

Quotient Module of \mathbb{Z} -module¹

Yuichi Futa Shinshu University Nagano, Japan

Hiroyuki Okazaki Shinshu University Nagano, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article we formalize a quotient module of \mathbb{Z} -module and a vector space constructed by the quotient module. We formally prove that for a \mathbb{Z} -module V and a prime number p, a quotient module V/pV has the structure of a vector space over \mathbb{F}_p . \mathbb{Z} -module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattices [14]. Some theorems in this article are described by translating theorems in [20] and [19] into theorems of \mathbb{Z} -module.

MML identifier: ZMODULO2, version: 7.14.01 4.183.1153

The terminology and notation used here have been introduced in the following articles: [4], [1], [16], [3], [21], [9], [5], [6], [18], [13], [15], [17], [2], [7], [11], [24], [25], [22], [20], [23], [12], [8], and [10].

1. QUOTIENT MODULE OF Z-MODULE AND VECTOR SPACE

For simplicity, we follow the rules: x is a set, V is a \mathbb{Z} -module, u, v are vectors of V, F, G, H are finite sequences of elements of V, i is an element of \mathbb{N} , and f, g are sequences of V.

Let V be a \mathbb{Z} -module and let a be an integer number. The functor $a \cdot V$ yielding a non empty subset of V is defined by:

(Def. 1) $a \cdot V = \{a \cdot v : v \text{ ranges over elements of } V\}.$

Let V be a \mathbb{Z} -module and let a be an integer number. The functor $\operatorname{Zero}(a, V)$ yielding an element of $a \cdot V$ is defined as follows:

(Def. 2) $\operatorname{Zero}(a, V) = 0_V$.

¹This work was supported by JSPS KAKENHI 22300285.

- Let V be a \mathbb{Z} -module and let a be an integer number. The functor Add(a, V) yielding a function from $(a \cdot V) \times (a \cdot V)$ into $a \cdot V$ is defined by:
- (Def. 3) $\operatorname{Add}(a, V) = (\text{the addition of } V) \upharpoonright ((a \cdot V) \times (a \cdot V)).$

Let V be a \mathbb{Z} -module and let a be an integer number. The functor $\operatorname{Mult}(a, V)$ yielding a function from $\mathbb{Z} \times (a \cdot V)$ into $a \cdot V$ is defined by:

- (Def. 4) $\operatorname{Mult}(a, V) = (\text{the external multiplication of } V) \upharpoonright (\mathbb{Z} \times (a \cdot V)).$
 - Let V be a \mathbb{Z} -module and let a be an integer number. The functor $a \circ V$ yields a submodule of V and is defined as follows:
- (Def. 5) $a \circ V = \langle a \cdot V, \operatorname{Zero}(a, V), \operatorname{Add}(a, V), \operatorname{Mult}(a, V) \rangle$.

Let V be a \mathbb{Z} -module and let W be a submodule of V. The functor $\operatorname{CosetSet}(V,W)$ yields a non empty family of subsets of V and is defined as follows:

- (Def. 6) $CosetSet(V, W) = \{A : A \text{ ranges over cosets of } W\}.$
 - Let V be a \mathbb{Z} -module and let W be a submodule of V. The functor addCoset(V, W) yields a binary operation on CosetSet(V, W) and is defined as follows:
- (Def. 7) For all elements A, B of CosetSet(V, W) and for all vectors a, b of V such that A = a + W and B = b + W holds (addCoset(V, W))(A, B) = a + b + W.

Let V be a \mathbb{Z} -module and let W be a submodule of V. The functor $\operatorname{zeroCoset}(V,W)$ yielding an element of $\operatorname{CosetSet}(V,W)$ is defined by:

- (Def. 8) zeroCoset(V, W) = the carrier of W.
 - Let V be a \mathbb{Z} -module and let W be a submodule of V. The functor lmultCoset(V, W) yields a function from $\mathbb{Z} \times \text{CosetSet}(V, W)$ into CosetSet(V, W) and is defined as follows:
- (Def. 9) For every integer z and for every element A of $\operatorname{CosetSet}(V, W)$ and for every vector a of V such that A = a + W holds $(\operatorname{ImultCoset}(V, W))(z, A) = z \cdot a + W$.

Let V be a \mathbb{Z} -module and let W be a submodule of V. The functor \mathbb{Z} -ModuleQuot(V, W) yields a strict \mathbb{Z} -module and is defined by the conditions (Def. 10).

- (Def. 10)(i) The carrier of \mathbb{Z} -ModuleQuot(V, W) = CosetSet(V, W),
 - (ii) the addition of \mathbb{Z} -ModuleQuot(V, W) = addCoset(V, W),
 - (iii) $0_{\mathbb{Z}\text{-ModuleQuot}(V,W)} = \text{zeroCoset}(V,W)$, and
 - (iv) the external multiplication of \mathbb{Z} -ModuleQuot(V, W) = lmultCoset(V, W). The following propositions are true:
 - (1) Let p be an integer, V be a \mathbb{Z} -module, W be a submodule of V, and x be a vector of \mathbb{Z} -ModuleQuot(V,W). If $W=p\circ V$, then $p\cdot x=0_{\mathbb{Z}\text{-ModuleQuot}(V,W)}$.

- (2) Let p, i be integers, V be a \mathbb{Z} -module, W be a submodule of V, and x be a vector of \mathbb{Z} -ModuleQuot(V, W). If $p \neq 0$ and $W = p \circ V$, then $i \cdot x = (i \mod p) \cdot x$.
- (3) Let p, q be integers, V be a \mathbb{Z} -module, W be a submodule of V, and v be a vector of V. Suppose $W = p \circ V$ and p > 1 and q > 1 and p and q are relative prime. If $q \cdot v = 0_V$, then $v + W = 0_{\mathbb{Z}\text{-ModuleQuot}(V,W)}$.

Let p be a prime number and let V be a \mathbb{Z} -module. The functor $\operatorname{MultModpV}(V,p)$ yields a function from (the carrier of $\operatorname{GF}(p)$) × (the carrier of \mathbb{Z} -ModuleQuot $(V,p\circ V)$) into the carrier of \mathbb{Z} -ModuleQuot $(V,p\circ V)$ and is defined by the condition (Def. 11).

(Def. 11) Let a be an element of GF(p), i be an integer, and x be an element of \mathbb{Z} -ModuleQuot $(V, p \circ V)$. If $a = i \mod p$, then $(\text{MultModpV}(V, p))(a, x) = (i \mod p) \cdot x$.

Let p be a prime number and let V be a \mathbb{Z} -module. The functor \mathbb{Z} -MQVectSp(V,p) yielding a non empty strict vector space structure over GF(p) is defined by:

(Def. 12) \mathbb{Z} -MQVectSp $(V, p) = \langle \text{the carrier of } \mathbb{Z}$ -ModuleQuot $(V, p \circ V)$, the addition of \mathbb{Z} -ModuleQuot $(V, p \circ V)$, the zero of \mathbb{Z} -ModuleQuot $(V, p \circ V)$, MultModpV $(V, p) \rangle$.

Let p be a prime number and let V be a \mathbb{Z} -module. Observe that \mathbb{Z} -MQVectSp(V, p) is scalar distributive, vector distributive, scalar associative, scalar unital, add-associative, right zeroed, right complementable, and Abelian.

Let p be a prime number, let V be a \mathbb{Z} -module, and let v be a vector of V. The functor \mathbb{Z} -MtoMQV(V, p, v) yields a vector of \mathbb{Z} -MQVectSp(V, p) and is defined as follows:

(Def. 13) \mathbb{Z} -MtoMQV $(V, p, v) = v + p \circ V$.

Let X be a \mathbb{Z} -module. The functor MultINT*X yielding a function from (the carrier of (\mathbb{Z}^R)) × (the carrier of X) into the carrier of X is defined by:

(Def. 14) MultINT* X = the external multiplication of X.

Let X be a \mathbb{Z} -module. The functor PreNorms X yielding a non empty strict vector space structure over $\mathbb{Z}^{\mathbb{R}}$ is defined by:

(Def. 15) PreNorms $X = \langle \text{the carrier of } X, \text{ the addition of } X, \text{ the zero of } X, \text{ MultINT*} X \rangle$.

Let X be a \mathbb{Z} -module. Observe that PreNorms X is Abelian, add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, and scalar unital.

Let X be a left module over $\mathbb{Z}^{\mathbb{R}}$. The functor MultINT* X yielding a function from $\mathbb{Z} \times$ the carrier of X into the carrier of X is defined as follows:

(Def. 16) MultINT*X = the left multiplication of X.

Let X be a left module over $\mathbb{Z}^{\mathbb{R}}$. The functor PreNorms X yields a non empty strict \mathbb{Z} -module structure and is defined as follows:

(Def. 17) PreNorms $X = \langle \text{the carrier of } X, \text{ the zero of } X, \text{ the addition of } X, MultINT* X \rangle$.

Let X be a left module over $\mathbb{Z}^{\mathbb{R}}$. Note that PreNorms X is Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, and scalar unital.

We now state four propositions:

- (4) Let X be a \mathbb{Z} -module, v, w be elements of X, and v_1 , w_1 be elements of PreNorms X. If $v = v_1$ and $w = w_1$, then $v + w = v_1 + w_1$ and $v w = v_1 w_1$.
- (5) Let X be a \mathbb{Z} -module, v be an element of X, v_1 be an element of PreNorms X, a be an integer, and a_1 be an element of \mathbb{Z}^R . If $v = v_1$ and $a = a_1$, then $a \cdot v = a_1 \cdot v_1$.
- (6) Let X be a left module over $\mathbb{Z}^{\mathbb{R}}$, v, w be elements of X, and v_1 , w_1 be elements of PreNorms X. If $v = v_1$ and $w = w_1$, then $v + w = v_1 + w_1$ and $v w = v_1 w_1$.
- (7) Let X be a left module over $\mathbb{Z}^{\mathbb{R}}$, v be an element of X, v_1 be an element of PreNorms X, a be an element of $\mathbb{Z}^{\mathbb{R}}$, and a_1 be an integer. If $v = v_1$ and $a = a_1$, then $a \cdot v = a_1 \cdot v_1$.

2. Linear Combination of Z-module

Let V be a non empty zero structure. An element of $\mathbb{Z}^{\text{the carrier of }V}$ is said to be a \mathbb{Z} -linear combination of V if:

(Def. 18) There exists a finite subset T of V such that for every element v of V such that $v \notin T$ holds it(v) = 0.

In the sequel K, L, L_1 , L_2 , L_3 denote \mathbb{Z} -linear combinations of V.

Let V be a non empty additive loop structure and let L be a \mathbb{Z} -linear combination of V. The support of L yielding a finite subset of V is defined by:

(Def. 19) The support of $L = \{v \in V : L(v) \neq 0\}$.

Next we state the proposition

(8) Let V be a non empty additive loop structure, L be a \mathbb{Z} -linear combination of V, and v be an element of V. Then L(v) = 0 if and only if $v \notin$ the support of L.

Let V be a non empty additive loop structure. The functor \mathbb{Z} -ZeroLC V yields a \mathbb{Z} -linear combination of V and is defined by:

(Def. 20) The support of \mathbb{Z} -ZeroLC $V = \emptyset$.

One can prove the following proposition

(9) For every non empty additive loop structure V and for every element v of V holds $(\mathbb{Z}\text{-}\mathrm{ZeroLC}\,V)(v) = 0$.

Let V be a non empty additive loop structure and let A be a subset of V. A \mathbb{Z} -linear combination of V is said to be a \mathbb{Z} -linear combination of A if:

(Def. 21) The support of it $\subseteq A$.

For simplicity, we adopt the following convention: a, b are integers, G, H_1 , H_2 , F, F_1 , F_2 , F_3 are finite sequences of elements of V, A, B are subsets of V, v_1 , v_2 , v_3 , u_1 , u_2 , u_3 are vectors of V, f is a function from the carrier of V into \mathbb{Z} , i is an element of \mathbb{N} , and l, l_1 , l_2 are \mathbb{Z} -linear combinations of A.

One can prove the following propositions:

- (10) If $A \subseteq B$, then l is a \mathbb{Z} -linear combination of B.
- (11) \mathbb{Z} -ZeroLC V is a \mathbb{Z} -linear combination of A.
- (12) For every \mathbb{Z} -linear combination l of $\emptyset_{\text{the carrier of }V}$ holds $l = \mathbb{Z}$ -ZeroLC V. Let us consider V, F, f. The functor $f \cdot F$ yields a finite sequence of elements of V and is defined by:
- (Def. 22) $\operatorname{len}(f \cdot F) = \operatorname{len} F$ and for every i such that $i \in \operatorname{dom}(f \cdot F)$ holds $(f \cdot F)(i) = f(F_i) \cdot F_i$.

Next we state several propositions:

- (13) If $i \in \text{dom } F$ and v = F(i), then $(f \cdot F)(i) = f(v) \cdot v$.
- (14) $f \cdot \varepsilon_{\text{(the carrier of } V)} = \varepsilon_{\text{(the carrier of } V)}$.
- (15) $f \cdot \langle v \rangle = \langle f(v) \cdot v \rangle$.
- (16) $f \cdot \langle v_1, v_2 \rangle = \langle f(v_1) \cdot v_1, f(v_2) \cdot v_2 \rangle.$
- $(17) \quad f \cdot \langle v_1, v_2, v_3 \rangle = \langle f(v_1) \cdot v_1, f(v_2) \cdot v_2, f(v_3) \cdot v_3 \rangle.$

Let us consider V, L. The functor $\sum L$ yielding an element of V is defined by:

(Def. 23) There exists F such that F is one-to-one and rng F = the support of L and $\sum L = \sum (L \cdot F)$.

Next we state several propositions:

- (18) $A \neq \emptyset$ and A is linearly closed iff for every l holds $\sum l \in A$.
- (19) $\sum \mathbb{Z}$ -ZeroLC $V = 0_V$.
- (20) For every \mathbb{Z} -linear combination l of $\emptyset_{\text{the carrier of }V}$ holds $\sum l = 0_V$.
- (21) For every \mathbb{Z} -linear combination l of $\{v\}$ holds $\sum l = l(v) \cdot v$.
- (22) If $v_1 \neq v_2$, then for every \mathbb{Z} -linear combination l of $\{v_1, v_2\}$ holds $\sum l = l(v_1) \cdot v_1 + l(v_2) \cdot v_2$.
- (23) If the support of $L = \emptyset$, then $\sum L = 0_V$.
- (24) If the support of $L = \{v\}$, then $\sum L = L(v) \cdot v$.
- (25) If the support of $L = \{v_1, v_2\}$ and $v_1 \neq v_2$, then $\sum L = L(v_1) \cdot v_1 + L(v_2) \cdot v_2$.

Let V be a non empty additive loop structure and let L_1 , L_2 be \mathbb{Z} -linear combinations of V. Let us observe that $L_1 = L_2$ if and only if:

(Def. 24) For every element v of V holds $L_1(v) = L_2(v)$.

Let V be a non empty additive loop structure and let L_1 , L_2 be \mathbb{Z} -linear combinations of V. Then $L_1 + L_2$ is a \mathbb{Z} -linear combination of V and it can be characterized by the condition:

(Def. 25) For every element v of V holds $(L_1 + L_2)(v) = L_1(v) + L_2(v)$.

Let us observe that the functor $L_1 + L_2$ is commutative.

The following propositions are true:

- (26) The support of $L_1 + L_2 \subseteq$ (the support of L_1) \cup (the support of L_2).
- (27) Suppose L_1 is a \mathbb{Z} -linear combination of A and L_2 is a \mathbb{Z} -linear combination of A. Then $L_1 + L_2$ is a \mathbb{Z} -linear combination of A.
- (28) $L_1 + (L_2 + L_3) = (L_1 + L_2) + L_3.$

Let us consider V, a, L. Note that $L + \mathbb{Z}$ -ZeroLC V reduces to L.

The functor $a \cdot L$ yielding a \mathbb{Z} -linear combination of V is defined as follows:

(Def. 26) For every v holds $(a \cdot L)(v) = a \cdot L(v)$.

We now state several propositions:

- (29) If $a \neq 0$, then the support of $a \cdot L$ = the support of L.
- (30) $0 \cdot L = \mathbb{Z}\text{-}\mathrm{ZeroLC}\,V.$
- (31) If L is a \mathbb{Z} -linear combination of A, then $a \cdot L$ is a \mathbb{Z} -linear combination of A.
- $(32) \quad (a+b) \cdot L = a \cdot L + b \cdot L.$
- (33) $a \cdot (L_1 + L_2) = a \cdot L_1 + a \cdot L_2$.
- (34) $a \cdot (b \cdot L) = (a \cdot b) \cdot L$.

Let us consider V, L. One can check that $1 \cdot L$ reduces to L.

The functor -L yielding a \mathbb{Z} -linear combination of V is defined as follows:

(Def. 27)
$$-L = (-1) \cdot L$$
.

Let us note that the functor -L is involutive.

We now state four propositions:

- (35) (-L)(v) = -L(v).
- (36) If $L_1 + L_2 = \mathbb{Z}$ -ZeroLC V, then $L_2 = -L_1$.
- (37) The support of -L = the support of L.
- (38) If L is a \mathbb{Z} -linear combination of A, then -L is a \mathbb{Z} -linear combination of A.

Let us consider V, L_1 , L_2 . The functor $L_1 - L_2$ yields a \mathbb{Z} -linear combination of V and is defined as follows:

(Def. 28)
$$L_1 - L_2 = L_1 + -L_2$$
.

The following four propositions are true:

- (39) $(L_1 L_2)(v) = L_1(v) L_2(v)$.
- (40) The support of $L_1 L_2 \subseteq$ (the support of L_1) \cup (the support of L_2).
- (41) Suppose L_1 is a \mathbb{Z} -linear combination of A and L_2 is a \mathbb{Z} -linear combination of A. Then $L_1 L_2$ is a \mathbb{Z} -linear combination of A.
- (42) $L L = \mathbb{Z}\text{-}\mathrm{ZeroLC}\,V.$

Let us consider V. The functor LC_V yielding a set is defined by:

(Def. 29) $x \in LC_V$ iff x is a \mathbb{Z} -linear combination of V.

Let us consider V. One can verify that LC_V is non empty.

In the sequel e, e_1 , e_2 denote elements of LC_V .

Let us consider V, e. The functor [@]e yielding a \mathbb{Z} -linear combination of V is defined by:

(Def. 30) $^{@}e = e$.

Let us consider V, L. The functor ${}^{@}L$ yielding an element of LC_V is defined by:

(Def. 31) ${}^{@}L = L$.

Let us consider V. The functor $+_{\mathrm{LC}_V}$ yields a binary operation on LC_V and is defined as follows:

(Def. 32) For all e_1 , e_2 holds $+_{LC_V}(e_1, e_2) = (@e_1) + @e_2$.

Let us consider V. The functor \cdot_{LC_V} yields a function from $\mathbb{Z} \times LC_V$ into LC_V and is defined by:

(Def. 33) For all a, e holds $\cdot_{LC_V}(\langle a, e \rangle) = a \cdot (^{@}e)$.

Let us consider V. The functor LC- \mathbb{Z} -Module V yielding a \mathbb{Z} -module structure is defined as follows:

 $(\text{Def. 34}) \quad \text{LC-}\mathbb{Z}\text{-Module}\,V = \langle \, \text{LC}_V, \, ^{@}\mathbb{Z}\text{-ZeroLC}\,V, +_{\text{LC}_V}, \cdot_{\text{LC}_V} \rangle.$

Let us consider V. One can check that LC- \mathbb{Z} -Module V is strict and non empty.

Let us consider V. Observe that LC- \mathbb{Z} -Module V is Abelian, add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, and scalar unital.

Next we state several propositions:

- (43) The carrier of LC- \mathbb{Z} -Module $V = LC_V$.
- (44) $0_{LC-\mathbb{Z}\text{-Module }V} = \mathbb{Z}\text{-ZeroLC }V.$
- (45) The addition of LC- \mathbb{Z} -Module $V = +_{LC_V}$.
- (46) The external multiplication of LC-Z-Module $V = \cdot_{\text{LC}_V}$.
- (47) $L_1^{\text{LC-}\mathbb{Z}\text{-Module }V} + L_2^{\text{LC-}\mathbb{Z}\text{-Module }V} = L_1 + L_2.$
- (48) $a \cdot L^{\text{LC-}\mathbb{Z}\text{-Module }V} = a \cdot L.$
- (49) $-L^{\text{LC-}\mathbb{Z}\text{-Module }V} = -L.$
- (50) $L_1^{\text{LC-}\mathbb{Z}\text{-Module }V} L_2^{\text{LC-}\mathbb{Z}\text{-Module }V} = L_1 L_2.$

Let us consider V, A. The functor LC- \mathbb{Z} -Module A yielding a strict submodule of LC- \mathbb{Z} -Module V is defined by:

(Def. 35) The carrier of LC- \mathbb{Z} -Module $A = \{l\}$.

3. Linearly Independent Subset of Z-module

For simplicity, we use the following convention: W, W_1 , W_2 , W_3 are submodules of V, v, v_1 are vectors of V, C is a subset of V, T is a finite subset of V, L, L_1 , L_2 are \mathbb{Z} -linear combinations of V, U is a \mathbb{Z} -linear combination of U, and U is a finite sequence of elements of the carrier of U.

One can prove the following propositions:

- (51) $f \cdot (F \cap G) = (f \cdot F) \cap (f \cdot G).$
- (52) $\sum (L_1 + L_2) = \sum L_1 + \sum L_2$.
- (53) $\sum (a \cdot L) = a \cdot \sum L$.
- (54) $\sum (-L) = -\sum L$.
- (55) $\sum (L_1 L_2) = \sum L_1 \sum L_2$.

Let us consider V, A. We say that A is linearly independent if and only if: (Def. 36) For every l such that $\sum l = 0_V$ holds the support of $l = \emptyset$.

Let us consider V, A. We introduce A is linearly dependent as an antonym of A is linearly independent.

We now state three propositions:

- (56) If $A \subseteq B$ and B is linearly independent, then A is linearly independent.
- (57) If A is linearly independent, then $0_V \notin A$.
- (58) $\emptyset_{\text{the carrier of }V}$ is linearly independent.

Let us consider V. Observe that there exists a subset of V which is linearly independent.

One can prove the following proposition

(59) If V inherits cancelable on multiplication, then $\{v\}$ is linearly independent iff $v \neq 0_V$.

Let us consider V. Note that $\{0_V\}$ is linearly dependent as a subset of V. One can prove the following propositions:

- (60) If $\{v_1, v_2\}$ is linearly independent, then $v_1 \neq 0_V$.
- (61) $\{v, 0_V\}$ is linearly dependent.
- (62) Suppose V inherits cancelable on multiplication. Then $v_1 \neq v_2$ and $\{v_1, v_2\}$ is linearly independent if and only if $v_2 \neq 0_V$ and for all a, b such that $b \neq 0$ holds $b \cdot v_1 \neq a \cdot v_2$.
- (63) Suppose V inherits cancelable on multiplication. Then $v_1 \neq v_2$ and $\{v_1, v_2\}$ is linearly independent if and only if for all a, b such that $a \cdot v_1 + b \cdot v_2 = 0_V$ holds a = 0 and b = 0.

Let us consider V, A. The functor Lin(A) yielding a strict submodule of V is defined as follows:

(Def. 37) The carrier of $Lin(A) = \{\sum l\}$.

The following propositions are true:

- (64) $x \in \text{Lin}(A)$ iff there exists l such that $x = \sum l$.
- (65) If $x \in A$, then $x \in \text{Lin}(A)$.
- (66) $x \in \mathbf{0}_V \text{ iff } x = 0_V.$
- (67) $\operatorname{Lin}(\emptyset_{\text{the carrier of }V}) = \mathbf{0}_V.$
- (68) If $\operatorname{Lin}(A) = \mathbf{0}_V$, then $A = \emptyset$ or $A = \{0_V\}$.
- (69) For every strict \mathbb{Z} -module V and for every subset A of V such that A = the carrier of V holds Lin(A) = V.
- (70) If $A \subseteq B$, then Lin(A) is a submodule of Lin(B).
- (71) For every strict \mathbb{Z} -module V and for all subsets A, B of V such that $\operatorname{Lin}(A) = V$ and $A \subseteq B$ holds $\operatorname{Lin}(B) = V$.
- (72) $\operatorname{Lin}(A \cup B) = \operatorname{Lin}(A) + \operatorname{Lin}(B)$.
- (73) $\operatorname{Lin}(A \cap B)$ is a submodule of $\operatorname{Lin}(A) \cap \operatorname{Lin}(B)$.

4. Theorems Related to Submodule

One can prove the following propositions:

- (74) If W_1 is a submodule of W_3 , then $W_1 \cap W_2$ is a submodule of W_3 .
- (75) If W_1 is a submodule of W_2 and a submodule of W_3 , then W_1 is a submodule of $W_2 \cap W_3$.
- (76) If W_1 is a submodule of W_3 and W_2 is a submodule of W_3 , then $W_1 + W_2$ is a submodule of W_3 .
- (77) If W_1 is a submodule of W_2 , then W_1 is a submodule of $W_2 + W_3$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
- [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [10] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47–59, 2012, doi: 10.2478/v10037-012-0007-z.

- [11] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(**5**):841-845, 1990.
- [12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- [13] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829–832, 1990.
- [14] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective (the international series in engineering and computer science). 2002.
- [15] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.
- [16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.
- Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [19] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847–850,
- [20] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(**3**):581–588, 1990.
- [21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
- [22] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990. [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

Received May 7, 2012