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Elementary Properties of Infinitely Divisible

Probability Distributions for z,-Semigroups
Koichiro Tazawa

§ 1. Introduction.

Let T be a binary operation on [0, 1] and A* be a class of probability distributions.
For any F, G in A* and for any real x, Moynihan [2] defined

o (F, G) =sup{T (F(uw), G(v)) ; u+v=x} 1D
and obtained a commutative semigroup (A*, zr), called the zr- semigroup. Moynihan
[4], [5] defined the conjugate transform CrF and obtained the similar properties of
characteristic functions in Lukacs [1].

As pointed out by Schweizer and Sklar in [6], several open problems on the
arithmetic for zr-semigroups are left. One of the interesting problems is a characteriza-
tion of the class of infinitely divisible elements in (A¥, 7).

In this paper we study two elementary properties for this class (Theorem3. 1 and
Theorem 3. 2). These are well-known for the semigroup (A*, %), the semigroup of
probability distributions under the convolution 3. But (A*, z7) is not isomorphic to (A,
*) (Moynihan [3] Theorem 1. 5). Furthermore, 7z is not derivable from any function on
random variables ([6] pl13 Theorem 7. 6. 5).

Therefore our results are not trivial ones.

§ 2. zr-Semigroups. .
Definition 2. 1. A t-wnorm is any two-place function 7 : [0, 1]—-[0, 1] satisfying
(@) T, D=a
(b T d)zT(a b)forcza dzb
@ Tl b)=T0, a)
@ T(T(a b), ¢c)=TC(a T ).
A tnorm T is strict if T is continuous on [0, 1] x [0, 1] and strictly increasing in
each place on [0, 1] x [0, 1].
A strict t-norm has the following representation ([6] p68 Theorem 5. 5. 5. and
Theorem 5. 5. 7).
Theorem 2. 1. (1) A fnorm T is strict if and only if it admits the representation
T(x, y) =k W (k(x) () Jor all x, y in [0, 1] 2.D

wheve k is a continuous and strictly increasing function from [0, 1] onto [0, 1], so that
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E0) =0 and k(1) =1.
(We say that & () is the multiplicative generator of T.)
(2) If ky and k, are multiplicative generators of a strict t-novm T then theve is an v >0
such that
by (x) = (D™ for all x in [0, 1] 2.2
Examples.
1. T(x y)= zy is a strict t-norm with the multiplicative generator £2(x) = x.

2.

2.3

(Max (x?+ 92 =1, 0))v? p+0
Tp(x, y) = {

p=0
7, is a strict t-norm if and only if p =0, and has the multiplicative generator
exp{(x* —1)/p} <0
{ x p=0
Definition 2. 2. A*={F : R — [0, 1]; F is left-cotinuous nondecreasing and F (0) = 0}.
For F, G in A*, x in R and for a strict t-norm 7,
77 (F, G){(x) is defined by (1. 1). Then we have ([2])
Theorem 2. 2. (1) (A%, 7p) is a commutative semigroup, that is
@) 1 (F, G) is in A" for any F, G in A",
(b) 1 (F, &) = F, wheve ¢,(x) =1 for x>0 and =0 for x <0.
© = G) =G F).
(D (e (F, G, H) = (F, 7 (G, H)).
(2> If we introduce the modified Lévy metvic L in AF, then (A%, 1, L) is a topological

ke (%) = 2. 9

semigroup, where
LF, G)=inf{d. Fx)=Gx+d+57,
G)EFx+8+6 0<x<1/8}.

Following [2], we say that (A%, zr) is the zr-semigroup. In [4], [5] Moynihan
introduced the conjugate transform in (A*, 7;), which plays the similar role as the
characteristic function in usual probability theory.
Definition 2. 3. Let 7T be a strict t-norm and 2(-) be the multiplicative generator of 7T .
For any F in A* and for z 2 0 the conjugate transform of T is defined by

Cr F(z) =sup{e™ EF(x) ; x =20} 2.5

where kF (x) = k(F(x)) for x >0 and =0 for x < 0.
Definition 2. 4. For any strict t-norm T
(i) LetAr=1{¢:[0, ][0, 1]; ¢ is positive, non-increasing, log-convex and contin-
uous} |J {6.}, where 6.(z) =0 for all z=0.
(ii) For any ¢ in A;
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Cr*» ¢ () =k7'(inf{e™ ¢(2) ; 2 2 0}). (2.6
(iii) For F in A", bp =sup{x ; F(x) =0}
The following fundamental properties of conjugate transforms are in Moynihan [4],
[5].
Theorem 2. 3. (1) Cr(zr(F, G))(z) = CiF (2) « CtG(2).
@2y Ar={CGF;Fear}.
3) Cr: Aty— Ar is a bijection with inverse Cr*, where At ={F&A* | kF is log-
concave} .
4) Cr*(CiF » CiG) = v (Fr, Gr), where Fr and Gr ave the log-concave envelope of F
and G respectively.
(5) Let {G,.} be a sequence in A%, which coverges weakly fo some G in AT then
Cr G, (2) converges to Cr G(2) for any z > 0.
(6) Let {¢pn} be a sequence in AN\{6.} and %1152 Pn(2) = ¢ (2) for any z 20 and if

¢ (2) is cotinuous at 0 then there exists a F in A"\ {e.} such that ¢ (z2) = CoF(2) for
any z 2 0.

(6) is an analogy of the Lévy’s continuity theorem for chracteristic functions.
Definition 2. 5. F in A" is infinitely divisible under 7 if for any positive integer » there
exists a G in A* such that

G" = F, where G" is recursively defined by G' = G, G" = 7 (G™ ™, ) for n = 2.

Let B ={F&€A*; kF is log-concave on (by, o)}, then following result is in
Moynihan [5] Theorem 4. 2.

Theorem 2. 4. Every F in B \{e.} is nfinitely divisible under ;.

§ 3. Main results.
Theorem 3. 1. Let T be a strict t-norm. Then the tr-product of a finite number of
mfinitely divisible probability distributions in A* is infinitely divisible under .
Proof It is sufficient to prove the theorem for the case of two factors. Suppose that F,
G in A* are infinitely divisible under 7. Then there exist for any positive integer # two
probability distributions F, and G, in A* such that F = (F,)", G = (G,)", where (F,)"
and (G,)" are defined in Definition 2. 5.
Set H = 7(F, G) and H, = v+ (F,, G,). Then by Theorem 2. 3 (1) we have
Cr H(z) =Cr F(2) » Cr G(2)
= (Cr F)"(2)(Cr G (2)
= (Cr H)"(2) = (Cr H")(2)
Operating Cr* on both sides, we have by Theorem 2. 3 (3), (4)
H = {(H)r}"
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Since (H,)r is the log-cocave envelope of H, and so, it is in A*, H is infinitely
divisible under 7. (Q.E. D)

Theorem 3. 2. A distribution function in A, which is the weak limit of a sequence of
infinitely divisible distribution functions in AV is infinitely divisible undey =r.
Proof. Let {F,} be a sequence of infinitely divisible distribution functions in A* and
suppose that this seqence converges weakly to a probability distribution function F in
A*, By Theorem 2. 3 (5) we have
(Cr FY(z) = E{E(CT F)(z) for any z > 0. 3. D
Since {F,} is infinitely divisible, there exists for any positive integer » a sequence
{F, .} in A* such that F, = (F, )"
Then, by Theorem 2. 3 (1) we have
Cr Fo(2) = (Cr Fp)"(2) G2
It follows from (3. 1) and (3. 2) that
Li_ngl.c (Cr Fop)(2) = Liqm.c (Cr F)'"(2)
= limexp{(og Cr [%.(2))/n}(2)
=exp{log Cr F(2))/n}(2)

={(Cr FH(2)}V, (2).
If we define (C; F)(0) by zlpg (Cr F)(2), then {(Cr F)(2)}Y" is continuous at

z =0 and by Theorem 2. 3 (6) there exists a G in A*\{e.} such that
(Cr G (&) ={(C FY(2)m
Therefore we have

(Cr FY(@) =(Cr &)= (Cr GM () 3.3
Operating C;* on both sides, we have by Theorem 2. 3 (3), (4) that F = (G¢)" and
since Gr is in A, F is infinitely divisible under . Q. E.D)

Corollary of Theorem 3. 2. F & A* s infinitely divisible under ©r if and only if
(Cr FY)" < Ay for any positive v, where
(Cr F)7(z) =exp{rlog Cr F(2)}.

Proof. Since the only part is trivial, we prove the if part. The general case is proved by
Theorem 3. 2, it is sufficient to prove in the case of 7 is a positive rational number.

If » = n/m then F* is infinitely divisible by Teorem 3. 1. Then there exists a G, in
A* such that F* = (G,)™.

Therefere we have

Fr=F""=(G,& A* and by Theorem 2. 3 (3), (Cr F)T& A;. Q. E. D)
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