Constructing Binary Huffman Tree ${ }^{[1]}$

Hiroyuki Okazaki ${ }^{2}$
Shinshu University
Nagano, Japan

Yuichi Futa
Japan Advanced Institute
of Science and Technology
Ishikawa, Japan

Yasunari Shidama ${ }^{3}$
Shinshu University
Nagano, Japan

Abstract

Summary. Huffman coding is one of a most famous entropy encoding methods for lossless data compression [16. JPEG and ZIP formats employ variants of Huffman encoding as lossless compression algorithms. Huffman coding is a bijective map from source letters into leaves of the Huffman tree constructed by the algorithm. In this article we formalize an algorithm constructing a binary code tree, Huffman tree.

MSC: 14G50 68P30 03B35
Keywords: formalization of Huffman coding tree; source coding
MML identifier: HUFFMAN1, version: 8.1.02 5.17.1181
The notation and terminology used in this paper have been introduced in the following articles: [9], [1], [20], [8], [14], [11], [12], [23], [22], [2], [3], [18], 19], [17], [25], [26], 24], [4], [5], [6], [7], and [13].

1. Constructing Binary Decoded Trees

Let D be a non empty set and x be an element of D. Observe that the root tree of x is binary as a decorated tree.

The functor $\mathbb{R}_{\mathbb{N}}$ yielding a set is defined by the term

[^0](Def. 1) $\mathbb{N} \times \mathbb{R}$.
Note that $\mathbb{R}_{\mathbb{N}}$ is non empty.
Let D be a non empty set. The binary finite trees of D yielding a set of trees decorated with elements of D is defined by
(Def. 2) Let us consider a tree T decorated with elements of D. Then $\operatorname{dom} T$ is finite and T is binary if and only if $T \in i t$.
The Boolean binary finite trees of D yielding a non empty subset of $2^{\text {the binary finite trees of } D}$ is defined by the term
(Def. 3) $\left\{x\right.$, where x is an element of $2^{\alpha}: x$ is finite and $\left.x \neq \emptyset\right\}$, where α is the binary finite trees of D.
In this paper \mathbb{S} denotes a non empty finite set, p denotes a probability on the trivial σ-field of \mathbb{S}, T_{1} denotes a finite sequence of elements of the Boolean binary finite trees of $\mathbb{R}_{\mathbb{N}}$, and q denotes a finite sequence of elements of \mathbb{N}.

Let us consider \mathbb{S} and p. The functor InitTrees p yielding a non empty finite subset of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$ is defined by the term
(Def. 4) $\quad\left\{T\right.$, where T is an element of $\operatorname{Fin} \operatorname{Trees}\left(\mathbb{R}_{\mathbb{N}}\right): T$ is a finite binary tree decorated with elements of $\mathbb{R}_{\mathbb{N}}$ and there exists an element x of \mathbb{S} such that $T=$ the root tree of $\left.\left\langle(\operatorname{CFS}(\mathbb{S}))^{-1}(x), p(\{x\})\right\rangle\right\}$.
Let p be a tree decorated with elements of $\mathbb{R}_{\mathbb{N}}$. The value of root from right of p yielding a real number is defined by the term
(Def. 5) $p(\emptyset)_{\mathbf{2}}$.
The value of root from left of p yielding a natural number is defined by the term
(Def. 6) $p(\emptyset)_{1}$.
Let T be a finite binary tree decorated with elements of $\mathbb{R}_{\mathbb{N}}$ and p be an element of $\operatorname{dom} T$. The value of tree of p yielding a real number is defined by the term
(Def. 7) $T(p)_{\mathbf{2}}$.
Let p, q be finite binary trees decorated with elements of $\mathbb{R}_{\mathbb{N}}$ and k be a natural number. The functor MakeTree (p, q, k) yielding a finite binary tree decorated with elements of $\mathbb{R}_{\mathbb{N}}$ is defined by the term
(Def. 8) $\langle k$, (the value of root from right of $p)+($ the value of root from right of $q)\rangle$-tree (p, q).
Let X be a non empty finite subset of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$. The maximal value of X yielding a natural number is defined by
(Def. 9) There exists a non empty finite subset L of \mathbb{N} such that
(i) $L=\{$ the value of root from left of p, where p is an element of the binary finite trees of $\left.\mathbb{R}_{\mathbb{N}}: p \in X\right\}$, and
(ii) $i t=\max L$.

Now we state the propositions:
(1) Let us consider a non empty finite subset X of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$ and a finite binary tree w decorated with elements of $\mathbb{R}_{\mathbb{N}}$. Suppose $X=\{w\}$. Then the maximal value of $X=$ the value of root from left of w. Proof: Consider L being a non empty finite subset of \mathbb{N} such that $L=\{$ the value of root from left of p, where p is an element of the binary finite trees of $\left.\mathbb{R}_{\mathbb{N}}: p \in X\right\}$ and the maximal value of $X=\max L$. For every element n such that $n \in L$ holds $n=$ the value of root from left of w. For every element n such that $n=$ the value of root from left of w holds $n \in L$.
(2) Let us consider non empty finite subsets X, Y, Z of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$. Suppose $Z=X \cup Y$. Then the maximal value of $Z=\max ($ the maximal value of X, the maximal value of Y).
(3) Let us consider non empty finite subsets X, Z of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$ and a set Y. Suppose $Z=X \backslash Y$. Then the maximal value of $Z \leqslant$ the maximal value of X. The theorem is a consequence of (2).
(4) Let us consider a non empty finite subset X of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$ and an element p of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$. Suppose $p \in X$. Then the value of root from left of $p \leqslant$ the maximal value of X.
Let X be a non empty finite subset of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$. A minimal value tree of X is a finite binary tree decorated with elements of $\mathbb{R}_{\mathbb{N}}$ and is defined by
(Def. 10) (i) it $\in X$, and
(ii) for every finite binary tree q decorated with elements of $\mathbb{R}_{\mathbb{N}}$ such that $q \in X$ holds the value of root from right of $i t \leqslant$ the value of root from right of q.
Now we state the propositions:
(5) $\overline{\overline{\text { InitTrees } p}}=\overline{\bar{S}}$. Proof: Reconsider $f_{1}=(\operatorname{CFS}(\mathbb{S}))^{-1}$ as a function from \mathbb{S} into Seg $\overline{\mathbb{S}}$. Define \mathcal{P} [element, element] $\equiv \$_{2}=$ the root tree of $\left\langle f_{1}\left(\$_{1}\right)\right.$, $\left.p\left(\left\{\$_{1}\right\}\right)\right\rangle$. For every element x such that $x \in \mathbb{S}$ there exists an element y such that $y \in \operatorname{InitTrees} p$ and $\mathcal{P}[x, y]$ by [12, (5)], [13, (87)], [7, (3)]. Consider f being a function from \mathbb{S} into InitTrees p such that for every element x such that $x \in \mathbb{S}$ holds $\mathcal{P}[x, f(x)]$ from [12, Sch. 1].
(6) Let us consider a non empty finite subset X of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$ and finite binary trees s, t decorated with elements of $\mathbb{R}_{\mathbb{N}}$. Then MakeTree $(t, s,(($ the maximal value of $X)+1)) \notin X$.
Let X be a set. The set of leaves of X yielding a subset of $2^{\mathbb{R}_{\mathbb{N}}}$ is defined by the term
(Def. 11) $\left\{\operatorname{Leaves}(p)\right.$, where p is an element of the binary finite trees of $\left.\mathbb{R}_{\mathbb{N}}: p \in X\right\}$.
Now we state the propositions:
(7) Let us consider a finite binary tree X decorated with elements of $\mathbb{R}_{\mathbb{N}}$. Then the set of leaves of $\{X\}=\{\operatorname{Leaves}(X)\}$. Proof: For every element $x, x \in$ the set of leaves of $\{X\}$ iff $x \in\{\operatorname{Leaves}(X)\}$.
(8) Let us consider sets X, Y. Then the set of leaves of $X \cup Y=$ (the set of leaves of $X) \cup($ the set of leaves of $Y)$. Proof: For every element x, $x \in$ the set of leaves of $X \cup Y$ iff $x \in$ (the set of leaves of $X) \cup$ (the set of leaves of Y).
(9) Let us consider trees s, t. Then $\emptyset \notin \operatorname{Leaves}(\overbrace{t, s})$. Proof: For every element $p, p \in \overbrace{t, s}$ iff $p \in$ the elementary tree of 0 by [4], (19), (29)], [10, (130)].
(10) Let us consider trees s, t. Then Leaves $(\overbrace{t, s})=\left\{\langle 0\rangle{ }^{\wedge} p\right.$, where p is an element of $t: p \in \operatorname{Leaves}(t)\} \cup\left\{\langle 1\rangle{ }^{\wedge} p\right.$, where p is an element of $s: p \in \operatorname{Leaves}(s)\}$. The theorem is a consequence of (9). Proof: Set $L=\left\{\langle 0\rangle^{\wedge} p\right.$, where p is an element of $\left.t: p \in \operatorname{Leaves}(t)\right\}$. Set $R=\left\{\langle 1\rangle^{\wedge}\right.$ p, where p is an element of $s: p \in \operatorname{Leaves}(s)\}$. Set $H=\operatorname{Leaves}(\overbrace{t, s})$. For every element $x, x \in H$ iff $x \in L \cup R$ by [2, (23)], [9, (6)].
Let us consider decorated trees s, t, an element x, and a finite sequence q of elements of \mathbb{N}. Now we state the propositions:
(11) If $q \in \operatorname{dom} t$, then $(x-\operatorname{tree}(t, s))\left(\langle 0\rangle{ }^{\wedge} q\right)=t(q)$.
(12) If $q \in \operatorname{dom} s$, then $(x-\operatorname{tree}(t, s))(\langle 1\rangle \wedge q)=s(q)$.

Now we state the propositions:
(13) Let us consider decorated trees s, t and an element x.

Then Leaves $(x-\operatorname{tree}(t, s))=\operatorname{Leaves}(t) \cup \operatorname{Leaves}(s)$. The theorem is a consequence of (10), (11), and (12). Proof: Set $L=\{\langle 0\rangle \wedge p$, where p is an element of $\operatorname{dom} t: p \in \operatorname{Leaves}(\operatorname{dom} t)\}$. Set $R=\{\langle 1\rangle \wedge p$, where
 $z \in(x-\operatorname{tree}(t, s))^{\circ} L$ iff $z \in t^{\circ}(\operatorname{Leaves}(\operatorname{dom} t))$. For every element $z, z \in$ $(x \text {-tree }(t, s))^{\circ} R$ iff $z \in s^{\circ}($ Leaves $(\operatorname{dom} s))$.
(14) Let us consider a natural number k and finite binary trees s, t decorated with elements of $\mathbb{R}_{\mathbb{N}}$. Then \bigcup the set of leaves of $\{s, t\}=\bigcup$ the set of leaves of $\{\operatorname{MakeTree}(t, s, k)\}$. The theorem is a consequence of (8), (7), and (13).
(15) Leaves(the elementary tree of 0$)=$ the elementary tree of 0 . Proof: For every element $x, x \in$ Leaves(the elementary tree of 0) iff $x \in$ the elementary tree of 0 by [4, (29), (54)].
(16) Let us consider an element x, a non empty set D, and a finite binary tree T decorated with elements of D. Suppose $T=$ the root tree of x. Then Leaves $(T)=\{x\}$. The theorem is a consequence of (15).

2. Binary Huffman Tree

Let us consider \mathbb{S}, p, T_{1}, and q. We say that T_{1}, q, and p are constructing binary Huffman tree if and only if
(Def. 12) (i) $T_{1}(1)=\operatorname{InitTrees} p$, and
(ii) len $T_{1}=\overline{\overline{\mathbb{S}}}$, and
(iii) for every natural number i such that $1 \leqslant i<\operatorname{len} T_{1}$ there exist non empty finite subsets X, Y of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$ and there exists a minimal value tree s of X and there exists a minimal value tree t of Y and there exists a finite binary tree v decorated with elements of $\mathbb{R}_{\mathbb{N}}$ such that $T_{1}(i)=X$ and $Y=X \backslash\{s\}$ and $v \in$ $\{\operatorname{MakeTree}(t, s,(($ the maximal value of $X)+1))$, MakeTree $(s, t$, ((the maximal value of $X)+1))\}$ and $T_{1}(i+1)=(X \backslash\{t, s\}) \cup\{v\}$, and
(iv) there exists a finite binary tree T decorated with elements of $\mathbb{R}_{\mathbb{N}}$ such that $\{T\}=T_{1}\left(\operatorname{len} T_{1}\right)$, and
(v) $\operatorname{dom} q=\operatorname{Seg} \overline{\overline{\mathbb{S}}}$, and
(vi) for every natural number k such that $k \in \operatorname{Seg} \overline{\overline{\mathbb{S}}}$ holds $q(k)=\overline{\overline{T_{1}(k)}}$ and $q(k) \neq 0$, and
(vii) for every natural number k such that $k<\overline{\mathbb{S}}$ holds $q(k+1)=q(1)-k$, and
(viii) for every natural number k such that $1 \leqslant k<\overline{\mathbb{S}}$ holds $2 \leqslant q(k)$.

Now we state the proposition:
(17) There exists T_{1} and there exists q such that T_{1}, q, and p are constructing binary Huffman tree. The theorem is a consequence of (5) and (6). Proof: Define \mathcal{A} [natural number, set, set] \equiv if there exist elements u, v such that $u \neq v$ and $u, v \in \$_{2}$, then there exist non empty finite subsets X, Y of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$ and there exists a minimal value tree s of X and there exists a minimal value tree t of Y and there exists a finite binary tree w decorated with elements of $\mathbb{R}_{\mathbb{N}}$ such that $\$_{2}=X$ and $Y=X \backslash\{s\}$ and $w \in\{\operatorname{MakeTree}(t, s,(($ the maximal value of $X)+$ 1)), MakeTree($s, t,(($ the maximal value of $X)+1))\}$ and $\$_{3}=(X \backslash\{t, s\}) \cup$ $\{w\}$. For every natural number n such that $1 \leqslant n<\overline{\bar{S}}$ for every element x of the Boolean binary finite trees of $\mathbb{R}_{\mathbb{N}}$, there exists an element y of the Boolean binary finite trees of $\mathbb{R}_{\mathbb{N}}$ such that $\mathcal{A}[n, x, y]$. Reconsider $I=$ InitTrees p as an element of the Boolean binary finite trees of $\mathbb{R}_{\mathbb{N}}$. Consider T_{1} being a finite sequence of elements of the Boolean binary finite trees of $\mathbb{R}_{\mathbb{N}}$ such that len $T_{1}=\overline{\mathbb{S}}$ and $T_{1}(1)=I$ or $\overline{\mathbb{S}}=0$ and for every natural number n such that $1 \leqslant n<\overline{\mathbb{S}}$ holds $\mathcal{A}\left[n, T_{1}(n), T_{1}(n+1)\right.$] from [15, Sch. 4]. Define \mathcal{B} [element, element] \equiv there exists a finite set X such that
$T_{1}\left(\$_{1}\right)=X$ and $\$_{2}=\overline{\bar{X}}$ and $\$_{2} \neq 0$. For every natural number k such that $k \in \operatorname{Seg} \overline{\mathbb{S}}$ there exists an element x of \mathbb{N} such that $\mathcal{B}[k, x]$ by [11, (3)]. Consider q being a finite sequence of elements of \mathbb{N} such that $\operatorname{dom} q=\operatorname{Seg} \overline{\mathbb{S}}$ and for every natural number k such that $k \in \operatorname{Seg} \overline{\overline{\mathbb{S}}}$ holds $\mathcal{B}[k, q(k)]$ from [8, Sch. 5]. For every natural number k such that $k \in \operatorname{Seg} \overline{\mathbb{S}}$ holds $q(k)=$ $\overline{\overline{T_{1}(k)}}$ and $q(k) \neq 0$. For every natural number k such that $1 \leqslant k<\overline{\overline{\mathbb{S}}}$ holds if $2 \leqslant q(k)$, then $q(k+1)=q(k)-1$ by [8, (1)], [2, (11), (13)]. Define \mathcal{C} [natural number] \equiv if $\$_{1}<\overline{\mathbb{S}}$, then $q\left(\$_{1}+1\right)=q(1)-\$_{1}$. For every natural number n such that $\mathcal{C}[n]$ holds $\mathcal{C}[n+1]$ by [2, (11)], [8, (1)], [2, (14), (13)]. For every natural number $n, \mathcal{C}[n]$ from [2, Sch. 2]. For every natural number n such that $1 \leqslant n<\overline{\overline{\mathbb{S}}}$ holds $2 \leqslant q(n)$ by [2, (21), (13)]. For every natural number k such that $1 \leqslant k<\operatorname{len} T_{1}$ there exist non empty finite subsets X, Y of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$ and there exists a minimal value tree s of X and there exists a minimal value tree t of Y and there exists a finite binary tree w decorated with elements of $\mathbb{R}_{\mathbb{N}}$ such that $T_{1}(k)=X$ and $Y=X \backslash\{s\}$ and $w \in\{\operatorname{MakeTree}(t, s,(($ the maximal value of $X)+1)$, MakeTree $(s, t,(($ the maximal value of $X)+1))\}$ and $T_{1}(k+1)=(X \backslash\{t, s\}) \cup\{w\}$ by [8, (1)]. Consider T_{2} being a finite set such that $T_{1}(\overline{\overline{\mathbb{S}}})=T_{2}$ and $q(\overline{\overline{\mathbb{S}}})=\overline{\overline{T_{2}}}$ and $q(\overline{\overline{\mathbb{S}}}) \neq 0$. Consider u being an element such that $T_{2}=\{u\}$.
Let us consider \mathbb{S} and p. A binary Huffman tree of p is a finite binary tree decorated with elements of $\mathbb{R}_{\mathbb{N}}$ and is defined by
(Def. 13) There exists a finite sequence T_{1} of elements of the Boolean binary finite trees of $\mathbb{R}_{\mathbb{N}}$ and there exists a finite sequence q of elements of \mathbb{N} such that T_{1}, q, and p are constructing binary Huffman tree and $\{i t\}=T_{1}\left(\operatorname{len} T_{1}\right)$.
In this paper T denotes a binary Huffman tree of p.
Now we state the propositions:
(18) U the set of leaves of InitTrees $p=\{z$, where z is an element of $\mathbb{N} \times \mathbb{R}$: there exists an element x of \mathbb{S} such that $\left.z=\left\langle(\operatorname{CFS}(\mathbb{S}))^{-1}(x), p(\{x\})\right\rangle\right\}$. The theorem is a consequence of (16). Proof: Set $L=\bigcup$ the set of leaves of InitTrees p. Set $R=\{z$, where z is an element of $\mathbb{N} \times \mathbb{R}$: there exists an element x of \mathbb{S} such that $\left.z=\left\langle(\operatorname{CFS}(\mathbb{S}))^{-1}(x), p(\{x\})\right\rangle\right\}$. For every element $x, x \in L$ iff $x \in R$ by [13, (87)], [7, (3)].
(19) Suppose T_{1}, q, and p are constructing binary Huffman tree. Let us consider a natural number i. Suppose $1 \leqslant i \leqslant \operatorname{len} T_{1}$. Then \bigcup the set of leaves of $T_{1}(i)=\{z$, where z is an element of $\mathbb{N} \times \mathbb{R}$: there exists an element x of \mathbb{S} such that $\left.z=\left\langle(\operatorname{CFS}(\mathbb{S}))^{-1}(x), p(\{x\})\right\rangle\right\}$. The theorem is a consequence of (18), (8), and (14). Proof: Define \mathcal{P} [natural number] \equiv if $\$_{1}<\operatorname{len} T_{1}$, then \cup the set of leaves of $T_{1}\left(\$_{1}+1\right)=\{z$, where z is an element of $\mathbb{N} \times \mathbb{R}$: there exists an element x of \mathbb{S} such that $z=\left\langle(\operatorname{CFS}(\mathbb{S}))^{-1}(x)\right.$,
$p(\{x\})\rangle\}$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [2, (11)], [13, (78), (32)]. For every natural number $k, \mathcal{P}[k]$ from [2, Sch. 2].
(20) Leaves $(T)=\{z$, where z is an element of $\mathbb{N} \times \mathbb{R}$: there exists an element x of \mathbb{S} such that $\left.z=\left\langle(\operatorname{CFS}(\mathbb{S}))^{-1}(x), p(\{x\})\right\rangle\right\}$. The theorem is a consequence of (19) and (7).
(21) Suppose T_{1}, q, and p are constructing binary Huffman tree. Let us consider a natural number i, a finite binary tree T decorated with elements of $\mathbb{R}_{\mathbb{N}}$, and elements t, s, r of dom T. Suppose
(i) $T \in T_{1}(i)$, and
(ii) $t \in \operatorname{dom} T \backslash \operatorname{Leaves}(\operatorname{dom} T)$, and
(iii) $s=t^{\frown}\langle 0\rangle$, and
(iv) $r=t^{\wedge}\langle 1\rangle$.

Then the value of tree of $t=$ (the value of tree of $s)+($ the value of tree of $r)$. The theorem is a consequence of (15), (11), and (12). Proof: Define \mathcal{P} [natural number] \equiv if $1 \leqslant \$_{1} \leqslant \operatorname{len} T_{1}$, then for every finite binary tree T decorated with elements of $\mathbb{R}_{\mathbb{N}}$ and for every elements a, b, c of $\operatorname{dom} T$ such that $T \in T_{1}\left(\$_{1}\right)$ and $a \in \operatorname{dom} T \backslash \operatorname{Leaves}(\operatorname{dom} T)$ and $b=a^{\wedge}\langle 0\rangle$ and $c=a^{\wedge}\langle 1\rangle$ holds the value of tree of $a=$ (the value of tree of $\left.b\right)+($ the value of tree of $c)$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [2, (16), (14)], [8, (44)]. For every natural number $i, \mathcal{P}[i]$ from [2, Sch. 2].
(22) Let us consider elements t, s, r of dom T. Suppose
(i) $t \in \operatorname{dom} T \backslash \operatorname{Leaves}(\operatorname{dom} T)$, and
(ii) $s=t^{\frown}\langle 0\rangle$, and
(iii) $r=t^{\wedge}\langle 1\rangle$.

Then the value of tree of $t=$ (the value of tree of s) + (the value of tree of r). The theorem is a consequence of (21).
(23) Let us consider a non empty finite subset X of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$. Suppose a finite binary tree T decorated with elements of $\mathbb{R}_{\mathbb{N}}$. Suppose $T \in X$. Let us consider an element p of $\operatorname{dom} T$ and an element r of \mathbb{N}. Suppose $r=T(p)_{\mathbf{1}}$. Then $r \leqslant$ the maximal value of X. Let us consider finite binary trees s, t, w decorated with elements of $\mathbb{R}_{\mathbb{N}}$. Suppose
(i) $s, t \in X$, and
(ii) $w=\operatorname{MakeTree}(t, s,(($ the maximal value of $X)+1))$.

Let us consider an element p of $\operatorname{dom} w$ and an element r of \mathbb{N}. Suppose $r=w(p)_{\mathbf{1}}$. Then $r \leqslant$ (the maximal value of $\left.X\right)+1$. The theorem is a consequence of (11) and (12). Proof: For every element a such that
$a \in \operatorname{dom} d$ holds $a=\emptyset$ or there exists an element f of dom t such that $a=\langle 0\rangle^{\wedge} f$ or there exists an element f of dom s such that $a=\langle 1\rangle^{\wedge} f$ by [2, (23)].
(24) Suppose T_{1}, q, and p are constructing binary Huffman tree. Let us consider a natural number i. Suppose $1 \leqslant i<\operatorname{len} T_{1}$. Let us consider non empty finite subsets X, Y of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$. Suppose
(i) $X=T_{1}(i)$, and
(ii) $Y=T_{1}(i+1)$.

Then the maximal value of $Y=($ the maximal value of $X)+1$. Proof: Consider X, Y being non empty finite subsets of the binary finite trees of $\mathbb{R}_{\mathbb{N}}, s$ being a minimal value tree of X, t being a minimal value tree of Y, v being a finite binary tree decorated with elements of $\mathbb{R}_{\mathbb{N}}$ such that $T_{1}(i)=X$ and $Y=X \backslash\{s\}$ and $v \in\{\operatorname{MakeTree}(t, s,(($ the maximal value of $X)+1))$, MakeTree $(s, t,(($ the maximal value of $X)+1))\}$ and $T_{1}(i+1)=(X \backslash\{t, s\}) \cup\{v\}$. Consider L_{1} being a non empty finite subset of \mathbb{N} such that $L_{1}=\{$ the value of root from left of p, where p is an element of the binary finite trees of $\left.\mathbb{R}_{\mathbb{N}}: p \in X 0\right\}$ and the maximal value of $X 0=\max L_{1}$. Consider L_{4} being a non empty finite subset of \mathbb{N} such that $L_{4}=\{$ the value of root from left of p, where p is an element of the binary finite trees of $\left.\mathbb{R}_{\mathbb{N}}: p \in Y 0\right\}$ and the maximal value of $Y 0=\max L_{4}$. Reconsider $p_{1}=v$ as an element of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$. For every extended real x such that $x \in L_{4}$ holds $x \leqslant$ the value of root from left of p_{1} by [2, (16)].
Let us consider a natural number i, a non empty finite subset X of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$, a finite binary tree T decorated with elements of $\mathbb{R}_{\mathbb{N}}$, an element p of $\operatorname{dom} T$, and an element r of \mathbb{N}. Now we state the propositions:
(25) Suppose T_{1}, q, and p are constructing binary Huffman tree. Then if $X=T_{1}(i)$, then if $T \in X$, then if $r=T(p)_{\mathbf{1}}$, then $r \leqslant$ the maximal value of X.
(26) Suppose T_{1}, q, and p are constructing binary Huffman tree. Then if $X=T_{1}(i)$, then if $T \in X$, then if $r=T(p)_{\mathbf{1}}$, then $r \leqslant$ the maximal value of X.
Now we state the proposition:
(27) Suppose T_{1}, q, and p are constructing binary Huffman tree. Let us consider a natural number i, finite binary trees s, t decorated with elements of $\mathbb{R}_{\mathbb{N}}$, and a non empty finite subset X of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$. Suppose
(i) $X=T_{1}(i)$, and
(ii) $s, t \in X$.

Let us consider a finite binary tree z decorated with elements of $\mathbb{R}_{\mathbb{N}}$. Suppose $z \in X$. Then $\langle($ the maximal value of $X)+1$, (the value of root from right of $t)+($ the value of root from right of $s)\rangle \notin \operatorname{rng} z$. The theorem is a consequence of (26).
Let x be an element. Note that the root tree of x is one-to-one.
Now we state the propositions:
(28) Let us consider a non empty finite subset X of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$ and finite binary trees s, t, w decorated with elements of $\mathbb{R}_{\mathbb{N}}$. Suppose
(i) for every finite binary tree T decorated with elements of $\mathbb{R}_{\mathbb{N}}$ such that $T \in X$ for every element p of dom T for every element r of \mathbb{N} such that $r=T(p)_{\mathbf{1}}$ holds $r \leqslant$ the maximal value of X, and
(ii) for every finite binary trees p, q decorated with elements of $\mathbb{R}_{\mathbb{N}}$ such that $p, q \in X$ and $p \neq q$ holds $\operatorname{rng} p \cap \operatorname{rng} q=\emptyset$, and
(iii) $s, t \in X$, and
(iv) $s \neq t$, and
(v) $w \in X \backslash\{s, t\}$.

Then rng $\operatorname{MakeTree}(t, s,(($ the maximal value of $X)+1)) \cap \operatorname{rng} w=\emptyset$. The theorem is a consequence of (11) and (12). Proof: Set $d=\operatorname{MakeTree}(t, s$, $(($ the maximal value of $X)+1))$. For every element a such that $a \in \operatorname{dom} d$ holds $a=\emptyset$ or there exists an element f of dom t such that $a=\langle 0\rangle^{\wedge} f$ or there exists an element f of $\operatorname{dom} s$ such that $a=\langle 1\rangle^{\wedge} f$ by [2, (23)]. Consider n_{2} being an element such that $n_{2} \in \operatorname{rng} d \cap \operatorname{rng} w$. Consider a_{1} being an element such that $a_{1} \in \operatorname{dom} d$ and $n_{2}=d\left(a_{1}\right)$. Consider b_{1} being an element such that $b_{1} \in \operatorname{dom} w$ and $n_{2}=w\left(b_{1}\right) . w \in X$ and $w \neq s$ and $w \neq t$.
(29) Suppose T_{1}, q, and p are constructing binary Huffman tree. Let us consider a natural number i and finite binary trees T, S decorated with elements of $\mathbb{R}_{\mathbb{N}}$. Suppose
(i) $T, S \in T_{1}(i)$, and
(ii) $T \neq S$.

Then $\operatorname{rng} T \cap \operatorname{rng} S=\emptyset$. The theorem is a consequence of (26) and (28). Proof: Define \mathcal{P} [natural number] \equiv if $1 \leqslant \$_{1} \leqslant \operatorname{len} T_{1}$, then for every finite binary trees T, S decorated with elements of $\mathbb{R}_{\mathbb{N}}$ such that $T, S \in$ $T_{1}\left(\$_{1}\right)$ and $T \neq S$ holds $\operatorname{rng} T \cap \operatorname{rng} S=\emptyset$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [21, (8)], [2, (16), (14)]. For every natural number $i, \mathcal{P}[i]$ from [2, Sch. 2].
(30) Let us consider a non empty finite subset X of the binary finite trees of $\mathbb{R}_{\mathbb{N}}$ and finite binary trees s, t decorated with elements of $\mathbb{R}_{\mathbb{N}}$. Suppose
(i) s is one-to-one, and
(ii) t is one-to-one, and
(iii) $t, s \in X$, and
(iv) $\operatorname{rng} s \cap \operatorname{rng} t=\emptyset$, and
(v) for every finite binary tree z decorated with elements of $\mathbb{R}_{\mathbb{N}}$ such that $z \in X$ holds $\langle($ the maximal value of $X)+1$, (the value of root from right of $t)+($ the value of root from right of $s)\rangle \notin \operatorname{rng} z$.
Then MakeTree $(t, s,(($ the maximal value of $X)+1))$ is one-to-one. The theorem is a consequence of (11) and (12). Proof: Set $d=\operatorname{MakeTree}(t, s$, ((the maximal value of $X)+1)$). For every element a such that $a \in \operatorname{dom} d$ holds $a=\emptyset$ or there exists an element f of dom t such that $a=\langle 0\rangle{ }^{\wedge} f$ or there exists an element f of $\operatorname{dom} s$ such that $a=\langle 1\rangle^{\wedge} f$ by [2, (23)]. For every element x such that $x \in \operatorname{dom} d$ and $x \neq \emptyset$ holds $d(x) \neq d(\emptyset)$ by [11, (3)]. For every elements x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{dom} d$ and $d\left(x_{1}\right)=d\left(x_{2}\right)$ holds it is not true that there exists an element f of dom s such that $x_{1}=\langle 1\rangle{ }^{\wedge} f$ and there exists an element f of $\operatorname{dom} t$ such that $x_{2}=\langle 0\rangle \wedge f$ by [11, (3)]. For every elements x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{dom} d$ and $d\left(x_{1}\right)=d\left(x_{2}\right)$ holds $x_{1}=x_{2}$.
(31) Suppose T_{1}, q, and p are constructing binary Huffman tree. Let us consider a natural number i and a finite binary tree T decorated with elements of $\mathbb{R}_{\mathbb{N}}$. If $T \in T_{1}(i)$, then T is one-to-one. The theorem is a consequence of (27), (29), and (30). Proof: Define $\mathcal{P}[$ natural number] \equiv if $1 \leqslant \$_{1} \leqslant \operatorname{len} T_{1}$, then for every finite binary tree T decorated with elements of $\mathbb{R}_{\mathbb{N}}$ such that $T \in T_{1}\left(\$_{1}\right)$ holds T is one-to-one. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [2, (16), (14)]. For every natural number $i, \mathcal{P}[i]$ from [2, Sch. 2].
Let us consider p.
Now we are at the position where we can present the Main Theorem of the paper: Every binary Huffman tree of p is one-to-one.

References

[1] Grzegorz Bancerek. Cardinal numbers Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek. Introduction to trees Formalized Mathematics, 1(2):421-427, 1990.
[5] Grzegorz Bancerek. König's lemma \mid Formalized Mathematics, 2(3):397-402, 1991.
[6] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees Formalized Mathematics, 3(2):195-204, 1992.
[7] Grzegorz Bancerek. Joining of decorated trees Formalized Mathematics, 4(1):77-82, 1993.
[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[9] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on binary trees Formalized Mathematics, 5(1):9-13, 1996.
[10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets Formalized Mathematics, 1(3):529-536, 1990.
[11] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[13] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[14] Agata Darmochwał. Finite sets Formalized Mathematics, 1(1):165-167, 1990.
[15] Krzysztof Hryniewiecki. Recursive definitions Formalized Mathematics, 1(2):321-328, 1990.
[16] D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the I.R.E, 1952.
[17] Andrzej Kondracki. Basic properties of rational numbers Formalized Mathematics, 1(5): 841-845, 1990.
[18] Andrzej Nędzusiak. σ-fields and probability Formalized Mathematics, 1(2):401-407, 1990.
[19] Hiroyuki Okazaki and Yasunari Shidama. Probability on finite set and real-valued random variables. Formalized Mathematics, 17(2):129-136, 2009. doi 10.2478/v10037-009-0014-x.
[20] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990.
[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.
[22] Andrzej Trybulec. On the sets inhabited by numbers Formalized Mathematics, 11(4): 341-347, 2003.
[23] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[25] Edmund Woronowicz. Relations and their basic properties Formalized Mathematics, 1 (1):73-83, 1990.
[26] Edmund Woronowicz. Relations defined on sets Formalized Mathematics, 1(1):181-186, 1990.

Received June 18, 2013

[^0]: ${ }^{1}$ This research was presented during the 2013 International Conference on Foundations of Computer Science FCS'13 in Las Vegas, USA.
 ${ }^{2}$ This work was supported by JSPS KAKENHI 21240001.
 ${ }^{3}$ This work was supported by JSPS KAKENHI 22300285.

