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Future space programs will require an agile relative position and attitude control technology for spacecraft. Rendez-
vous and docking, capture of inoperative spacecraft and formation flight in orbit are the typical scenarios. One of the key
technologies is designing the tracking controllers that can control the six degrees-of-freedom (d.o.f.) of spacecraft under
the influence of physical parameter uncertainties and external disturbances. To achieve agility, the controller design must
be formulated as nonlinear control problems where translational and rotational motions are dynamically coupled with each
other. This paper proposes a tracking controller, proportional-integral-derivative (PID)-type H¨ adaptive state feedback
controller, that can attenuate disturbances. The proposed controller has positive definite gain matrices whose conditions
to be satisfied are given by linear matrix inequalities. The properties of the proposed controller were evaluated through
numerical studies and compared with those of existing controllers.
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Nomenclature

fig: inertial frame
fcg: chaser body fixed frame
ftg: target body fixed frame
Rn: linear space of real vectors of dimension n

Rn�m: ring of matrices with n rows and m columns
and elements in R

Sq: hypersphere of dimension q
t 2 R: time

m; mt 2 R: mass of chaser and target
J; Jt 2 R3�3: inertia matrix of chaser and target

f; � 2 R3: control force and torque
df; d� 2 R3: disturbance force and torque
r; rt 2 R3: position vector of frame fcg and ftg

½"T ��T 2 S3: attitude vector (quaternion) of frame fcg
½"Tt �t�T 2 S3: attitude vector (quaternion) of frame ftg

v; vt 2 R3: linear velocity vector of frame fcg and ftg
!; !t 2 R3: angular velocity vector of frame fcg and ftg

pt 2 R3: constant vector fixed frame ftg
x� 2 R3�3: skew symmetric matrix derived from vector

x 2 R3

kxk ¼
ffiffiffiffiffiffiffi
xTx

p
: vector 2-norm

X > 0: positive definite matrix
�X ¼ kXk: induced matrix 2-norm

In: a unit matrix of size n� n

On�m: a zero matrix of size n� m

a1; a2; b1; b2; �; �� 2 R: design parameter
�r; �v; �! 2 R3�3: design parameter
kp1; kp3; ki1; ki2 2 R: positive scalar feedback gain

Kp2; Kd1; Kd2 2 R3�3: positive definite matrix feedback
gain

�1 2 R: positive scalar adaptive gain
�2 2 R6�6: positive definite matrix adaptive gain

diagfa; b; c; . . .g: diagonal matrix

1. Introduction

Future space programs will require an agile relative posi-
tion and attitude control technology for spacecraft. Rendez-
vous and docking, capture of inoperative spacecraft and for-
mation flight in orbit are the typical scenarios. One of the key
technologies is designing the tracking controllers that can
control the six degrees-of-freedom (d.o.f.) of spacecraft
under the influence of physical parameter uncertainties and
external disturbances. As for physical parameter uncertain-
ties, we suppose that the mass and the inertia of the space-
craft vary as the results of fuel consumption when using
thrusters. To achieve agility, the controller design must be
formulated as nonlinear control problems where translational
and rotational motions are dynamically coupled with each
other.

Many studies have been carried out on nonlinear attitude
control of rigid spacecraft. Among them, studies on passiv-
ity-based control1–12) appear to be the most promising
because this control method is simple to implement and
robustly stable against physical parameter uncertainties. In
the same framework, attitude tracking using a proportional-
derivative (PD)-type state feedback controller having posi-
tive scalar gains has been proposed1,4–9) and extended to
backstepping control.13,14) However, these passivity-based
control methods ensure only asymptotic stability of the rela-
tive attitude under a disturbance-free environment. To
achieve tracking control under disturbances, most research-
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ers have focused on a nonlinear H1 controller15–22) which is
a PD-type state feedback controller whose scalar gains are
tuned so as to make the L2 gain of the closed-loop system
from the disturbance to the controlled output less than a posi-
tive constant £. However, although it generally requires high
feedback gains to achieve high disturbance attenuation abil-
ity, it is not realizable because the maximum level of the con-
trol input is physically limited. Therefore, in order to sup-
press the disturbances, we consider it is not necessarily the
best approach to employ the H1 PD-type controller.

In fact, an integral action must be added to the controller to
eliminate the steady-state error caused by constant disturb-
ance as the proportional-integral-derivative (PID) control
for linear systems.23) From this viewpoint, we propose a
PID-typeH1 state feedback controller for nonlinear tracking
control problems assuming that the change rate in space
environment disturbance is smaller compared to the control
system dynamics.24) We derived the conditions of the
closed-loop asymptotic stability and L2 gain less than or
equal to £ described by linear matrix inequalities (LMIs).24)

Although it has achieved enough disturbance attenuation
ability with moderate feedback gains, one problem still re-
mains unsolved: the lack of closed-loop robust stability
against physical parameter uncertainties.

Considering the above facts, this paper extended the
results of Ikeda et al.24) to a PID-typeH1 adaptive state feed-
back tracking controller that has a parameter update law to
cope with parameter uncertainties as well as to effectively
attenuate constant signals included in the disturbance. The
properties of the proposed controller were evaluated through
numerical studies and compared with those of existing con-
trollers.

2. Modeling and Problem Description

We consider a control problem in which a chaser space-
craft tracks a target point moving in an inertial frame under
the influence of disturbances. Frames and vectors are defined
in Fig. 1. Our objective is to control the chaser so that its
mass center C tracks point P and frame fcg tracks frame ftg.

The translation and rotation dynamics of the chaser fixed
frame fcg are given by the following equations25):

m _vþ m!�v ¼ fþ df; ð1Þ
J _!þ !�J! ¼ � þ d�: ð2Þ

The position of mass center C and the attitude of fcg with
respect to fig are given by the following kinematics if a qua-
ternion is used as the attitude parameterization:

_r ¼ v� !�r;

_q ¼ EðqÞ! ¼ 1

2

�I3 þ "�

�"T

� �
!; ð3Þ

where q ¼ ½"T ��T satisfies the constraint kqk ¼ 1; 8t � 0.
On the other hand, the dynamics and kinematics of the tar-

get motion are described as follows:

mt _vt þ mt!
�
t vt ¼ 0; ð4Þ

Jt _!t þ !�
t Jt!t ¼ 0; ð5Þ

_rt ¼ vt � !�
t rt;

_qt ¼ EðqtÞ!t ¼
1

2

�tI3 þ "�t
�"Tt

� �
!t:

ð6Þ

Then, the position and velocity of point P fixed in frame ftg
are given by

rpt ¼ rt þ pt; vpt ¼ vt þ !�
t pt: ð7Þ

The objective of our tracking control problem is to find
control laws such that

r ¼ rpt ; q ¼ qt; v ¼ vpt ; ! ¼ !t

as t ! 1. To this end, an error system in fcg is described as
follows. Let the direction cosine matrix from ftg to fcg be

C ¼ �2e � "Te "e
� �

I3 þ 2"e"
T
e � 2�e"

�
e ð8Þ

using the quaternion of relative attitude qe ¼ ½"Te �e�T, where
"e and �e are defined as

"e ¼ �t"� �"t þ "�"t; �e ¼ ��t þ "T"t: ð9Þ
The relative position, linear velocity, and angular velocity
are given in the same frame fcg as

re ¼ r � Crpt ; ve ¼ v� Cvpt ; !e ¼ !� C!t: ð10Þ
Substitution of Eq. (10) into Eqs. (1)–(3) using the identity
_C ¼ �!�

e C yields the following relative motion equations:

m _ve ¼ �m !e þ C!tð Þ�ve þ C _vpt þ C!tð Þ�Cvpt
� �

þ fþ df; ð11Þ
J _!e ¼ � !e þ C!tð Þ�J !e þ C!tð Þ � J C _!t � !�

e C!t

� �
þ � þ d�; ð12Þ

_re ¼ ve � !e þ C!tð Þ�re; ð13Þ

_qe ¼ EðqeÞ!e ¼
1

2

�eI3 þ "�e
�"Te

" #
!e: ð14Þ

By transformation, the tracking control problem is reduced to
a regulation problem to design control inputs f and ¸ such that

re; "e; ve; !eð Þ ! ð0; 0; 0; 0Þ
as t ! 1 under disturbance df and d�, according to

Fig. 1. Definitions of vectors and frames.
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Eqs. (11)–(14).
Hereafter, we assume that the following variables

chaser: r; "; �; v; !

target: rt; "t; �t; vt; !t; _vt; _!t

are directly measurable,† and m and J are unknown but nom-
inal values m0 and J0 are known. In addition, regarding the
target states, the following assumption is made.

Assumption 1
The target states rt, "t, �t, vt, !t, _vt, and _!t are uniformly

continuous and bounded for all t 2 ½0; 1Þ.
Remark 1
Quaternion �e when "e ¼ 0 exists as �e ¼ �1 from the

constraint of quaternion kqek ¼ 1. In this paper, �e, which
should be stabilized, is set to �e ¼ 1.

3. PID-type H1 Adaptive State Feedback Controller

In this section, we derive a PID-type H1 adaptive state
feedback controller. For this design, we further transform
Eqs. (11)–(14) as

�ve ¼ ve � C!tð Þ�re; ð15Þ
�f ¼ f� m0�r; ð16Þ
�� ¼ � � �q�0; ð17Þ

where �f, �� 2 R3 are the new inputs, and
�r ¼ 2 C!tð Þ� �ve þ C!tð Þ� C!tð Þ�re þ C _!tð Þ�re

þ C!tð Þ�Cvpt þ C _vpt ; ð18Þ
�q ¼ �q1ð!e; C!tÞ þ �q1ðC!t; !e þ C!tÞ

þ �q2ðC _!t � !�
e C!tÞ; ð19Þ

�0 ¼ ½J0;11 J0;12 J0;13 J0;22 J0;23 J0;33�T;
�q1ðx; yÞ�0 ¼ x�J0y; �q2ðxÞ�0 ¼ J0x; 8x; y 2 R3;

�q1ðx; yÞ ¼
0 �x3y1 x2y1

x3y1 x3y2 x3y3 � x1y1

�x2y1 x1y1 � x2y2 �x2y3

2
64

�x3y2 x2y2 � x3y3 x2y3

0 �x1y2 �x1y3

x1y2 x1y3 0

3
75;

�q2ðxÞ ¼
x1 x2 x3 0 0 0

0 x1 0 x2 x3 0

0 0 x1 0 x2 x3

2
64

3
75;

J0;ij ði � j; i ¼ 1; 2; j ¼ 1; 2; 3Þ is the ði; jÞ element of
matrix J0. Then, Eqs. (11)–(14) are transformed into

m_�ve ¼ �m!�
e �ve �	m�r þ �fþ df; ð20Þ

J _!e ¼ �!�
e J!e � �q	�þ �� þ d�; ð21Þ

_re ¼ �ve � !�
e re; ð22Þ

_qe ¼ EðqeÞ!e; ð23Þ

where 	m ¼ m� m0, and 	� ¼ �� �0. For the above sys-
tem Eqs. (20)–(23), the following Lemma holds.

Lemma 1
The system Eqs. (20)–(23) are passive w.r.t input

u ¼ ½ �fT
��T�T and output y ¼ ½ �vTe !T

e �T when 	m ¼ 0,
	� ¼ 0, df ¼ 0 and d� ¼ 0. �

Proof: Let us define the storage function as

S ¼ m

2
k �vek2 þ

1

2
!T
e J!e: ð24Þ

The time derivative of Eq. (24) along the trajectories of sys-
tem Eqs. (20)–(23) with 	m ¼ 0, 	� ¼ 0, df ¼ 0 and
d� ¼ 0 become

_S ¼ �vTe �m!�
e �ve þ �f

� �þ !T
e �!�

e J!e þ ��
� �

¼ �vTe
�fþ !T

e ��

¼ yTu:

Therefore, system Eqs. (20)–(23) are passive w.r.t input u
and output y when 	m ¼ 0, 	� ¼ 0, df ¼ 0 and d� ¼ 0.

�
By transforming Eqs. (15)–(17), the control problem is

now ready to regulate system Eqs. (20)–(23) in order to
design control inputs �f and �� such that

ðre; "e; �e; �ve; !eÞ ! ð0; 0; 1; 0; 0Þ
as t ! 1.

Now, let us consider the PID-type adaptive state feedback
controller that has positive definite gain matrices as follows:

�f ¼ � 1

a2
kp1re þKd1 �ve
� �� ki1
1 þ	m̂�r


1 ¼
Z t

0

re þ
a2

a1
!�
e re

 !
dt

	 _̂m ¼ ��1�
T
r a1re þ a2 �veð Þ;

8>>>>>>><
>>>>>>>:

ð25Þ

�� ¼ � 1

b2
KðqeÞ"e þKd2!e

� �� ki2
2 þ �q	�̂


2 ¼
Z t

0

"e þ
b2

2b1
2� �e
� �

I3 � "�e
� �

!e

" #
dt

	 _̂� ¼ ��2�
T
q b1"e þ b2!eð Þ;

8>>>>>>><
>>>>>>>:

ð26Þ

KðqeÞ ¼ �eI3 � "�e
� �

Kp2 þ kp3 1� �e
� �

I3;

where 	m̂ and 	�̂ are estimated values of 	m and 	�,
respectively, and the output to be controlled is defined as
z ¼ ��, where ­ is the weighting matrix,

� ¼ diagf�r; �v; ��; �!g;
� ¼ ½rTe �vTe 2 cos

�1ðj�ejÞ!T
e �T:

From the definition of quaternion, 2 cos�1ðj�ejÞ of the ele-
ment of ¦ represents the eigen-angle around the unit vector
(eigen-axis) with respect to relative attitude.17) Then, the fol-
lowing theorem can be obtained.

†When _vt and _!t are not directly measurable, they can be obtained from
Eqs. (4) and (5) as

_vt ¼ �!�
t vt; _!t ¼ �J�1

t !�
t J!t

if rt, qt , vt,!t and themoment of inertia ratio of the disturbance-free target
can be estimated using image information of the target obtained by a cam-
era on-board the chaser.26) Even when the target is under disturbance, it is
possible to estimate _vt and _!t by constructing a Kalman filter under distur-
bances.27,28)
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Theorem 1
Given a1, a2, b1, b2, and � > 0, the closed-loop system of

Eqs. (20)–(23) with Eqs. (25), (26) satisfies the L2 gain less
than or equal to £ from disturbance input d ¼ ½dTf dT� �T 2
L2½0; T � to controlled outputs z if feedback gains satisfy
the following conditions:

F > 0; 2kp3I3 > Kp2 > kp3I3; Q > 0; ð27Þ

Q� ��T ��� 1

4�2
WTW > 0; ð28Þ

F ¼ diagfF1; F2g; Q ¼ diagfQ1; Q2g;

F1 ¼
kp1I3 a1mI3 a2ki1I3

� a2mI3 0

� � a1ki1I3

2
64

3
75;

F2 ¼
2Kp2 b1J b2ki2I3

� b2J 0

� � b1ki2I3

2
64

3
75;

Q1 ¼
a1

a2
kp1I3 � a2ki1I3

a1

2a2
Kd1

� Kd1 � a1mI3

2
64

3
75;

Q2 ¼
b1

b2
2kp3I3 �Kp2

� �� b2 þ
b22
2b1

 !
ki2I3

�

2
64

b1

2b2
Kd2 �

b22
2b1

ki2I3

Kd2 �
3

2
b1�JI3 �

b22
8b1

ki2I3

3
7775;

W ¼ a1I3 a2I3 O3�3 O3�3

O3�3 O3�3 b1I3 b2I3

" #
;

�� ¼ diagf�r; �v; ���I3; �!g;
where symbol � denotes a symmetric element. Moreover, the
state variable of the closed-loop system becomes

ðre; "e; �e; �ve; !e; 
1; 
2; 	m̂; 	�̂Þ
! ð0; 0; 1; 0; 0; 0; 0; c1; c2Þ

as t ! 1 for arbitrary initial state when d ¼ 0, where
c1 2 R and c2 2 R6 are a constant scalar and a constant vec-
tor, respectively, determined by an initial condition of
parameter update law. �

Proof: Let us define the candidate of the Lyapunov func-
tion as

V ¼ 1

2

TF
þ kp3ð�e � 1Þ2 þ 1

2�1

	 ~m2

þ 1

2
	 ~�T��1

2 	 ~�;


 ¼ ½rTe �vTe 

T
1 "

T
e !

T
e 


T
2 �T;

ð29Þ

where 	 ~m ¼ 	m�	m̂ and 	 ~� ¼ 	��	�̂ are estimated
errors. Therefore, V > 0 if F > 0. The time derivative of
Eq. (29) along the trajectories of the closed-loop system
becomes

_V ¼ � a1

a2
kp1 � a2ki1

 !
krek2 �

a1

a2
rTe Kd1 �ve

� �vTe Kd1 � a1mI3ð Þ �ve �
b1

b2
"Te KðqeÞ"e

þ b2ki2k"ek2 � "Te
b1

b2
Kd2 �

b22
b1
ki2I3

 !
!e

� !T
eKd2!e þ

b1

2
!T
e JT ðqeÞ!e � b1"

T
e !

�
e J!e

� b22
2b1

ki2�e"
T
e !e þ a1r

T
e þ a2 �v

T
e

� �
df

þ b1"
T
e þ b2!

T
e

� �
d�; ð30Þ

where T ðqeÞ ¼ �eI3 þ "�e . In Eq. (30),

kT ðqeÞk ¼ 1; k"ek � 1; k!�
e k ¼ k!ek;

b1

2
!T
e JT ðqeÞ!e � b1"

T
e !

�
e J!e

					
					 � 3

2
b1�Jk!ek2;

� b22
2b1

ki2�e"
T
e !e �

b22
2b1

ki2 k"ek2 þ
1

4
k!ek2

 !
;

and the identity "Te T ðqeÞ ¼ "Te �e yields

�"TeKðqeÞ"e ¼ �"Te �e Kp2 � kp3I3
� �þ kp3I3

� �
"e

¼ �"TeGð�eÞ"e; ð31Þ
where Gð�eÞ is described as follows according to �e.

Gð�eÞ ¼

Kp2; �e ¼ 1

�e Kp2 � kp3I3
� �þ kp3I3; 1 > �e > 0

kp3I3; �e ¼ 0

�j�ej Kp2 � kp3I3
� �þ kp3I3; 0 > �e > �1

2kp3I3 �Kp2; �e ¼ �1:

8>>>>>>><
>>>>>>>:

From the above equation, Gð�eÞ > 0 for all �e if 2kp3I3 >
Kp2 > kp3I3. Furthermore, the minimum value of Gð�eÞ is

min
�e

Gð�eÞ ¼ Gð�1Þ ¼ 2kp3I3 �Kp2:

Therefore, if 2kp3I3 > Kp2 > kp3I3, then Eq. (31) becomes

� "TeKðqeÞ"e � �"Te 2kp3I3 �Kp2

� �
"e;

and Eq. (30) satisfies

_V � � a1

a2
kp1 � a2ki1

 !
krek2 �

a1

a2
rTe Kd1 �ve

� �vTe Kd1 � a1mI3ð Þ �ve

� "Te
b1

b2
2kp3I3 �Kp2

� �� b2 þ
b22
2b1

 !
ki2I3

( )
"e

� "Te
b1

b2
Kd2 �

b22
b1
ki2I3

 !
!e

� !T
e Kd2 �

3

2
b1�JI3 �

b22
8b1

ki2I3

 !
!e

þ a1r
T
e þ a2 �v

T
e

� �
df þ b1"

T
e þ b2!

T
e

� �
d�

¼ � �
TQ �
þ �
TWTd;
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�
 ¼ ½rTe �vTe "Te !T
e �T: ð32Þ

By completing the square, we obtain

_V þ kzk2 � �2kdk2 � � �
TQ �
þ 1

4�2
�
TWTW �


� �2 d � 1

2�2
W �














2

þ�T�T��:

If we note that

d� ¼ 1

2�2
W �


is the worst-case disturbance and that

�T�T�� � �
T ��T ���


from 2 cos�1ðj�ejÞ � �k"ek,17) the inequality

_V þ kzk2 � �2kdk2 � � �
T Q� ��T ��� 1

4�2
WTW

 !
�


holds for all d 2 L2½0; T �. Therefore, the condition in
Eq. (28) implies

_V � �2kdk2 � kzk2

indicating that the L2 gain of the closed-loop is less than or
equal to £.29)

With regard to the asymptotic stability, when d ¼ 0,
Eq. (32) becomes

_V � � �
TQ �


and _V � 0 if Q > 0. Therefore,

V ðxðtÞÞ � V ðxð0ÞÞ; 8t � 0 x ¼ ½
T �e 	m̂ 	�̂T�T� �
and x is bounded because V is radially unbounded. Further-
more, control inputs Eqs. (25) and (26) are bounded by the
conditions in Assumption 1. Since _x is also bounded,

€V � �2 �
TQ _�


is bounded and _V is uniformly continuous with respect to t.
Additionally, since V is lower bounded from V � 0,

_V ! 0 ) �
 ! 0

as t ! 1 from the Lyapunov-like lemma.30) Hence,
ð
1; 
2Þ ! ð0; 0Þ and �e ! 1 when V ¼ 0. In addition,
since the closed-loop system becomes

	 ~m ¼ 0; 	 ~� ¼ 0;

	m̂ ¼ 0 and 	�̂ converge to a constant scalar c1 and a con-
stant vector c2, respectively. Therefore, the state variable of
the closed-loop system becomes

ðre; "e; �e; �ve; !e; 
1; 
2; 	m̂; 	�̂Þ
! ð0; 0; 1; 0; 0; 0; 0; c1; c2Þ

as t ! 1 for arbitrary initial state when d ¼ 0. �
Remark 2
1) Since physical parameters m and J are in non-diagonal

elements of matrix F such as a1mI3 and b1J and in diagonal
elements of matrix Q such as�a1mI3 and�ð3=2Þb1�JI3, the

influence of parameter uncertainties can be reduced by set-
ting a1 and b1 to small values. In addition, by setting �

and �� to appropriate values, the term of � ��T ���
ð1=4�2ÞWTW in condition Eq. (28) does not become large.
Therefore, by setting a1, b1, ki1 and ki2 to small values and
a2, b2, kp1, Kp2, kp3, Kd1 and Kd2 to large values under the
condition 2kp3I3 > Kp2 > kp3I3 and �, �� to appropriate val-
ues, the feedback gains satisfy conditions Eqs. (27) and (28)
for small parameter uncertainties.

2) The obtained conditions in Eqs. (27) and (28) are LMIs
with respect to feedback gains that are effectively solved us-
ing convex optimization tools.31)

3) If we set Kp2 ¼ kp3I3, matrix KðqeÞ becomes a positive
scalar constant kp3.

4) It can be seen that the position and attitude can track
their targets without offset errors when the disturbance is
constant. At the steady state, �ve ¼ 0 and !e ¼ 0 hold, assum-
ing that re and "e are very small. Therefore, as

KðqeÞ 	 Kp2; 
1 	
Z t

0

re dt; 
2 	
Z t

0

"e dt;

�r 	 0; �q 	 0;

the closed-loop system is

1

a2
kp1re þ ki1

Z t

0

re dt � df ¼ 0; ð33Þ
1

b2
Kp2"e þ ki2

Z t

0

"e dt � d� ¼ 0: ð34Þ

If we define

e1 ¼
Z t

0

re dt �
1

ki1
df; e2 ¼

Z t

0

"e dt �
1

ki2
d�;

then Eqs. (33) and (34) become

_e1 ¼ �a2ki1

kp1
e1; _e2 ¼ �b2ki2K

�1
p2 e2: ð35Þ

Since a2, b2, kp1, ki1 and ki2 > 0 and Kp2 ¼ KT
p2 > 0,

ðe1; e2Þ ! ð0; 0Þ as t ! 1. Therefore, from Eqs. (33)
and (34), it can be considered that re ! 0 and "e ! 0 as
t ! 1.

4. Numerical Study

The properties of the proposed controller were compared
and discussed in this numerical study. For this purpose, we
set the physical parameters of the target and chaser spacecraft
as

mt ¼ 300 kg; Jt ¼ diagf50; 275; 275g kgm2;

m0 ¼ 200 kg; J0 ¼
75:0 �28:1 �28:1

� 75:0 �28:1

� � 75:0

2
64

3
75 kgm2;

	m ¼ 60 kg; 	J ¼
22:5 �8:44 �8:44

� 22:5 �8:44

� � 22:5

2
64

3
75 kgm2:
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The target position in frame ftg is given as pt ¼ ½0 5 0�T. The
initial conditions for the chaser spacecraft are

rð0Þ ¼ ½10 10 10�T m; vð0Þ ¼ ½0 0 0�T m=s;

qð0Þ ¼ ½0:06 0:69 0:06 0:72�T; !ð0Þ ¼ ½0 0 0�T rad=s;
and those for the target are

rtð0Þ ¼ ½3 3 3�T m; vtð0Þ ¼ ½0 0 0�T m=s;

qtð0Þ ¼ ½0 0 0 1�T; !ð0Þ ¼ ½0:2 0:2 0:2�T rad=s:
4.1. Tracking performance under a disturbance-free

environment
First, we show the six d.o.f. tracking ability of the conven-

tional controller24)

�f ¼ � 1

a2
kp1re þKd1 �ve
� �� ki1
1 þ m0�r


1 ¼
Z t

0

re þ
a2

a1
!�
e re

 !
dt;

8>>>><
>>>>:
�� ¼ � 1

b2
KðqeÞ"e þKd2!e

� �� ki2
2 þ �q�0


2 ¼
Z t

0

"e þ
b2

2b1
2� �e
� �

I3 � "�e
� �

!e

" #
dt;

8>>>><
>>>>:

and proposed controller in Eqs. (25) and (26) when d ¼ 0.
The conventional and proposed controller gains are selected
to satisfy only the conditions in Eqs. (27) and (28), respec-
tively. The controller gains are set as

a1 ¼ 0:2; b1 ¼ 0:1; a2 ¼ b2 ¼ 1;

kp1 ¼ 18; Kp2 ¼ 31I3; kp3 ¼ 31;

Kd1 ¼ 180I3; Kd2 ¼ 300I3;

ki1 ¼ 1:0; ki2 ¼ 0:4;

�1 ¼ 40; �2 ¼ 600I6:

Figure 2 shows the responses of relative positions and rela-
tive quaternions of the conventional and proposed control-
lers. In the conventional controller, the chaser cannot track
the target under the influence of physical parameter uncer-

tainties. On the other hand, in the proposed controller, the
chaser can track the target because the influence of physical
parameter uncertainties is compensated by the parameter
update law.
4.2. Tracking under constant disturbance

Then, we examine the six d.o.f.. tracking ability of the
conventional and proposed controllers under constant distur-
bances

df ¼ ½3 3 3�T N; d� ¼ ½3 3 3�T Nm:

To compare only the six d.o.f.. tracking ability under con-
stant disturbances, the physical parameter uncertainties 	m

and 	J are set to zero. The simulation results are shown in
Fig. 3. Both controllers can eliminate the steady-state error
caused by a constant disturbance, and the chaser tracks the
target. However, time responses of relative position and atti-
tude of the proposed controller vibrate. This phenomenon
can be explained as follows. Since �r and �q in the parameter
update law are functions of !t and the target quickly moves
in a short period, the responses of the estimated values 	m̂

and	�̂ are vibrating before convergence. Additionally since
the proposed control law uses	m̂ and	�̂, the control inputs
vibrate. As a result, the time responses of relative position
and attitude vibrate.

The simulation results with the physical parameter uncer-
tainties under disturbances are shown in Fig. 4. The tracking
performance of the conventional controller deteriorates
under the influence of physical parameter uncertainties. On
the other hand, the tracking performance of the proposed
controller is almost the same as in the case of Fig. 3 except
that "e3.
4.3. Disturbance attenuation ability

Finally, we examine the disturbance attenuation ability.
We compare the conventional and proposed controllers, both
of which exhibit the H1 property when � ¼ 0:8 and
� ¼ 0:2. The design parameters are set as

a1 ¼ 8; b1 ¼ 4; a2 ¼ b2 ¼ 40;

�r ¼ 6I3; �v ¼ 1I3; �� ¼ 3; �! ¼ 1I3;
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Fig. 2. Simulation results under a disturbance-free environment (solid line: proposed controller, dashed line: conventional controller).
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and feedback gains of both controllers are derived by solving
LMIs Eqs. (27) and (28). In addition, to prevent relative error
from vibrating and integral gains ki1 and ki2 from becoming
very small, the following conditions are applied:

Kd1 > 10kp1I3; Kd2 > 10Kp2; Kd2 > 10kp3I3;

ki1 > 1:0; ki2 > 0:4:

The disturbance input d 2 L2½0; T � is

df ¼ 3 sin
�

40

 !
½1 1 1�T N;

d� ¼ 3 sin
�

40

 !
½1 1 1�T Nm;

where T ¼ 100. For the same initial conditions, the re-
sponses of relative position and attitude norms described
by Euler angles of 3-2-1 system are obtained.

First, as in previous subsection, in order to compare only
the disturbance attenuation ability, physical parameter uncer-
tainties	m and	J are set to zero. The simulation results are
shown in Fig. 5. Figure 5 show that the disturbance attenu-
ation ability is higher in the proposed controller than in the

conventional controller. This is considered that the parame-
ters 	m̂ and 	�̂ are estimated to reduce the relative errors
because the parameter update law uses the relative error
information. Similar results are obtained for other periodic
disturbances.

The simulation results with the physical parameter uncer-
tainties are shown in Fig. 6. Although the disturbance attenu-
ation performance of the conventional controller deteriorates
due to the influence of physical parameter uncertainties, that
of the proposed controller is almost the same as in the case of
Fig. 5.

5. Conclusion

We investigated six d.o.f. nonlinear tracking control tech-
nologies of spacecraft under external disturbance in order to
prepare for future space missions, and a PID-type H1 adap-
tive state feedback controller was proposed. Conditions of
the asymptotic stability of error systems and the L2 gain
properties of a closed-loop system were obtained. The per-
formances of the proposed controller were compared and
discussed through numerical studies.
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Fig. 3. Simulation results under constant disturbance without parameter uncertainties (solid line: proposed controller, dashed line: conventional controller).
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Fig. 4. Simulation results under constant disturbance with parameter uncertainties (solid line: proposed controller, dashed line: conventional controller).
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Fig. 6. Simulation results under disturbance with parameter uncertainties (top: norm of relative position, bottom: norm of relative attitude, solid line: pro-
posed controller, dashed line: conventional controller).
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Fig. 5. Simulation results under disturbance without parameter uncertainties (top: norm of relative position, bottom: norm of relative attitude, solid line:
proposed controller, dashed line: conventional controller).
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