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Summary. In this article we introduced the isomorphism mapping betwe-
en cartesian products of family of linear spaces [4]. Those products had been
formalized by two different ways, i.e., the way using the functor [:X,Y:] and ones
using the functor “product”. By the same way, the isomorphism mapping was
defined between Cartesian products of family of linear normed spaces also.
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The notation and terminology used in this paper are introduced in the following
articles: [5], [1], [16], [11], [3], [6], [17], [7], [8], [15], [14], [2], [13], [12], [20], [18],
[10], [19], and [9].

1. Preliminaries

One can prove the following propositions:

(1) Let D, E, F , G be non empty sets. Then there exists a function I from
D × E × (F ×G) into D × F × (E ×G) such that

(i) I is one-to-one and onto, and
(ii) for all sets d, e, f , g such that d ∈ D and e ∈ E and f ∈ F and g ∈ G

holds I(〈〈d, e〉〉, 〈〈f, g〉〉) = 〈〈〈〈d, f〉〉, 〈〈e, g〉〉〉〉.
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52 hiroyuki okazaki et al.

(2) Let X be a non empty set and D be a function. Suppose domD = {1}
and D(1) = X. Then there exists a function I from X into

∏
D such

that I is one-to-one and onto and for every set x such that x ∈ X holds
I(x) = 〈x〉.

(3) Let X, Y be non empty sets and D be a function. Suppose domD =
{1, 2} and D(1) = X and D(2) = Y. Then there exists a function I from
X × Y into

∏
D such that I is one-to-one and onto and for all sets x, y

such that x ∈ X and y ∈ Y holds I(x, y) = 〈x, y〉.
(4) Let X be a non empty set. Then there exists a function I from X into∏

〈X〉 such that I is one-to-one and onto and for every set x such that
x ∈ X holds I(x) = 〈x〉.

Let X, Y be non-empty non empty finite sequences. Observe that X a Y is
non-empty.

We now state two propositions:

(5) Let X, Y be non empty sets. Then there exists a function I from X ×Y
into
∏
〈X,Y 〉 such that I is one-to-one and onto and for all sets x, y such

that x ∈ X and y ∈ Y holds I(x, y) = 〈x, y〉.
(6) Let X, Y be non-empty non empty finite sequences. Then there exists

a function I from
∏
X ×

∏
Y into

∏
(X a Y ) such that I is one-to-one

and onto and for all finite sequences x, y such that x ∈
∏
X and y ∈

∏
Y

holds I(x, y) = x a y.

Let G, F be non empty additive loop structures. The functor prodadd(G,F )
yielding a binary operation on (the carrier of G)× (the carrier of F ) is defined
by:

(Def. 1) For all points g1, g2 of G and for all points f1, f2 of F holds
(prodadd(G,F ))(〈〈g1, f1〉〉, 〈〈g2, f2〉〉) = 〈〈g1 + g2, f1 + f2〉〉.

Let G, F be non empty RLS structures. The functor prodmlt(G,F ) yielding
a function from R× ((the carrier of G)× (the carrier of F )) into (the carrier of
G)× (the carrier of F ) is defined by:

(Def. 2) For every element r of R and for every point g of G and for every point
f of F holds (prodmlt(G,F ))(r, 〈〈g, f〉〉) = 〈〈r · g, r · f〉〉.

Let G, F be non empty additive loop structures. The functor prodzero(G,F )
yields an element of (the carrier of G)× (the carrier of F ) and is defined by:

(Def. 3) prodzero(G,F ) = 〈〈0G, 0F 〉〉.
Let G, F be non empty additive loop structures. The functor G×F yielding

a strict non empty additive loop structure is defined by:

(Def. 4) G× F = 〈(the carrier of G)× (the carrier of F ), prodadd(G,F ),
prodzero(G,F )〉.

Let G, F be Abelian non empty additive loop structures. Observe that G×
F is Abelian.
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Let G, F be add-associative non empty additive loop structures. Note that
G× F is add-associative.

Let G, F be right zeroed non empty additive loop structures. Note that G×
F is right zeroed.

Let G, F be right complementable non empty additive loop structures. Note
that G× F is right complementable.

Next we state two propositions:

(7) Let G, F be non empty additive loop structures. Then
(i) for every set x holds x is a point of G× F iff there exists a point x1 of
G and there exists a point x2 of F such that x = 〈〈x1, x2〉〉,

(ii) for all points x, y of G×F and for all points x1, y1 of G and for all points
x2, y2 of F such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds x+y = 〈〈x1 +y1,

x2 + y2〉〉, and
(iii) 0G×F = 〈〈0G, 0F 〉〉.
(8) Let G, F be add-associative right zeroed right complementable non emp-

ty additive loop structures, x be a point of G×F, x1 be a point of G, and
x2 be a point of F . If x = 〈〈x1, x2〉〉, then −x = 〈〈−x1, −x2〉〉.

Let G, F be Abelian add-associative right zeroed right complementable strict
non empty additive loop structures. One can check that G×F is strict, Abelian,
add-associative, right zeroed, and right complementable.

Let G, F be non empty RLS structures. The functor G × F yields a strict
non empty RLS structure and is defined by:

(Def. 5) G× F = 〈(the carrier of G)× (the carrier of F ), prodzero(G,F ),
prodadd(G,F ),prodmlt(G,F )〉.

Let G, F be Abelian non empty RLS structures. Observe that G × F is
Abelian.

Let G, F be add-associative non empty RLS structures. Note that G× F is
add-associative.

Let G, F be right zeroed non empty RLS structures. Note that G × F is
right zeroed.

Let G, F be right complementable non empty RLS structures. One can check
that G× F is right complementable.

Next we state two propositions:

(9) Let G, F be non empty RLS structures. Then
(i) for every set x holds x is a point of G× F iff there exists a point x1 of
G and there exists a point x2 of F such that x = 〈〈x1, x2〉〉,

(ii) for all points x, y of G×F and for all points x1, y1 of G and for all points
x2, y2 of F such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds x+y = 〈〈x1 +y1,

x2 + y2〉〉,
(iii) 0G×F = 〈〈0G, 0F 〉〉, and
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(iv) for every point x of G × F and for every point x1 of G and for every
point x2 of F and for every real number a such that x = 〈〈x1, x2〉〉 holds
a · x = 〈〈a · x1, a · x2〉〉.

(10) Let G, F be add-associative right zeroed right complementable non emp-
ty RLS structures, x be a point of G×F, x1 be a point of G, and x2 be a
point of F . If x = 〈〈x1, x2〉〉, then −x = 〈〈−x1, −x2〉〉.

Let G, F be vector distributive non empty RLS structures. Note that G ×
F is vector distributive.

Let G, F be scalar distributive non empty RLS structures. Note that G×F
is scalar distributive.

Let G, F be scalar associative non empty RLS structures. Observe that G×
F is scalar associative.

Let G, F be scalar unital non empty RLS structures. One can verify that
G× F is scalar unital.

Let G be an Abelian add-associative right zeroed right complementable sca-
lar distributive vector distributive scalar associative scalar unital non empty
RLS structure. Note that 〈G〉 is real-linear-space-yielding.

Let G, F be Abelian add-associative right zeroed right complementable sca-
lar distributive vector distributive scalar associative scalar unital non empty
RLS structures. Note that 〈G,F 〉 is real-linear-space-yielding.

2. Cartesian Products of Real Linear Spaces

One can prove the following proposition

(11) Let X be a real linear space. Then there exists a function I from X into∏
〈X〉 such that

(i) I is one-to-one and onto,
(ii) for every point x of X holds I(x) = 〈x〉,

(iii) for all points v, w of X holds I(v + w) = I(v) + I(w),
(iv) for every point v ofX and for every element r of R holds I(r·v) = r·I(v),

and
(v) I(0X) = 0∏〈X〉.
Let G, F be non empty real-linear-space-yielding finite sequences. Observe

that G a F is real-linear-space-yielding.
We now state three propositions:

(12) Let X, Y be real linear spaces. Then there exists a function I from X ×
Y into

∏
〈X,Y 〉 such that

(i) I is one-to-one and onto,
(ii) for every point x of X and for every point y of Y holds I(x, y) = 〈x,

y〉,
(iii) for all points v, w of X × Y holds I(v + w) = I(v) + I(w),

 - 10.2478/v10037-011-0009-2
Downloaded from PubFactory at 09/05/2016 10:07:55AM

via Shinshu U Lib



cartesian products of family of real linear . . . 55

(iv) for every point v of X×Y and for every element r of R holds I(r · v) =
r · I(v), and

(v) I(0X×Y ) = 0∏〈X,Y 〉.
(13) Let X, Y be non empty real linear space-sequences. Then there exists a

function I from
∏
X ×

∏
Y into

∏
(X a Y ) such that

(i) I is one-to-one and onto,
(ii) for every point x of

∏
X and for every point y of

∏
Y there exist finite

sequences x1, y1 such that x = x1 and y = y1 and I(x, y) = x1
a y1,

(iii) for all points v, w of
∏
X ×

∏
Y holds I(v + w) = I(v) + I(w),

(iv) for every point v of
∏
X ×

∏
Y and for every element r of R holds

I(r · v) = r · I(v), and
(v) I(0∏X×∏Y ) = 0∏(XaY ).

(14) Let G, F be real linear spaces. Then
(i) for every set x holds x is a point of

∏
〈G,F 〉 iff there exists a point x1

of G and there exists a point x2 of F such that x = 〈x1, x2〉,
(ii) for all points x, y of

∏
〈G,F 〉 and for all points x1, y1 of G and for all

points x2, y2 of F such that x = 〈x1, x2〉 and y = 〈y1, y2〉 holds x + y =
〈x1 + y1, x2 + y2〉,

(iii) 0∏〈G,F 〉 = 〈0G, 0F 〉,
(iv) for every point x of

∏
〈G,F 〉 and for every point x1 of G and for every

point x2 of F such that x = 〈x1, x2〉 holds −x = 〈−x1,−x2〉, and
(v) for every point x of

∏
〈G,F 〉 and for every point x1 of G and for every

point x2 of F and for every real number a such that x = 〈x1, x2〉 holds
a · x = 〈a · x1, a · x2〉.

3. Cartesian Products of Real Normed Linear Spaces

Let G, F be non empty normed structures. The functor prodnorm(G,F )
yields a function from (the carrier of G) × (the carrier of F ) into R and is
defined by:

(Def. 6) For every point g of G and for every point f of F there exists an element
v of R2 such that v = 〈‖g‖, ‖f‖〉 and (prodnorm(G,F ))(g, f) = |v|.

Let G, F be non empty normed structures. The functor G × F yielding a
strict non empty normed structure is defined as follows:

(Def. 7) G× F = 〈(the carrier of G)× (the carrier of F ), prodzero(G,F ),
prodadd(G,F ),prodmlt(G,F ), prodnorm(G,F )〉.

Let G, F be real normed spaces. Observe that G×F is reflexive, discernible,
and real normed space-like.

Let G, F be reflexive discernible real normed space-like scalar distributive
vector distributive scalar associative scalar unital Abelian add-associative right
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zeroed right complementable non empty normed structures. One can verify that
G×F is strict, reflexive, discernible, real normed space-like, scalar distributive,
vector distributive, scalar associative, scalar unital, Abelian, add-associative,
right zeroed, and right complementable.

Let G be a reflexive discernible real normed space-like scalar distributive
vector distributive scalar associative scalar unital Abelian add-associative right
zeroed right complementable non empty normed structure. One can verify that
〈G〉 is real-norm-space-yielding.

Let G, F be reflexive discernible real normed space-like scalar distributive
vector distributive scalar associative scalar unital Abelian add-associative right
zeroed right complementable non empty normed structures. Observe that 〈G,
F 〉 is real-norm-space-yielding.

One can prove the following propositions:

(15) Let X, Y be real normed spaces. Then there exists a function I from
X × Y into

∏
〈X,Y 〉 such that

(i) I is one-to-one and onto,
(ii) for every point x of X and for every point y of Y holds I(x, y) = 〈x,

y〉,
(iii) for all points v, w of X × Y holds I(v + w) = I(v) + I(w),
(iv) for every point v of X×Y and for every element r of R holds I(r · v) =

r · I(v),
(v) 0∏〈X,Y 〉 = I(0X×Y ), and

(vi) for every point v of X × Y holds ‖I(v)‖ = ‖v‖.
(16) Let X be a real normed space. Then there exists a function I from X

into
∏
〈X〉 such that

(i) I is one-to-one and onto,
(ii) for every point x of X holds I(x) = 〈x〉,
(iii) for all points v, w of X holds I(v + w) = I(v) + I(w),
(iv) for every point v ofX and for every element r of R holds I(r·v) = r·I(v),
(v) 0∏〈X〉 = I(0X), and

(vi) for every point v of X holds ‖I(v)‖ = ‖v‖.
Let G, F be non empty real-norm-space-yielding finite sequences. One can

check that G a F is non empty and real-norm-space-yielding.
One can prove the following propositions:

(17) Let X, Y be non empty real norm space-sequences. Then there exists a
function I from

∏
X ×

∏
Y into

∏
(X a Y ) such that

(i) I is one-to-one and onto,
(ii) for every point x of

∏
X and for every point y of

∏
Y there exist finite

sequences x1, y1 such that x = x1 and y = y1 and I(x, y) = x1
a y1,

(iii) for all points v, w of
∏
X ×

∏
Y holds I(v + w) = I(v) + I(w),
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(iv) for every point v of
∏
X ×

∏
Y and for every element r of R holds

I(r · v) = r · I(v),
(v) I(0∏X×∏Y ) = 0∏(XaY ), and
(vi) for every point v of

∏
X ×

∏
Y holds ‖I(v)‖ = ‖v‖.

(18) Let G, F be real normed spaces. Then
(i) for every set x holds x is a point of G× F iff there exists a point x1 of
G and there exists a point x2 of F such that x = 〈〈x1, x2〉〉,

(ii) for all points x, y of G×F and for all points x1, y1 of G and for all points
x2, y2 of F such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds x+y = 〈〈x1 +y1,

x2 + y2〉〉,
(iii) 0G×F = 〈〈0G, 0F 〉〉,
(iv) for every point x of G × F and for every point x1 of G and for every

point x2 of F such that x = 〈〈x1, x2〉〉 holds −x = 〈〈−x1, −x2〉〉,
(v) for every point x of G × F and for every point x1 of G and for every

point x2 of F and for every real number a such that x = 〈〈x1, x2〉〉 holds
a · x = 〈〈a · x1, a · x2〉〉, and

(vi) for every point x of G × F and for every point x1 of G and for every
point x2 of F such that x = 〈〈x1, x2〉〉 there exists an element w of R2 such
that w = 〈‖x1‖, ‖x2‖〉 and ‖x‖ = |w|.

(19) Let G, F be real normed spaces. Then
(i) for every set x holds x is a point of

∏
〈G,F 〉 iff there exists a point x1

of G and there exists a point x2 of F such that x = 〈x1, x2〉,
(ii) for all points x, y of

∏
〈G,F 〉 and for all points x1, y1 of G and for all

points x2, y2 of F such that x = 〈x1, x2〉 and y = 〈y1, y2〉 holds x + y =
〈x1 + y1, x2 + y2〉,

(iii) 0∏〈G,F 〉 = 〈0G, 0F 〉,
(iv) for every point x of

∏
〈G,F 〉 and for every point x1 of G and for every

point x2 of F such that x = 〈x1, x2〉 holds −x = 〈−x1,−x2〉,
(v) for every point x of

∏
〈G,F 〉 and for every point x1 of G and for every

point x2 of F and for every real number a such that x = 〈x1, x2〉 holds
a · x = 〈a · x1, a · x2〉, and

(vi) for every point x of
∏
〈G,F 〉 and for every point x1 of G and for every

point x2 of F such that x = 〈x1, x2〉 there exists an element w of R2 such
that w = 〈‖x1‖, ‖x2‖〉 and ‖x‖ = |w|.

Let X, Y be complete real normed spaces. Observe that X ×Y is complete.
We now state several propositions:

(20) Let X, Y be non empty real norm space-sequences. Then there exists a
function I from

∏
〈
∏
X,
∏
Y 〉 into

∏
(X a Y ) such that

(i) I is one-to-one and onto,
(ii) for every point x of

∏
X and for every point y of

∏
Y there exist finite

sequences x1, y1 such that x = x1 and y = y1 and I(〈x, y〉) = x1
a y1,
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(iii) for all points v, w of
∏
〈
∏
X,
∏
Y 〉 holds I(v + w) = I(v) + I(w),

(iv) for every point v of
∏
〈
∏
X,
∏
Y 〉 and for every element r of R holds

I(r · v) = r · I(v),
(v) I(0∏〈∏X,∏Y 〉) = 0∏(XaY ), and

(vi) for every point v of
∏
〈
∏
X,
∏
Y 〉 holds ‖I(v)‖ = ‖v‖.

(21) Let X, Y be non empty real linear spaces. Then there exists a function
I from X × Y into X ×

∏
〈Y 〉 such that

(i) I is one-to-one and onto,
(ii) for every point x of X and for every point y of Y holds I(x, y) = 〈〈x,
〈y〉〉〉,

(iii) for all points v, w of X × Y holds I(v + w) = I(v) + I(w),
(iv) for every point v of X×Y and for every element r of R holds I(r · v) =

r · I(v), and
(v) I(0X×Y ) = 0X×

∏
〈Y 〉.

(22) Let X be a non empty real linear space-sequence and Y be a real linear
space. Then there exists a function I from

∏
X ×Y into

∏
(X a 〈Y 〉) such

that
(i) I is one-to-one and onto,

(ii) for every point x of
∏
X and for every point y of Y there exist finite

sequences x1, y1 such that x = x1 and 〈y〉 = y1 and I(x, y) = x1
a y1,

(iii) for all points v, w of
∏
X × Y holds I(v + w) = I(v) + I(w),

(iv) for every point v of
∏
X × Y and for every element r of R holds

I(r · v) = r · I(v), and
(v) I(0∏X×Y ) = 0∏(Xa〈Y 〉).

(23) Let X, Y be non empty real normed spaces. Then there exists a function
I from X × Y into X ×

∏
〈Y 〉 such that

(i) I is one-to-one and onto,
(ii) for every point x of X and for every point y of Y holds I(x, y) = 〈〈x,
〈y〉〉〉,

(iii) for all points v, w of X × Y holds I(v + w) = I(v) + I(w),
(iv) for every point v of X×Y and for every element r of R holds I(r · v) =

r · I(v),
(v) I(0X×Y ) = 0X×

∏
〈Y 〉, and

(vi) for every point v of X × Y holds ‖I(v)‖ = ‖v‖.
(24) Let X be a non empty real norm space-sequence and Y be a real normed

space. Then there exists a function I from
∏
X ×Y into

∏
(X a 〈Y 〉) such

that
(i) I is one-to-one and onto,

(ii) for every point x of
∏
X and for every point y of Y there exist finite

sequences x1, y1 such that x = x1 and 〈y〉 = y1 and I(x, y) = x1
a y1,

(iii) for all points v, w of
∏
X × Y holds I(v + w) = I(v) + I(w),
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(iv) for every point v of
∏
X × Y and for every element r of R holds

I(r · v) = r · I(v),
(v) I(0∏X×Y ) = 0∏(Xa〈Y 〉), and
(vi) for every point v of

∏
X × Y holds ‖I(v)‖ = ‖v‖.
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