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Inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn’s disease, 
are chronic inflammatory diseases characterized by dysregulated immune responses 
of the gastrointestinal tract. In recent years, the incidence of IBDs has increased in 
developed nations, but their prophylaxis/treatment is not yet established. Site-directed 
delivery of molecules showing anti-inflammatory properties using genetically modified 
(gm)-probiotics shows promise as a new strategy for the prevention and treatment of 
IBD. Advantages of gm-probiotics include (1) the ability to use bacteria as a delivery 
vehicle, enabling safe and long-term use by humans, (2) decreased risks of side effects, 
and (3) reduced costs. The intestinal delivery of anti-inflammatory proteins such as cyto-
kines and enzymes using Lactococcus lactis has been shown to regulate host intestinal 
homeostasis depending on the delivered protein-specific machinery. Additionally, clinical 
experience using interleukin 10-secreting Lc. lactis has been shown to be safe and 
to facilitate biological containment in IBD therapy. On the other hand, some preclinical 
studies have demonstrated that gm-strains of immunobiotics (probiotic strains able 
to beneficially regulate the mucosal immunity) provide beneficial effects on intestinal 
inflammation as a result of the synergy between the immunoregulatory effects of the 
bacterium itself and the anti-inflammatory effects of the delivered recombinant proteins. 
In this review, we discuss the rapid progression in the development of strategies for the 
prophylaxis and treatment of IBD using gm-probiotics that exhibit immune regulation 
effects (gm-immunobiotics). In particular, we discuss the type of strains used as delivery 
agents.
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iNTRODUCTiON

Inflammatory bowel disease (IBD) is a chronic inflammatory disease that occurs in the gastro-
intestinal tract (GIT); IBDs are largely classified as ulcerative colitis (UC) and Crohn’s disease 
(CD). There has been an increase in the number of cases of IBD in recent years, mainly in Western 
countries (1). IBD causes inflammatory obstruction of the GIT, resulting in symptoms such as 
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FiGURe 1 | A strategy for prevention and treatment of iBD using genetically modified (gm)-immunobiotics. (A) Different bioactive proteins such as 
cytokines, enzymes, protease inhibitors, and antibody fragments can be produced/secreted by gm-strains. (B) After oral administration, viable cells of  
gm-immunobiotics transit through the gastric environment and reach the intestine. Then, gm-immunobiotics provide preventive/therapeutic effects against 
experimental colitis in animal as a result of the exertion of anti-inflammatory effects in situ. (C) General mechanisms of action of gm-immunobiotics on anti-
inflammatory effects in the intestine. Physiologically meaningful amounts of recombinant proteins are yielded by gm-immunobiotics via secretion or cell lysis, and 
exert host anti-inflammatory effects through a protein-specific machinery including immunomodulation, anti-oxidation, and restoration of epithelial barrier functions 
(i). Lactococcus (Lc.) lactis has been most widely used as a safe and effective vector in this strategy (ii). Lc. lactis has little or no effect on either the improvement or 
aggravation of the intestinal inflammation and does not colonize the intestine. Other gm-immunobiotics (including some strains of Lactobacillus, Bifidobacterium, 
and Streptococcus salivarius subsp. thermophilus, and Escherichia coli Nissle 1917) provide beneficial effects on intestinal inflammation as a result of the synergy 
between the immunoregulatory effects of the bacterium itself and the anti-inflammatory effects of the delivered recombinant proteins (iii). Immunobiotics interact with 
pattern recognition receptors of host epithelial cells and antigen-presenting cells such as dendritic cells and macrophages to exert strain-specific immunomodulatory 
effects. Some strains of immunobiotics may colonize the intestine. IBD, inflammatory bowel disease; RP, recombinant protein; EC, epithelial cell; M, microfold cell; 
DC, dendritic cell; APC, antigen-presenting cell.
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stomach cramps, pain, diarrhea, constipation, and vomiting over 
an extended period of time. These symptoms cause considerable 
reduction in quality of life. While IBD is not a direct cause of 
mortality, the disease can increase the risk of colorectal cancer 
(2). The precise etiology of IBD has yet to be clarified, but causal 
factors are thought to include the environment, genetics, and 
microorganisms (3). The chronic inflammation seen in IBD is 
characterized by dysregulated immune response of the host as 
a result of marked changes in the intestinal environment (3). 
Consequently, favorable regulation of the compromised immune 
homeostasis is effective in the prognosis and treatment of IBD. 
Corticosteroids, thiopurines, and anti-tumor necrosis factor 
(TNF) antibody (Ab), which exhibit immune-regulatory effects, 
can control IBD to a certain extent, and these treatments are 
widely used in clinical settings as therapeutic drugs (4). However, 
there are individual-specific differences in the effectiveness of 
these drugs, and there are also issues such as the possibility of 
serious side effects and high costs (4, 5).

There is currently a great deal of interest in the use of pro-
biotics that have been genetically modified (gm) to produce 
proteins with IBD therapeutic potential as novel drug substi-
tutes. Probiotics, defined as “live microorganisms that, when 

administrated in adequate amounts, confer a health benefit on 
the host” (6), have been reported to attenuate inflammation in 
the host GIT through immune system regulation, strengthening 
of barrier function, and improvement of the changed intestinal 
microbiota (7). Probiotics comprise primarily lactic acid bacte-
ria (LAB) and bifidobacteria, and also include non-pathogenic 
Escherichia coli. Probiotics have been used in food for a long 
time, and many of the bacteria included in probiotics fall under 
the Generally Recognized As Safe assessment designated by 
the United States Food and Drug Administration and meet the 
Qualified Presumption of Safety designation of the European 
Food Safety Authority. Genetic modification technology 
has undergone considerable advances in recent years, and 
Lactococcus (Lc.) lactis in particular has been established as 
an efficient expression system for recombinant proteins (RPs) 
(8) (Figure  1A). Thus, probiotics, which have excellent safety 
and health advantages, are likely to be very useful as producers 
of IBD therapeutic proteins and as agents for delivering such 
proteins to the GIT (Figure  1B). gm-Probiotics that produce 
or secrete various different anti-inflammatory proteins have 
been constructed in recent years, and their anti-inflammatory 
effectiveness when administered orally has been verified using 
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TABLe 1 | Selected preclinical evidence showing beneficial effects of gm-immunobiotics in treatment of gastrointestinal tract inflammation.

Strains Recombinant 
protein

Disease model Outcome efficacy Potential mechanisms Reference

Lc. lactis 
MG1363/
NZ9000

IL-10 mDAC, mTAC, 
mIL-10−/−

Reduction in MS, HS, and IM 
(MPO, Cox-2, SAA)

CC = WT/VC < Objects Immunomodulation (33–37)

Modulation of P/AICy

Lc. lactis 
MG1363

IL-27 mTTC, mDAC Reduction in Mo, MS, and HS CC = Systemic 
IL-27 = VC < Object

Immunomodulation (38)

Modulation of P/AICy and PTc MG1363-IL-10 < Object

Lc. lactis 
NZ9000

Elafin/SLPI mDAC, mDCC, 
mTTC, hIEC

Reduction in MS, HS, CT, IIP,  
and IM (PL, MPO, PICy, PIL)

CC ≤ WT < NZ9000-IL-10/
TGF-β < Objects

Reduction in elastolytic 
activity

(33, 39)

Lc. lactis 
NZ9000

HO-1 mDAC Reduction in MS, HS, and CS CC = VC < Object Immunomodulation (40)
Modulation of P/AICy

Lb. casei BL23 Cat/SOD mDAC, mTAC Reduction in MS, HS, and LMT CC ≤ WT/VC < Objects Reduction in oxidative stress (15, 17, 18)
Modulation of P/AICy Immunomodulation

Lb. casei BLS α-MSH mDAC Reduction in Mo, MS, HS, CS,  
and IM (MPO, NF-κB)

CC ≤ WT < Object Immunomodulation (23)

Modulation of P/AICy

S. thermophilus 
CRL807

Cat/SOD mTAC Reduction in Mo, MS, HS,  
and LMT

CC < WT < Objects Reduction in oxidative stress (13)

Modulation of CPIc Immunomodulation

B. longum 
NCC2705

IL-10 mDAC Reduction in Mo, MS, HS, CS,  
and IM (MPO, NF-κB)

CC < WT/VC < Object Immunomodulation (21, 22)

Modulation of PTc and P/AICy

EcN AvCys mDAC, pPWD, 
hIEC

Reduction in MS, HS, CS, IIP,  
and IM (PIM, PICh, PICy)

CC ≤ WT < Object Immunomodulation (24)

Increase in Treg, TER Improvement of intestinal 
barrier function

Lc., Lactococcus; Lb., Lactobacillus; S. thermophilus, Streptococcus salivarius subsp. thermophilus; B., Bifidobacterium; EcN, Escherichia coli Nissle 1917; IL-10, interleukin 
10; IL-27, interleukin 27; SLPI, secretory leukocyte protease inhibitor; HO-1, heme oxygenase-1; SOD, superoxide dismutase; Cat, catalase; α-MSH, α-melanocyte-stimulating 
hormone; AvCys, cystatin from Acanthocheilonema viteae; mDAC, murine dextran sulfate sodium-induced acute colitis; mTAC, murine 2,4,6-trinitrobenzene sulfonic acid-induced 
acute colitis; mIL-10−/−, spontaneous colitis in IL-10-deficient mice; mTTC, murine T-cell transfer-induced enterocolitis; mDCC, murine dextran sulfate sodium-induced chronic 
colitis; hIEC, human intestinal epithelial cells; pPWD, porcine post-weaning diarrhea; MS, macroscopic symptoms; HS, histological symptoms; IM, mediators of inflammation; MPO, 
myeloperoxidase activity; Cox-2, cyclooxygenase-2 activity; SAA, serum amyloid A; P/AICy, pro-/anti-inflammatory cytokines; Mo, mortality; PTc, phenotypes of T-cell; CT, colon 
thickening; IIP, intestinal epithelial permeability; PL, proteolytic activity; PICy, pro-inflammatory cytokines; PIL, pro-inflammatory leukocytes; CS, colon shortening; LMT, liver microbial 
translocation; NF-κB, nuclear factor-κB; CPIc, cytokine phenotypes of immune cells; PIM, pro-inflammatory macrophages; PICh, pro-inflammatory chemokines; Treg, regulatory 
T-cell; TER, transendothelial electrical resistance; CC, colitis control; WT, wild-type strain; VC, vector control; MG1363-IL-10, IL-10-secreting Lactococcus lactis MG1363;  
NZ9000-IL-10/TGF-β, IL-10- or TGF-β-secreting Lactococcus lactis NZ9000.
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in vivo experiments in animal models of IBD (9, 10) (Table 1; 
Table S1 in Supplementary Material). In this context, it is impor-
tant to note that the delivery of IBD therapeutic proteins to the 
GIT using gm-probiotics is expected (1) to allow the therapeutic 
protein to act locally, with greater effectiveness and decreased 
risk of medical error or side effects compared to conventional 
systemic administration of the molecule by injection, and (2) 
to be considerably cheaper than refined drugs (10, 11). It is of 
particular interest that many of the molecules selected as anti-
inflammatory proteins target the host immune system. Many 
studies to date have used Lc. lactis as a model strain, but methods 
using lactobacilli, bifidobacteria, streptococci, and E. coli Nissle 
1917 (EcN), bacteria that have more beneficial health effects than 
Lc. lactis, as delivery agents have been attempted in recent years 
(Figure 1A). Many of these studies (12–26) employ bacteria that 

have been termed “immunobiotics,” which have been defined as 
probiotic strains that are able to beneficially regulate mucosal 
immunity (27, 28). Immunobiotics are recognized by the pattern 
recognition receptors of epithelial and antigen-presenting cells 
such as dendritic cells and macrophages, and these immuno-
biotics are known to beneficially regulate innate and adoptive 
immune responses (Figure  1C); there have been tremendous 
advances in the clarification of strain-specific immune regula-
tion functions at the cellular and molecular levels (28–32).

In this review, we describe recent developments in pre-
ventive and therapeutic strategies for the treatment of IBD 
using gm-probiotics. In particular, our discussion focuses on 
gm-probiotics that exhibit immune regulation effects (gm-
immunobiotics) and bacterial species that are used as protein 
delivery agents.
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Lactococcus lactis

Lactococcus lactis is a species of LAB used universally in cheese 
and other fermented dairy products. To date, Lc. lactis MG1363 
(MG1363) and its derivatives have been widely used to produce 
RPs and as carriers for delivery to mucous membranes (Figure 1). 
Lc. lactis was the first LAB species to have its whole genome 
sequenced, and there exists a wealth of genetic data on this 
species (8, 41, 42). In addition, Lc. lactis genetic modification 
is straightforward, and there are a great number of useful gene 
expression systems for this organism (8). Furthermore, Lc. lactis 
is able to pass through the GIT alive but does not establish itself 
in the GIT and is easy to control pharmacokinetically (43, 44). 
It is important to note that Lc. lactis itself has little or no effect 
on either the improvement or aggravation of GIT inflamma-
tion in animals and humans and is therefore highly safe for use 
against IBD (14, 33–35, 38–40, 45–52) (http://ClinicalTrials.gov 
Identifier: NCT00729872). The research to date into gm-Lc. lactis 
has been compiled into a number of review articles (9–11, 53). In 
the present review, we will deal with a series of landmark studies 
that showed the usefulness and practicality of the present strategy, 
and we will examine the latest findings.

The strategy of reducing intestinal inflammation by using 
gm-probiotics for delivery of RPs to the GIT was first proposed 
in 2000 by Steidler et al. (35), who created a MG1363 strain that 
secreted interleukin (IL)-10 (LL-mIL10). IL-10 is a cytokine that 
plays a central role in the suppression of inflammation (54), and 
mutation of the endogenous gene has been shown to be involved 
in the onset of murine enterocolitis (55, 56) and infantile-onset 
IBD (57, 58). Steidler et  al. showed that daily oral administra-
tion of LL-mIL10 resulted in a dramatic reduction of colitis 
onset and progression in a murine IBD model (35). Notably, the 
effective amount of IL-10 was 1/10,000th of the amount used in 
conventional systemic administration. This enhancement may be 
regarded as the greatest advantage of the present strategy. The 
reduction in the amount administered has also been demon-
strated in the delivery systems of other RPs (38, 49, 50). Next, 
Steidler et  al. constructed LL-Thy12, in which the thymidylate 
synthase gene (thyA) of the Lc. lactis genome was replaced by 
the human IL-10-encoding gene (59). The results of a phase 1 
clinical study in CD patients confirmed the safety, biological 
containment, and significant therapeutic effect of LL-Thy12 (52). 
However, no statistically significant therapeutic effect was found 
in the subsequent phase 2a clinical study (http://ClinicalTrials.
gov Identifier: NCT00729872). The authors suggested that the 
lack of therapeutic effect was due to low concentration of IL-10 in 
the intestine. Nonetheless, bearing in mind that this first clinical 
study using gm-LAB suggested the safety and usefulness of this 
delivery system, the results were remarkable.

IL-27 is an anti-inflammatory cytokine belonging to the IL-12 
family, a group of molecules that has been shown to attenuate 
murine experimental colitis by suppressing the development of T 
helper 17 (Th17) cells (60). In addition, the involvement of low-
expressing variants of the IL-27-encoding gene in early-onset 
IBD has been demonstrated (61). In 2014, Hanson et al. showed 
that daily oral administration of MG1363 that secretes IL-27 (LL-
IL-27) almost completely cured murine T-cell transfer-induced 

enterocolitis and reduced the associated mortality rate (38). 
LL-IL-27 treatment caused a reduction in the level of inflam-
matory cytokines that had increased in the GIT as a result of 
enterocolitis and a reduction in the number of colitis pathogenic 
IL-17-producing T-cells. In addition, the results indicated that 
increased local production of IL-10 by LL-IL-27 in the GIT was 
effective in providing a therapeutic effect. It is important to note 
that oral administration of LL-IL-27 demonstrated a notably 
greater therapeutic effect than systemic administration of IL-27 
or oral administration of IL-10-secreting MG1363.

In 2015, a study comparing Lc. lactis NZ9000 (NZ9000) 
that secreted serine protease inhibitors (elafin or secretory 
leukocyte protease inhibitor) to NZ9000 that secreted the anti-
inflammatory cytokines IL-10 or transforming growth factor-β 
showed that the former significantly attenuated the symptoms of 
dextran sodium sulfate (DSS)-induced colitis (33). Prior to that 
study, Motta et al. showed that the expression of elafin was lower 
in IBD patients than in healthy people, and that this decreased 
expression correlated with the increased elastolytic activity of the 
colonic mucosa in IBD patients (39). Also, delivery of elafin to 
the GIT using a gm-NZ9000 resulted in marked improvement of 
acute and chronic colitis in murine models (39). Elafin-secreting 
NZ9000 restored the colonic elastolytic homeostasis that had 
broken down as a result of colitis, reduced the number of immune 
cells infiltrating the colon, and repaired the barrier function of the 
intestinal epithelium (39).

In 2015, we successfully constructed a gm-NZ9000 strain 
(designated NZ-HO) that secretes biologically active heme 
oxygenase-1 (HO-1). HO-1 is an enzyme that catalyzes heme 
catabolism in  vivo. HO-1 is induced endogenously by stimuli 
such as inflammation or oxidative stress, and the enzyme exhibits 
anti-inflammatory and cytoprotective effects mediated by the 
generation of heme breakdown products (62, 63). We showed 
that daily oral administration of NZ-HO markedly attenuated 
the symptoms of DSS colitis (40). Interestingly, NZ-HO increased 
the production of IL-10, decreased inflammatory cell infiltration, 
and decreased expression of IL-6 and IL-1α in the colonic tissue 
of murine colitis models (40). In 2014, Zhang et al. showed that 
intraperitoneal injection of an HO-1 inducer-induced IL-10-
producing regulatory T cells (Treg) (rather than IBD pathogenic 
Th17) by inhibiting IL-6/IL-6 receptor signaling, thus ameliorat-
ing DSS colitis (64). This result suggested that NZ-HO regulates 
the immune responses of the inflamed colon in a beneficial 
fashion to ameliorate DSS colitis.

In 2015, Aubry et al. found that preventive oral administration 
of MG1363 that secreted thymic stromal lymphopoietin caused 
a transient increase in the number of CD4+ CD25+ FoxP3+ Treg 
cells in the mesenteric lymph node and attenuated DSS colitis 
in mice (45). Quevrain et al. found that MG1363 that secreted 
an anti-inflammatory protein (MAM) isolated from a strain of 
Faecalibacterium prausnitzii, a species that is deficient in CD 
patients and alleviated dinitrobenzene sulfonic acid-induced 
colitis in mice (47). MAM-secreting MG1363 markedly reduced 
the production of pro-inflammatory cytokines (IL-17A and 
interferon-γ) in the colonic tissue of colitis mice (47).

IL-6 is an important pathogenic factor in various different 
inflammatory diseases, including IBD. By regulating the function 
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and proliferation of T cells, IL-6 exacerbates GIT inflammation 
in IBD (65). In addition, studies using murine models of colitis 
and CD patients showed that inhibition of IL-6 signaling using 
antibodies improved the symptoms (66, 67). However, the cost of 
Ab drugs is very high. We therefore created a NZ9000 derivative 
that secretes a single-chain variable fragment Ab against IL-6 
(IL6scFv) (68). Importantly, we showed that the recombinant 
IL6scFv produced by gm-NZ9000 is immunoreactive, as demon-
strated by binding to IL-6 (68). Thus, IL6scFv-secreting NZ9000 
is an attractive gm-LAB for research and development of a low-
cost IBD therapeutic drug that can yield site-directed delivery of 
anti-IL-6 antibodies.

Lactobacillus

Bacteria of the genus Lactobacillus, which are classified as LAB, 
are the best-known type of probiotics. Several strains belonging to 
this genus are commensal bacteria that reside within the human 
GIT. To date, many preclinical studies have indicated that strains 
belonging to genus Lactobacillus regulate GIT inflammation in 
a favorable fashion through strain-specific, health-beneficial 
mechanisms (9). In addition, clinical research to date has shown 
that a probiotic mixture containing four species of Lactobacillus 
(VSL#3) and Lactobacillus reuteri ATCC 55730 exhibits benefits 
in the treatment of active UC (69–72). Bacteria belonging to 
genus Lactobacillus are used predominantly in probiotic for-
mulations that are useful for the prevention and drug therapy 
of GIT-related diseases selected by the World Gastroenterology 
Organization (73).

In 2007, Rochat et al. showed that daily oral administration 
of Lactobacillus casei BL23 (BL23) attenuated murine DSS 
colitis (17). The same year, Foligne et  al. demonstrated that 
BL23 induced an immune reaction with dominance of anti-
inflammatory IL-10 over pro-inflammatory IL-12 in human 
peripheral blood mononuclear cells and reduced the symptoms 
of murine 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis (74). 
In 2010, Watterlot et al. orally administered superoxide dismutase 
(SOD)-producing and SOD-non-producing BL23 to mice and 
found that the former resulted in marked amelioration of DSS-
induced histological damage to the colon, while the latter gave 
only slight amelioration (18). An excess of reactive oxygen species 
causes considerable tissue damage, which suggests a link to IBD 
development, and the use of antioxidative enzymes to eliminate 
reactive oxidative species is expected to have potential as an IBD 
treatment strategy (75). Oral delivery of SOD using gm-LAB has 
actually been shown to reduce colitis in rodents (12, 14). In 2011, 
LeBlanc et al. orally administered BL23 that produced an antioxi-
dative enzyme (SOD or catalase) to mice, and their results showed 
that the mortality rate, weight loss, histological colon damage, and 
liver microbial translocation induced by TNBS administration 
were markedly reduced (15). However, in the studies performed 
by Watterlot et al. (18) and LeBlanc et al. (15), wild-type (WT) 
BL23 had only mild anti-inflammatory properties and did not 
induce marked IL-10 production in colon tissue, indicating 
that the amelioration effects on murine colon inflammation are 
limited. In 2014, Hou et al. showed that oral administration of 
SOD-producing Lactobacillus fermentum I5007 (I5007) improved 

lipid peroxidation and immune parameters in the colon, thus 
ameliorating murine TNBS colitis (26). A partial, but significant, 
improvement effect was also observed with WT-I5007. I5007 was 
isolated from healthy porcine intestinal mucosa and has been 
used as a growth stimulator for livestock. The above series of stud-
ies proposed a novel IBD preventive strategy combining the two 
different intestinal inflammation amelioration mechanisms: the 
immunobiotic effects of lactobacilli and the antioxidative effects 
of delivered proteins (Figure 1C).

In 2008, α-melanocyte-stimulating hormone (α-MSH)-
secreting Lb. casei BLS (BLS) was created (23). α-MSH is a 
neuropeptide with immunosuppressant effects that has been 
reported to exhibit anti-inflammatory effects in animal models 
of various diseases, including IBD (76). Orally administered 
gm-BLS shows curative effects for the symptoms of murine DSS 
colitis (23). This improvement involves decreased secretion of 
inflammatory cytokines (TNF-α, IL-1β, and IL-6) and increased 
secretion of immune-regulatory cytokines (IL-4 and IL-10) in ex 
vivo cultures of colonic tissue (23). It is interesting to note that 
gm-BLS brought about considerable improvement in a number 
of parameters when compared to the WT strain (23).

Streptococcus salivarius subsp. 
thermophilus (S. thermophilus)

Streptococcus thermophilus is a LAB that has traditionally been 
used as a yogurt starter. Preclinical studies to date have clarified 
the roles of specific S. thermophilus strains as immunobiotics 
(77–82). For example, Ogita et  al. showed that S. thermophilus 
ST28 (ST28) derived from milk regulated IL-17 production in 
murine splenocytes in Th17-skewed conditions by induction of 
counteracting interferon-γ (82). Moreover, oral administration of 
ST28 to mice markedly decreased DSS-induced intestinal lesions, 
and this treatment markedly decreased IL-17 secretion and the 
frequency of accumulation of Th17, the numbers of which had 
increased in the lamina propria as a result of DSS (81). S. thermo-
philus is a component of a probiotic mixture agent (VSL#3) that 
has been found to be effective for induction and maintenance of 
remission in UC and prevention and maintenance of remission in 
pouchitis (73). It is interesting to note that several S. thermophilus 
strains are known to be autolytic, a useful trait for strains used as 
gm-immunobiotics (83).

In 2014, an immunobiotic strain, S. thermophilus CRL807 
(CRL807), which exhibits immunosuppressant action in  vitro 
and in vivo, was selected from a mixed yogurt starter; CRL807’s 
usefulness as a delivery agent for SOD and catalase then was 
investigated (13). CRL807 significantly increased the ratios of 
IL-10:inflammatory cytokine (IL-12, IL-17, or interferon-γ) in 
human peripheral blood mononuclear cells and the digestive tract 
of healthy mice. Oral administration of antioxidative enzyme-
producing gm-CRL807 and WT-CRL807 to mice markedly 
potentiated the ratio of IL-10-positive:IL-17-positive cells, a ratio 
that had been reduced by TNBS administration, and provided 
amelioration of colitis. Notably, administration of either or both 
SOD-producing and catalase-producing CRL807 improved 
antioxidative enzyme activity in the colon, demonstrating greater 
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anti-inflammatory action than WT-CRL807 administration. 
Experimental long-term (30-day) oral administration of gm-
CRL807 and WT-CRL807 in healthy mice showed the safety of 
CRL807 (84).

Bifidobacterium

The genus Bifidobacterium comprises indigenous bacteria that 
make up the intestinal flora and in particular are present in 
significant numbers in healthy infants. In IBD patients, on the 
other hand, it is known that there is a decreased number of 
Bifidobacterium and an increase in pro-inflammatory E. coli and 
Bacteroides in the intestinal mucosa (85–89). Preclinical studies 
to date have shown that various strains of genus Bifidobacterium 
bring about beneficial effects in the prevention and treatment of 
colitis, mediated by different effects [immunoregulation effects 
(90, 91), improvement of the barrier function of intestinal epithe-
lium (92, 93), and improvement of the intestinal flora (94, 95)]. It 
is interesting that Bifidobacterium longum subsp. infantis 35624 
has been shown to selectively drive specialization of FoxP3+ 
Treg cells and/or induce IL-10 production in animal disease 
models and in humans (96–99). In addition, clinical studies of 
patients with UC and other inflammatory diseases showed that, 
compared to placebo, oral administration of this immunobiotic 
strain resulted in a marked decrease in the level of plasma C-type 
protein, an inflammatory biomarker that increases with the 
disease (100). It has also been shown that the symptoms of UC 
patients are ameliorated by a single Bifidobacteria strain (101), 
probiotic mixtures that include Bifidobacteria (69, 71, 72, 102, 
103), and symbiotics (probiotic/prebiotic mixtures) in which 
Bifidobacteria is the main constituent (104–106).

In 2011, an immunobiotic strain, B. longum NCC2705 
(NCC2705), was engineered to secrete biologically active IL-10, 
and the strain’s curative effects in DSS colitis were investigated 
(21). Improvement of the symptoms of DSS colitis (aggravation 
of gross symptoms, colon shortening, histopathological changes 
accompanying tissue damage, and myeloperoxidase activation) 
was observed with oral administration of WT-NCC2705 alone. 
Considerable improvement was found with IL-10-secreting 
gmNCC2705 when compared to WT-NCC2705 treatment 
(21). In addition, this study found that WT-NCC2705 and gm-
NCC2705 reduced the expression of nuclear factor-κB and pro-
inflammatory cytokines in the colon and the peripheral blood, 
and restored the proportion of CD4+ CD25+ FoxP3+ Treg cells 
(21). These effects were markedly stronger with gm-NCC2705. 
In 2015, Zhang et  al. showed that the Treg/Th17 balance that 
had broken down as a result of DSS colitis was fully restored 
by gm-NCC2705 through the inhibition of two intracellular 
signaling pathways for Th17 induction (22). In 2016, the intes-
tinal inflammation amelioration action of different strains of B. 
longum that produced human α-MSH was reported (19, 20). In 
the first of these reports, preventive daily oral administration of 
α-MSH-secreting B. longum HB15 (HB15) markedly reduced 
histopathological damage, increased myeloperoxidase activity, 
corrected an inflammatory/anti-inflammatory cytokine imbal-
ance, and induced production of the pro-inflammatory factor 
nitrogen monoxide, overcoming effects caused by DSS colitis in 

rats. Administration of WT-HB15 improved all the parameters 
with the exception of nitrogen monoxide production, but to a 
considerably lower degree than that seen with the recombinant 
strain (19). In the second report, α-MSH-secreting B. longum 
HB25 (HB25) was created. Therapeutic daily oral administra-
tion of this recombinant strain markedly improved murine DSS 
colitis. Interestingly, no curative effects were observed from oral 
administration of the vector control strain (20). The two serial 
studies above indicated that immunobiotic Bifidobacteria that 
secrete proteins exhibiting immunomodulatory effects beneficial 
to IBD amelioration (IL-10 or α-MSH) are capable of stronger 
prevention/cure of UC-like colitis in mice than are WT strains, 
with effects presumably mediated through synergistic effects on 
various functions (Figure 1C).

Escherichia coli Nissle 1917

Escherichia coli Nissle 1917 has no pathogenic factors (adhesion 
molecules, invasiveness, enterotoxin, cytotoxins, etc.). This 
strain’s genetics, physiology, and biological activities as a probiot-
ics were largely characterized some time ago; as an alternative 
medicine (Mutaflor) for IBD and other GIT-related diseases, EcN 
currently serves as one of the most useful bacterial strains (104). 
In randomized controlled trials of UC remission maintenance, 
oral administration of EcN was as effective as treatment with 
mesalazine in preventing relapse of the disease (105–107). In 
studies using IBD model animals, EcN was proven to amelio-
rate colitis symptoms by regulation of the immune system and 
intestinal barrier function (108–111). In addition, the utility of 
this immunobiotic strain as a production platform for vaccines 
and pharmaceutics and as an intestinal delivery system contin-
ues to grow (112). Studies of gm-EcN that produces pathogenic 
bacteria/ virus antigens (113–115) and immunomodulatory mol-
ecules such as cytokines and proteins derived from parasites (24, 
25) have been reported, and disease preventive/curative effects 
have been verified in animals.

In 2012, Gardlik et  al. developed IL-10-secreting EcN and 
verified this strain’s anti-inflammatory effects using DSS colitis 
(25). Oral administration of IL10-secreting EcN was shown to 
improve inflammation parameters (reduced stool consistency, 
colon shortening, decreased oxidative and carbonyl stress), but 
these effects were of the same degree as obtained with WT-EcN 
or IL-10-secreting MG1363. In 2014, EcN that secretes a protease 
inhibitor protein derived from nematodes (AvCys) was created 
(24). AvCys’ immune-regulatory action is mediated mainly by 
targeting macrophages, and this inhibitory protein exhibits anti-
inflammatory action in murine models of IBD and allergies (116–
119). Oral administration of AvCys-secreting EcN (EcN-AvCys) 
on alternate days attenuated DSS colitis by beneficial regulation of 
the immune system in the inflamed colon (regulation of the pro-
portion and function of pro-inflammatory macrophages, increase 
in the proportion of FoxP3+ Treg cells, and decrease in inflam-
matory cytokines and chemokines). In addition, in experiments 
using pigs (whose GITs closely resemble those of humans), oral 
administration of EcN-AvCys on alternate days to post-weaning 
piglets reduced spontaneous colon inflammation. Interestingly, 
the results of that study suggested that EcN-AvCys ameliorates 
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inflammation in this piglet model by improving intestinal barrier 
function rather than by regulating the intestinal immune system. 
WT-EcN shows some benefits in ameliorating murine intestinal 
inflammation, inducing Treg cells, and increasing transepithelial 
resistance in a culture of a human colonic epithelial cell strain, 
but the efficacies were significantly milder than those obtained 
with EcN-AvCys.

CONCLUSiON AND FUTURe 
PeRSPeCTiveS

Site-directed delivery of proteins that exhibit anti-inflammatory 
effects using gm-immunobiotics is extremely attractive as an 
effective preventive/curative strategy for IBD (Figure 1). A series 
of studies using IL-10-secreting Lc. lactis, ranging from basic to 
clinical, established a milestone by indicating the effectiveness and 
the feasibility of clinical application of this concept. Subsequently, 
gm-Lc. lactis strains that efficiently produce cytokines, enzymes, 
and protease inhibitors with a range of anti-inflammatory prop-
erties have been developed, and anti-inflammatory properties 
of these strains have been verified using rodent models of IBD 
(Table 1; Table S1 in Supplementary Material). Recent research 
into intestinal delivery of serine protease inhibitors and IL-27 
has shown that these strains provide markedly more beneficial 
amelioration of murine intestinal inflammation than do strains 
that deliver IL-10. In addition, the research strongly implies that 
MG1363 and its derivatives do not have any negative impact on 
GIT inflammation or health maintenance, regardless of whether 
the strains are WT or recombinant. It may therefore be concluded 
that Lc. lactis is the bacterium that holds the most promise as 
a delivery agent for proteins with IBD therapeutic potential. 
In addition, work has also advanced to verify the potential for 
application of immunobiotics in this strategy. Interestingly, 
these studies show marked amelioration of GIT inflammation in 
animals as a result of the synergy between the immunoregula-
tory effects of the immunobiotic bacterium itself and the anti-
inflammatory effects of the delivered RPs (Figure 1C; Table 1; 
Table S1 in Supplementary Material). This observation implies 
that the strategy of using immunobiotics is an effective means 
toward the development of IBD therapeutics with greater efficacy. 
For future work, it would be desirable to carry out comparative 
investigations of the therapeutic effects on GIT inflammation of 
different gm-strains that produce the same RP.

Clinical trials that include verification of safety and efficacy 
will be essential for developing gm-immunobiotics as thera-
peutic drugs for IBD. To date, there have been no findings that 
demonstrate any danger in the use of gm-probiotics including 
gm-immunobiotics. At the same time, there is little evidence to 
prove the safety of these agents in clinical use, and it remains 
possible that gm-probiotic organisms may be spread into the 
environment. Thus, there is some skepticism regarding the use of 
these agents. However, two clinical studies using IL-10-secreting 
Lc. lactis have demonstrated tremendous breakthroughs (59, 120, 
121). In addition, in a recent phase 1b trial, oral administration 
of AG013 (an oral rinse containing trefoil factor 1-secreting 
MG1363 as the main component) was shown to be safe and 
well tolerated in cancer patients while also exhibiting efficacy 
against oral mucositis (122). Guidelines toward clinical use of 
gm-Lc. lactis have been proposed (123), and the feasibility of 
the clinical application of gm-Lc. lactis is strongly implied. With 
other probiotics, aspects such as the time for passage through the 
GIT, establishment in the GIT, health benefits, or the danger of 
side effects will differ from those of Lc. lactis, so safety evaluations 
will be needed and biological containment strategies will have to 
be developed. The establishment of effective gm-immunobiotics 
for prevention and treatment of IBD is near at hand, and it is to 
be hoped that this strategy will be facilitated by advances in the 
scientific understanding of gene recombination techniques in the 
future.
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