

## Banach's Continuous Inverse Theorem and Closed Graph Theorem<sup>1</sup>

Hideki Sakurai 406-3, Haneo, Naganohara Agatuma, Gunma, Japan Hiroyuki Okazaki Shinshu University Nagano, Japan

Yasunari Shidama Shinshu University Nagano, Japan

**Summary.** In this article we formalize one of the most important theorems of linear operator theory – the Closed Graph Theorem commonly used in a standard text book such as [10] in Chapter 24.3. It states that a surjective closed linear operator between Banach spaces is bounded.

MML identifier: LOPBAN\_7, version: 8.0.01 5.3.1162

The terminology and notation used here have been introduced in the following articles: [3], [4], [2], [15], [11], [14], [1], [5], [13], [12], [19], [20], [16], [7], [8], [18], [9], and [6].

Let X, Y be non empty normed structures, let x be a point of X, and let y be a point of Y. Then  $\langle x, y \rangle$  is a point of  $X \times Y$ .

Let X, Y be non empty normed structures, let  $s_1$  be a sequence of X, and let  $s_2$  be a sequence of Y. Then  $\langle s_1, s_2 \rangle$  is a sequence of  $X \times Y$ .

We now state several propositions:

- (1) Let X, Y be real linear spaces and T be a linear operator from X into Y. Suppose T is bijective. Then  $T^{-1}$  is a linear operator from Y into X and  $rrg(T^{-1}) = the$  carrier of X.
- (2) Let X, Y be non empty linear topological spaces, T be a linear operator from X into Y, and S be a function from Y into X. Suppose T is bijective

<sup>&</sup>lt;sup>1</sup>This work was supported by JSPS KAKENHI 22300285.

- and open and  $S = T^{-1}$ . Then S is a linear operator from Y into X, onto, and continuous.
- (3) For all real normed spaces X, Y and for every linear operator f from X into Y holds  $0_Y = f(0_X)$ .
- (4) Let X, Y be real normed spaces, f be a linear operator from X into Y, and x be a point of X. Then f is continuous in x if and only if f is continuous in  $0_X$ .
- (5) Let X, Y be real normed spaces and f be a linear operator from X into Y. Then f is continuous on the carrier of X if and only if f is continuous in  $0_X$ .
- (6) Let X, Y be real normed spaces and f be a linear operator from X into Y. Then f is Lipschitzian if and only if f is continuous on the carrier of X.
- (7) Let X, Y be real Banach spaces and T be a Lipschitzian linear operator from X into Y. Suppose T is bijective. Then  $T^{-1}$  is a Lipschitzian linear operator from Y into X.
- (8) Let X, Y be real normed spaces,  $s_1$  be a sequence of  $X, s_2$  be a sequence of Y, x be a point of X, and y be a point of Y. Then  $s_1$  is convergent and  $\lim s_1 = x$  and  $s_2$  is convergent and  $\lim s_2 = y$  if and only if  $\langle s_1, s_2 \rangle$  is convergent and  $\lim \langle s_1, s_2 \rangle = \langle x, y \rangle$ .
- Let X, Y be real normed spaces and let T be a partial function from X to Y. The functor graph(T) yields a subset of  $X \times Y$  and is defined as follows:
- (Def. 1) graph(T) = T.
  - Let X, Y be real normed spaces and let T be a non empty partial function from X to Y. Observe that graph(T) is non empty.
  - Let X, Y be real normed spaces and let T be a linear operator from X into Y. Note that graph(T) is linearly closed.
  - Let X, Y be real normed spaces and let T be a linear operator from X into Y. The functor graphNrm(T) yielding a function from graph(T) into  $\mathbb{R}$  is defined as follows:
- (Def. 2) graphNrm(T) = (the norm of  $X \times Y$ ) graph(T).
  - Let X, Y be real normed spaces and let T be a partial function from X to Y. We say that T is closed if and only if:
- (Def. 3) graph(T) is closed.
  - Let X, Y be real normed spaces and let T be a linear operator from X into Y. The functor graphNSP(T) yields a non empty normed structure and is defined by:
- (Def. 4)  $\operatorname{graphNSP}(T) = \langle \operatorname{graph}(T), \operatorname{Zero}(\operatorname{graph}(T), X \times Y), \operatorname{Add}(\operatorname{graph}(T), X \times Y), \operatorname{Mult}(\operatorname{graph}(T), X \times Y), \operatorname{graphNrm}(T) \rangle.$

Let X, Y be real normed spaces and let T be a linear operator from X into Y. One can check that graphNSP(T) is Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, and scalar unital.

One can prove the following proposition

- (9) For all real normed spaces X, Y and for every linear operator T from X into Y holds graphNSP(T) is a subspace of  $X \times Y$ .
- Let X, Y be real normed spaces and let T be a linear operator from X into Y. Note that graphNSP(T) is reflexive, discernible, and real normed space-like. We now state several propositions:
- (10) Let X be a real normed space, Y be a real Banach space, and  $X_0$  be a subset of Y. Suppose that
  - (i) X is a subspace of Y,
  - (ii) the carrier of  $X = X_0$ ,
- (iii) the norm of  $X = (\text{the norm of } Y) \upharpoonright (\text{the carrier of } X), \text{ and }$
- (iv)  $X_0$  is closed.

Then X is complete.

- (11) Let X, Y be real Banach spaces and T be a linear operator from X into Y. If T is closed, then graphNSP(T) is complete.
- (12) Let X, Y be real normed spaces and T be a non empty partial function from X to Y. Then T is closed if and only if for every sequence  $s_3$  of X such that  $\operatorname{rng} s_3 \subseteq \operatorname{dom} T$  and  $s_3$  is convergent and  $T_*s_3$  is convergent holds  $\lim s_3 \in \operatorname{dom} T$  and  $\lim (T_*s_3) = T(\lim s_3)$ .
- (13) Let X, Y be real normed spaces, T be a non empty partial function from X to Y, and  $T_0$  be a linear operator from X into Y. If  $T_0$  is Lipschitzian and dom T is closed and  $T = T_0$ , then T is closed.
- (14) Let X, Y be real normed spaces, T be a non empty partial function from X to Y, and S be a non empty partial function from Y to X. If T is closed and one-to-one and  $S = T^{-1}$ , then S is closed.
- (15) For all real normed spaces X, Y and for every point x of X and for every point y of Y holds  $||x|| \le ||\langle x, y \rangle||$  and  $||y|| \le ||\langle x, y \rangle||$ .
- Let X, Y be real Banach spaces. Note that every linear operator from X into Y which is closed is also Lipschitzian.

## References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
- [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.

- [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [7] Czesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99–107, 2005.
- [8] Noboru Endou, Yasumasa Suzuki, and Yasunari Shidama. Real linear space of real sequences. Formalized Mathematics, 11(3):249–253, 2003.
- [9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [10] Isao Miyadera. Functional Analysis. Riko-Gaku-Sya, 1972.
- [11] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269–275, 2004.
- [12] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. Formalized Mathematics, 19(1):51–59, 2011, doi: 10.2478/v10037-011-0009-2.
- [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- [15] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39–48, 2004.
- [16] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297–301, 1990.
- [17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received August 6, 2012