply that H(p) strongly commutes

with Jj(ě). Thus, H(p) is reduced by the projection onto the eigenspace of Jj(ě).

In other words, H(p) is decomposable as

H(p) ∼=
⊕

z∈Z1/2

H(p : z),

in the sense of (5.1). We furthermore define unitary operators η, τ and Υ by

(ηf)(k, λ) :=

{
−f(k1,−k2, k3, 1) if λ = 1,

f(k1,−k2, k3, 2) if λ = 2, f ∈ L2(R3
k × {1, 2}),

τ := α1α2β, Υ := τ · Γ(η).

It is easy to see that

ηℓ3η
∗ = −ℓ3, τS3τ

∗ = −S3,

ηk1η
∗ = k1, ηk2η

∗ = −k2, ηk3η
∗ = k3,

τα1τ
∗ = α1, τα2τ

∗ = −α2, τα3τ
∗ = α3, τβτ∗ = β,

ηě(1)(k)η−1 =
(k2,−(−k1), 0)√

k21 + k22
, ηě(2)(k)η−1 =

(k1k3,−k2k3,−k21 − k22)
|k|

√
k21 + k22

.

Hence

ΥH(p)Υ∗ = H(p), ΥJjΥ
∗ = −Jj.

Let E(z), z ∈ Z1/2, be the orthogonal projection on ker(Jj−z). Note that Ran(E(z)) =

F(z). E(−z)ΥE(z) is a unitary operator from Ran(E(z)) to Ran(E(−z)) and

E(−z)ΥE(z)H(p : z)E(z)Υ∗E(−z) = E(−z)ΥE(z)Υ∗H(p)ΥE(z)Υ∗E(−z)
= H(p : −z).
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Therefore H(p : z) is unitarily equivalent to H(p : −z) for all z ∈ Z1/2.

Appendix A. Remarks on the Polarization Vectors

In this appendix, we show that the quantum electrodynamics is independent of

the choice of polarization vectors, i.e., the Hamiltonians defined by different polar-

ization vectors are unitarily equivalent each other. We show the equivalence only

for the Hamiltonians H and H(p), but one can apply our proof to the Pauli-Fierz

model and various QED models. The proof here is independent of the choice of ρ̂

and ω.

We assume that the polarization vectors e(1)(k), e(2)(k) and k are a right-

handed system;

k · e(1)(k) = 0, ∥e(1)(k)∥R3 = 1, e(2)(k) =
k

|k|
∧ e(1)(k), k ∈ R3.

Next, we take any polarization vectors e′(1), e′(2):

k · e′(λ)(k) = 0, e′(λ)(k) · e′(µ)(k) = δλ,µ, k ∈ R3, λ, µ ∈ {1, 2}.

Let H ′ and H ′(p) be the Hamiltonians H and H(p) with e(λ) replaced by e′(λ),

λ = 1, 2, respectively.

Theorem Appendix A.1. Assume that H is essentially self-adjoint. Then H ′

is essentially self-adjoint and H̄ is unitarily equivalent to H̄ ′ by a unitary operator

U(e← e′):

U(e← e′)H̄ ′U(e← e′)∗ = H̄.

Theorem Appendix A.2. Assume that H(p) is essentially self-adjoint. Then

H ′(p) is essentially self-adjoint and H(p) is unitarily equivalent to H ′(p):

U(e← e′)H ′(p)U(e← e′)∗ = H(p).

Remark Appendix A.3. The unitary operators U(e← e′) defined below satisfy

the chain-rule:

U(e← e′) = U(e← e′′)U(e′′ ← e′)

U(e← e′)∗ = U(e′ ← e).

Proofs of Theorem Appendix A.1 and Appendix A.2. By the definition of polar-

ization vectors, for each k ∈ R3 it holds that e′(2)(k) = k
|k| ∧ e

′(1)(k) or e′(2)(k) =

− k
|k| ∧ e

′(1)(k). Let O ⊂ R3 be the set such that e′(2)(k) = − k
|k| ∧ e

′(1)(k), k ∈ O,
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holds. We define

e′′(1)(k) := e′(1)(k), e′′(2)(k) :=

{
e′(2)(k), k ∈ R3\O,
−e′(2)(k), k ∈ O.

We define an operator H ′′ by H with e(λ) replaced by e′′(λ), λ = 1, 2. Let

g′(k, λ;x) :=
ρ̂(k)

|k|1/2
e′(λ)(k)e−ik·x, g′′(k, λ;x) :=

ρ̂(k)

|k|1/2
e′′(λ)(k)e−ik·x,

and we set

A♯(x̂) :=
1√
2

∫ ⊕

R3

[a(g♯(·,x)) + a(g♯(·,x))∗]dx,

where ♯ stands for ′ and ′′. Since (e′′(1)(k), e′′(2)(k),k) are right-handed vectors,

i.e., k · e′′(1)(k) = 0, e′′(2)(k) = k
|k| ∧ e

′′(1)(k), there exists θ(k) ∈ [0, 2π) such that[
e(1)(k)

e(2)(k)

]
=

[
cos θ(k)− sin θ(k)

sin θ(k) cos θ(k)

][
e′′(1)(k)

e′′(2)(k)

]
.

We define a unitary operator u1 on L2(R3
k × {1, 2}) by[

(u1f)(k, 1)

(u1f)(k, 2)

]
:=

[
cos θ(k)− sin θ(k)

sin θ(k) cos θ(k)

][
f(k, 1)

f(k, 2)

]
, k ∈ R3.

The operator U(e← e′′) := Γ(u1) is a unitary operator on Frad. It is clear that

U(e← e′′)dΓ(ω)U(e← e′′)∗ = dΓ(ω).

By the equality u1g
′′(·,x) = g(·,x), we have U(e← e′′)A′′(x̂)U(e← e′′)∗ = A(x̂).

Therefore we get

U(e← e′′)H ′′U(e← e′′)∗ = U(e← e′′)H ′′U(e← e′′)∗ = H.

This means that the operator H ′′ is essentially self-adjoint and H ′′ is unitarily

equivalent to H̄. Next we show that H ′′ is unitarily equivalent to H ′. Let u2 be a

unitary operator on L2(R3
k × {1, 2}) such that

(u2f)(k, λ) :=

{
−f(k, 2), k ∈ O,
f(k, λ), otherwise.

It is easy to see that u1g
′
j(·,x) = g′′j (·,x), j = 1, 2, 3. Then U(e′′ ← e′) := Γ(u2) is

a unitary transformation on Frad, and

U(e′′ ← e′)dΓ(ω)U(e′′ ← e′)∗ = dΓ(ω).
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By the definition of u2, the equality U(e′′ ← e′)A′(x̂)U(e′′ ← e′)∗ = A′′(x̂) holds.

Hence we have

U(e′′ ← e′)H ′U(e′′ ← e′)∗ = U(e′′ ← e′)H ′U(e′′ ← e′)∗ = H ′′,

which implies that H ′ is essentially self-adjoint and H ′ is unitarily equivalent to

H ′′. We set

U(e← e′) := U(e← e′′)U(e′′ ← e′).

Then U(e← e′)H ′U(e← e′)∗ = H̄. Therefore Theorem Appendix A.1 is proved.

The proof of Theorem Appendix A.2 is similar to the proof of Theorem Appendix A.1.

Appendix B. Remarks on the Angular Momentum

As is shown in Appendix A, spectral properties of QED models are independent

of the choice of polarization vectors. Hence, in the definition of QED models, usu-

ally we do not need to specify the choice of the polarization vectors. However, the

angular momentum of the electromagnetic field depends on a choice of the polar-

ization vectors, since the angular momentum does not commute with U(e ← e′).

Therefore, when we discuss an angular momentum, we take care of specifying the

choice of polarization vectors. One can find the definition of an angular momen-

tum for the electromagnetic field in the textbook [Sp, Section 13.5](see also [Hi]).

In this appendix, we propose an alternate definition of angular momentum in the

electromagnetic field.

Let (H, e) be the pair of a Hamiltonian and polarization vectors.

For each unit vector j ∈ R3, we can define a specific polarization vectors

ē = (ē(1), ē(2)) by

(Appendix B.1) ē(1)(k) :=
k ∧ j

|k ∧ j|
, ē(2)(k) :=

k

|k|
∧ ē(1)(k).

For a Dirac-Maxwell model (H, ē), we define the angular momentum around

j-axis by

Lj(ē) := dΓ(j · ℓ⃗),
where

ℓ⃗ := (ℓ1, ℓ2, ℓ3) := i(∇k ∧ k),

is a triplet of self-adjoint operators acting on L2(R3
k × {1, 2}).

Let e = (e(1), e(2)) be any polarization vectors. The angular momentum

around j-axis in the Dirac-Maxwell model (H, e) is defined by

Lj(e) := U(e← ē)Lj(ē)U(e← ē)∗,
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where U(ē ← e) is a unitary operator defined in Appendix A. By the chain-rule

of U(e← e′), the angular momentums transformed as

Lj(e) = U(e← e′)Lj(e
′)U(e← e′)∗,

where e and e′ are arbitrary polarization vectors.

Appendix C. Some Properties of the Lowest Energy

In Appendix C, we show some properties of Eν(p) which are used in proofs of

Theorems 4.1-4.4.

Proposition Appendix C.1 (Concavity). Eν(p) is concave in (p,m, q) ∈ R3 ×
R× R.

Proof. See [A2].

Proposition Appendix C.2 (Continuity). Eν(p,m) is Lipschitz continuous in

(p,m), i.e.,

|Eν(p,m)− Eν(p
′,m′)| ≤

√
|p− p′|2 + |m−m′|2, p,p′ ∈ R3, m,m′ ∈ R.

Proof. See [A2]

Proposition Appendix C.3 (Reflection symmetry in m). The Hamiltonian Hν(p,m)

is unitarily equivalent to Hν(p,−m). In particular

Eν(p,m) = Eν(p,−m), Eν(p,m) ≤ Eν(p, 0).

Proof. Let γ5 := −iα1α2α3. Then γ5 is a unitary operator and γ5Hν(p,m)γ∗5 =

Hν(p,−m). Therefore Eν(p,m) = Eν(p,−m). By Proposition Appendix C.1,

m 7→ Eν(p,m) is concave. Hence Eν(p, 0) = Eν(p,
1
2m−

1
2m) ≥ Eν(p,m).

Proposition Appendix C.4 (Rotation invariance of the total momentum). Let

T ∈ O(3) be an orthogonal matrix. Assume that |ρ̂(k)| = |ρ̂(Tk)| a.e.k ∈ R3. Then

Hν(p) is unitarily equivalent to Hν(Tp). In particular, Eν(p) = Eν(Tp) follows.

Proof. For matrix T ∈ O(3), we define four 4×4 matrices by

β′ := β, α′
j :=

3∑
l=1

Tj,lαl, j = 1, 2, 3,

which obeys {α′
j , β

′} = 0, {α′
j , α

′
l} = 2δj,l, j, l = 1, 2, 3. Then there exists a 4×4

unitary matrix uT such that (see [T, Lemma 2.25])

uTαju
−1
T =

3∑
k=1

Tj,kαk, uTβu
−1
T = β.
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Therefore uTα · pu−1
T =

∑3
k,l=1 Tl,kαkpl =

∑3
k,l=1 αk(T

−1)k,lpl = α · (T−1p).

Similarly, we have

uT (α · dΓ(k))u−1
T = α · (T−1dΓ(k)), uTα ·Au−1

T = α · (T−1A) = (Tα) ·A.

We define rotation operator T̂ of photon momentum, T̂ , by

(T̂ f)(k, λ) = f(T−1k, λ), (k, λ) ∈ R3
k × {1, 2}, f ∈ L2(R3

k × {1, 2}).

Then for all f ∈ Dom(kj T̂ )

T̂−1kj T̂ f(k, λ) = (kj T̂ f)(Tk, λ) = (Tk)j(T̂ f)(Tk, λ) = (Tk)jf(k, λ).

Hence we obtain the operator equality T̂−1kj T̂ = (Tk)j , j = 1, 2, 3. Thus

Γ(T̂−1)dΓ(kj)Γ(T̂ ) = dΓ((Tk)j) = (T · dΓ(k))j ,

Γ(T̂−1)Hf (ν)Γ(T̂ ) = Hf (ν)

Γ(T̂−1)AjΓ(T̂ ),= ΦS(T̂
−1gj), j = 1, 2, 3,

where ΦS(·) is the Segal field operator(see[RS2, Page 209]) and gj(·) := gj(·,x =

0) ∈ L2(R3
k × {1, 2}). The operator U := uT ⊗Γ(T̂−1) is a unitary operator on

C4⊗Frad and

UHν(p)U
−1 = (α · (T−1p) +mβ +Hf (ν)−α · dΓ(k)− q(Tα) · ΦS(T̂−1g)).

(Appendix C.1)

Note that T is a 3×3-matrix and T̂ is unitary on L2(R3
k×{1, 2}). Since T ∈ O(3),

we have (Tα) · ΦS(T̂
−1g) = α · T−1ΦS(T̂

−1g), i.e.,

(Appendix C.2) (T−1ΦS(T̂
−1g))j =

3∑
l=1

(T−1)j,lΦS(T̂
−1gl), j = 1, 2, 3.

We define functions

e′(λ)(k) = T−1e(λ)(Tk), (k, λ) ∈ R3 × {1, 2}.

Then e′(1) and e′(2) are polarization vectors: k · e′(λ)(k) = 0, e′(λ)(k) · e′(µ)(k) =
δλ,µ. Since |ρ̂(k)| = |ρ̂(Tk)|, there exists a Borel measurable function k 7→ κ(k) ∈ R
such that ρ̂(Tk) = eiκ(k)ρ̂(k), a.e.k ∈ R3. Therefore, we have

(Appendix C.3)
3∑

l=1

(T−1)j,lgl(Tk, λ) =
eiκ(k)ρ̂(k)

|k|1/2
e
′(λ)
j (k).
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LetH ′
ν(p) be defined byHν(p) with e(λ) replaced by e′(λ). By (Appendix C.1),(Appendix C.2)

and (Appendix C.3), we have

UHν(p)U
∗ = V H ′

ν(T
−1p)V ∗,

where V := Γ(eiκ(·)). By Theorem Appendix A.2,H ′
ν(T

−1p) is unitarily equivalent

to Hν(T−1p). Therefore, H(p) is unitarily equivalent to Hν(T−1p). Since p ∈ R3

is arbitrary, Hν(p) is unitarily equivalent to Hν(Tp), and Eν(p) = Eν(Tp).

If the cutoff function |ρ̂(k)| has the reflection symmetry at the origin, the

following important inequality holds.

Proposition Appendix C.5. Assume that |ρ̂(k)| = |ρ̂(−k)| for almost every

k ∈ R3. Then the inequality

Eν(p) ≤ Eν(0), p ∈ R3\{0}

holds.

Proof. By the assumption ρ̂(k) = ρ̂(−k) a.e.k ∈ R3 and Proposition Appendix C.4,

we have Eν(p) = Eν(−p), p ∈ R3. Using the concavity of Eν(p) with respect to

p. we obtain

Eν(0) = Eν(
1
2p−

1
2p) ≥

1

2
Eν(p) +

1

2
Eν(−p) = Eν(p)

for all p ∈ R3.

Assuming that Hν(0) has a ground state, we can obtain the following strict

inverse energy inequality:

Proposition Appendix C.6. Assume that |ρ̂(k)| = |ρ̂(−k)| a.e.k ∈ R3. If

Hν(0) has a ground state, then

Eν(p) < Eν(0) for all p ̸= 0.

Remark Appendix C.7. When ν > 0, the massive Hamiltonian Hν(0) has a

ground state (Lemma 6.1). In the massless case ν = 0, H(0) has a ground state

under suitable conditions(see Theorems 4.1, 4.2 and 4.4.)

Proof of Proposition Appendix C.6. We assume the equality Eν(p) = Eν(0) for a

nonzero vector p ∈ R3 \ {0}. Let Φν(0) be a normalized ground state of Hν(0).

For t = 1,−1, we have

Eν(p) = Eν(tp) ≤ ⟨Φν(0),Hν(tp)Φν(0)⟩ = t ⟨Φν(0),α · pΦν(0)⟩+ Eν(0).
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Therefore ⟨Φν(0),α · pΦν(0)⟩ = 0, and hence ⟨Φν(0),Hν(p)Φν(0)⟩ = Eν(0) =

Eν(p), which implies ∥(Hν(p)− Eν(p))
1/2Φν(0)∥ = 0, and therefore, Φν(0) is

a ground state of Hν(p). Thus α · pΦν(0) = 0, and we get a contradiction

|p|2Φν(0) = 0.

If the cutoff function ρ̂ is spherically symmetric, the spectral properties of

Hν(p) is independent of the direction of p. The first part of the following proposi-

tion immediately follows from Proposition Appendix C.4, and thus, the last part

from Proposition Appendix C.1.

Proposition Appendix C.8 (Spherical symmetry in the total momentum). Assume

that |ρ̂(k)| is a spherically symmetric function. Then Hν(p) is unitarily equiva-

lent to Hν(p′) for all p′ ∈ R3 with |p| = |p′|. In particular Eν(p) is spherically

symmetric with respect to p, and Eν(p) ≥ Eν(p
′) if |p| ≤ |p′|.

Proposition Appendix C.9 (Massless limit). Eν(p) is monotonously non-decreasing

in ν ≥ 0 and

lim
ν→+0

Eν(p) = E0(p).

Proof. Let ν ≥ ν′ ≥ 0. Then we have Hν(p) ≥ Hν′(p) in the sense of quadratic

form on D := Dom(Hf ) ∩ Dom(Nf ). Therefore ν 7→ Eν(p) is non-decreasing:

Eν(p) ≥ Eν′(p). It is easy to see that for all Ψ ∈ D, Hν(p)Ψ→ H(p)Ψ as ν → 0.

Since D is a common core for all Hν(p), Hν(p) → H(p) in the strong resolvent

sense (see [RS1, Theorem VIII. 25]). Using a fact about a strongly convergent

operators[RS1, Theorem VIII. 24], we obtain that Eν(p)→ E(p) as ν → +0.

By Proposition Appendix C.2, the following inequality holds:

0 ≤ Eν(p− k)− Eν(p) + |k|, p,k ∈ R3.

The function k→ Eν(p− k)− Eν(p) + |k| plays the role of a dispersion relation

in the low-energy Dirac polaron.

Theorem Appendix C.10. Let ν ≥ 0. Assume that ρ̂ is spherically symmetric.

Suppose that Eν(p,m) < Eν(p, 0). Then, for p ̸= 0, the following estimate holds:

Eν(p− k,m)− Eν(p,m) + |k| ≥


|k| if |p− k| ≤ |p|,
(1− bν(p))|k| if |p| ≤ |p− k| ≤ 2|p|,
(1− bν(p))|p| if 2|p| ≤ |p− k|,

where

bν(p) :=
Eν(p,m)− Eν(2p,m)

|p|
< 1.
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In the case p = 0, for all constant P > 0 the following estimate holds:

Eν(k,m)− Eν(0,m) + |k| ≥

{
aν(P )

P |k|, if |k| ≤ P
aν(P ), if |k| > P,

(Appendix C.4)

where

aν(P ) := (Eν(k,m)− Eν(0,m) + |k|)
∣∣∣
|k|=P

is a strictly positive constant.

Remark Appendix C.11. The idea of the proof of Theorem Appendix C.10 was

developed in [LMS].

Proof of Theorem Appendix C.10. Before proving Theorem Appendix C.10, we

prove the next lemma:

Lemma Appendix C.12. Let ν ≥ 0. Assume that Eν(p,m) < Eν(p, 0). Then

(Appendix C.5) Eν(p− k,m)− Eν(p,m) + |k| > 0, k ∈ R3\{0}.

Proof. First we prove (Appendix C.5) for positive ν > 0. We fixm ̸= 0 and p ∈ R3.

Suppose that

(Appendix C.6) Eν(p− k)− Eν(p) + |k| = 0,

for some k ∈ R3\{0}. Let Φν(p−k) be a normalized ground state of Hν(p−k)(see
Lemma 6.1). Then

Eν(p− k) =
⟨
Φν(p− k),Hν(p− k)Φν(p− k)

⟩
=

⟨
Φν(p− k),Hν(p)Φν(p− k)

⟩
− ⟨Φν(p− k),α · kΦν(p− k)⟩

≥ Eν(p)− |k|.

Hence, by assumption (Appendix C.6) we have
⟨
Φν(p− k), Hν(p)Φν(p− k)

⟩
=

Eν(p) and ⟨Φν(p− k),α · kΦν(p− k)⟩ = |k|, which implies that Φν(p − k) is a

ground state of bothHν(p) and−α·k. Since k ̸= 0, we have ⟨Φν(p− k), βΦν(p− k)⟩ =
0, because α ·kβ = −βα ·k. In what follows, to emphasizem-dependence, we write

Hν(p − k,m) and Φν(p − k,m) for Hν(p − k) and Φν(p − k), respectively. By

using the above facts, we have

Eν(p,m) =
⟨
Φν(p− k,m), Hν(p, 0)Φν(p− k,m)

⟩
≥ Eν(p, 0),

which contradicts the inequality Eν(p,m) < Eν(p, 0). Next, we prove the case

ν = 0. Suppose that there exist a vector k ∈ R3\{0} such that E(p − k,m) −
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E(p,m) + |k| = 0 holds. It is not difficult to see that

lim
ν→+0

⟨
Φν(p− k,m), H(p− k,m)Φν(p− k,m)

⟩
= E(p− k,m).

By these equations, we have

lim
ν→+0

⟨Φν(p− k,m),α · kΦν(p− k,m)⟩ = |k|,(Appendix C.7)

lim
ν→+0

⟨
Φν(p− k,m), H(p,m)Φν(p− k,m)

⟩
= E(p,m).(Appendix C.8)

Equation (Appendix C.7) implies that

lim
ν→+0

(|k| −α · k)Φν(p− k,m) = 0.

Therefore limν→+0 ⟨Φν(p− k,m), βΦν(p− k,m)⟩ = 0. This fact and equation

(Appendix C.8) imply E(p,m) = E(p, 0), which contradicts E(p,m) < E(p, 0).

We fix a vector p such that Eν(p,m) < Eν(p, 0). Since ρ̂ is spherically sym-

metric, by Proposition Appendix C.8, the function

Gν(|k|) := Eν(0)− Eν(k), k ∈ R3,

is monotonously non-decreasing, convex with respect to |k|, and the following

inequality holds

(Appendix C.9) 0 ≤ Gν(|k|) ≤ |k|, k ∈ R3.

Since Gν(s) is convex, Gν(s) has a right derivative G+
ν
′
(s):

G+
ν
′
(s) := lim

h→+0
[Gν(s+ h)−Gν(s)]/h.

First we show that

(Appendix C.10) G+
ν
′
(s) < 1, 0 ≤ s ≤ |p|.

Since Gν(s) is convex and 0 ≤ Gν(s) ≤ s, G+
ν
′
(s) is a monotonously non-decreasing

function of s. If G+
ν
′
(s0) > 1 for a constant s0 ≥ 0, then G+

ν
′
(s) > 1 for all s ≥ s0

and

Gν(s) =

∫ s

s0

G+
ν
′
(t)dt+

∫ s0

0

G+
ν
′
(t)dt ≥ (s− s0)G+

ν
′
(s0) +

∫ s0

0

G+
ν
′
(t)dt,

holds for all s > s0. It contradicts (Appendix C.9). Thus, G+
ν
′
(s) ≤ 1 for all s ≥ 0.

Let s1 ≥ 0 be a point such that G+
ν
′
(s1) = 1 and G+

ν
′
(s1−ϵ) < 1 for all 0 < ϵ ≤ s1.
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If |p| < s1, (Appendix C.10) is trivial. Thus we consider the case |p| ≥ s1. Note

that G+
ν
′
(s) = 1 for all s ≥ s1. Hence Gν(s) is a linear function of s if s ≥ s1:

Gν(s) = s+ C, s ≥ s1,

where C is a negative constant. By this equality, we have that

Eν(p− k)− Eν(p) + |k| = −|p− k|+ |p|+ |k|,

for all p and k such that |p − k| ≥ s1 and |p| ≥ s1. We choose k = −Cp for a

constant C > s1/|p|. Then

Eν(p− k)− Eν(p) + |k| = 0.

It contradicts Lemma Appendix C.12. Therefore G+
ν
′
(s) < 1 holds for all 0 ≤ s ≤

|p|.
Next, by using this inequality, we prove Theorem Appendix C.10. By (Appendix C.10)

and convexity of Gν , it holds that

cν(p) :=
Gν(|p|)
|p|

≤ bν(p) < 1.

We define a set of functions:

C := {J : R+ → R+|J is convex, 0 ≤ J(s) ≤ s, (s ≥ 0)

J(|p|) = Gν(|p|), J(2|p|) = Gν(2|p|)}

Then we have

Eν(p− k)− Eν(p) + |k| = |k|+Gν(p)−Gν(p− k)

≥ |k|+Gν(p)− sup
J∈C

J(p− k) := I.

The maximal function in C is given by the following linear interpolation:

Jmax(s) :=


cν(p)s if s ≤ |p|,
bν(p)(s− |p|) +Gν(|p|) if |p| ≤ s ≤ 2|p|,
s− 2|p|+Gν(2|p|) if 2|p| ≤ |p− k|.



Spectral Analysis of the Dirac Polaron 33

Hence

I ≥ |k|+Gν(|p|)−


cν(p)|p− k| if |p− k| ≤ |p|,
bν(p)(|p− k| − |p|) +Gν(|p|) if |p| ≤ |p− k| ≤ 2|p|,
|p− k| − 2|p|+Gν(2|p|) if 2|p| ≤ |p− k|.

=


|k|+ cν(p)(|p| − |p− k|) if |p− k| ≤ |p|,
|k| − bν(p)(|p− k| − |p|) if |p| ≤ |p− k| ≤ 2|p|,
|k| − |p− k|+ (2− bν(p))|p| if 2|p| ≤ |p− k|.

Using the triangle inequality, one can obtain the desired estimate. Finally we prove

(Appendix C.4). Since G+
ν
′
(0) < 1 and Gν is convex, the constant aν(P ) is strictly

positive for all P > 0. It is easy to see that

G+
ν
′
(s) ≤ Gν(P )

P
=
−aν(P ) + P

P
, s ≤ P.

Hence

Eν(k)− Eν(0) + |k| = |k| −Gν(|k|) =
∫ |k|

0

(1−G+
ν
′
(s))ds

≥


∫ |k|

0

(
1− Gν(P )

P

)
ds if |k| ≤ P.∫ P

0

(
1− Gν(P )

P

)
ds+

∫ |k|

P

(1−G+
ν
′
(s))ds if |k| > P.

≥

{
(aν(P )/P )|k|, if |k| ≤ P.
aν(P ), if |k| > P.

This completes the proof.
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