Elementary Properties of Infinitely Divisible Probability Distributions for τ_{T}-Semigroups

Koichiro TAZAWA

§ 1. Introduction.

Let T be a binary operation on $[0,1]$ and Δ^{+}be a class of probability distributions. For any F, G in Δ^{+}and for any real x, Moynihan [2] defined

$$
\begin{equation*}
\tau_{\tau}(F, G)=\sup \{T(F(u), G(v)) ; u+v=x\} \tag{1.1}
\end{equation*}
$$

and obtained a commutative semigroup (Δ^{+}, τ_{T}), called the $\tau_{T^{-}}$semigroup. Moynihan [4], [5] defined the conjugate transform $\mathrm{C}_{T} F$ and obtained the similar properties of characteristic functions in Lukacs [1].

As pointed out by Schweizer and Sklar in [6], several open problems on the arithmetic for τ_{T}-semigroups are left. One of the interesting problems is a characterization of the class of infinitely divisible elements in $\left(\Delta^{+}, \tau_{T}\right)$.

In this paper we study two elementary properties for this class (Theorem3. 1 and Theorem 3. 2). These are well-known for the semigroup ($\Delta^{+}, *$), the semigroup of probability distributions under the convolution $*$. But $\left(\Delta^{+}, \tau_{T}\right)$ is not isomorphic to (Δ^{+}, *) (Moynihan [3] Theorem 1.5). Furthermore, τ_{T} is not derivable from any function on random variables ([6] p113 Theorem 7.6.5).

Therefore our results are not trivial ones.

§ 2. τ_{T}-Semigroups.

Definition 2.1. A t-norm is any two-place function $T:[0,1] \rightarrow[0,1]$ satisfying
(a) $T(a, 1)=a$
(b) $T(c, d) \geqq T(a, b)$ for $c \geqq a, d \geqq b$
(c) $T(a, b)=T(b, a)$
(d) $T(T(a, b), c)=T(a, T(b, c))$.

A t-norm T is strict if T is continuous on $[0,1] \times[0,1]$ and strictly increasing in each place on $[0,1] \times[0,1]$.

A strict t-norm has the following representation ([6] p68 Theorem 5.5.5. and Theorem 5.5.7).
Theorem 2.1. (1) A t-norm T is strict if and only if it admits the representation

$$
\begin{equation*}
T(x, y)=k^{-1}(k(x) k(y)) \quad \text { for all } x, y \text { in }[0,1] \tag{2.1}
\end{equation*}
$$

where k is a continuous and strictly increasing function from $[0,1]$ onto $[0,1]$, so that
$k(0)=0$ and $k(1)=1$.
（We say that $k(\cdot)$ is the multiplicative generator of T ．）
（2）If k_{1} and k_{2} are multiplicative generators of a strict t－norm T then there is an $r>0$ such that

$$
\begin{equation*}
k_{2}(x)=\left(k_{1}(x)\right)^{r} \quad \text { for all } x \text { in }[0,1] \tag{2.2}
\end{equation*}
$$

Examples．

1．$T(x, y)=x y$ is a strict t －norm with the multiplicative generator $k(x)=x$ ．
2.

$$
T_{p}(x, y)= \begin{cases}\left(\operatorname{Max}\left(x^{p}+y^{p}-1,0\right)\right)^{1 / p} & p \neq 0 \tag{2.3}\\ x y & p=0\end{cases}
$$

T_{p} is a strict t －norm if and only if $p \leqq 0$ ，and has the multiplicative generator

$$
k_{P}(x)= \begin{cases}\exp \left\{\left(x^{P}-1\right) / p\right\} & p<0 \tag{2.4}\\ x & p=0\end{cases}
$$

Definition 2．2．$\quad \Delta^{+}=\{F: \mathbf{R} \rightarrow[0,1] ; F$ is left－cotinuous nondecreasing and $F(0)=0\}$ ．
For F, G in Δ^{+}, x in \mathbf{R} and for a strict t－norm T ， $\tau_{T}(F, G)(x)$ is defined by（1．1）．Then we have（［2］）
Theorem 2．2．（1）$\left(\Delta^{+}, \tau_{T}\right)$ is a commutative semigroup，that is
（a）$\tau_{r}(F, G)$ is in Δ^{+}for any F, G in Δ^{+}．
（b）$\tau_{T}\left(F, \epsilon_{0}\right)=F$ ，where $\epsilon_{0}(x)=1$ for $x>0$ and $=0$ for $x \leqq 0$ ．
（c）$\tau_{T}(F, G)=\tau_{T}(G, F)$ ．
（d）$\tau_{T}\left(\tau_{T}(F, G), H\right)=\tau_{T}\left(F, \tau_{T}(G, H)\right)$ ．
（2）If we introduce the modified Lévy metric L in Δ^{+}，then $\left(\Delta^{+}, \tau_{r}, L\right)$ is a topological semigroup，where

$$
\begin{aligned}
L(F, G)= & \inf \{\delta ; F(x) \leqq G(x+\delta)+\delta, \\
& G(x) \leqq F(x+\delta)+\delta, 0<x<1 / \delta\} .
\end{aligned}
$$

Following［2］，we say that $\left(\Delta^{+}, \tau_{T}\right)$ is the τ_{T}－semigroup．In［4］，［5］Moynihan introduced the conjugate transform in $\left(\Delta^{+}, \tau_{T}\right)$ ，which plays the similar role as the characteristic function in usual probability theory．

Definition 2．3．Let T be a strict t －norm and $k(\cdot)$ be the multiplicative generator of T ． For any F in Δ^{+}and for $z \geqq 0$ the conjugate transform of T is defined by

$$
\begin{equation*}
C_{T} F(z)=\sup \left\{\mathrm{e}^{-x z} k F(x) ; x \geqq 0\right\} \tag{2.5}
\end{equation*}
$$

where $k F(x)=k(F(x))$ for $x>0$ and $=0$ for $x \leqq 0$ ．
Definition 2．4．For any strict t－norm T
（i）Let $A_{T}=\{\phi:[0, \infty] \rightarrow[0,1] ; \phi$ is positive，non－increasing，log－convex and contin－ uous $\} \cup\left\{\theta_{\infty}\right\}$ ，where $\theta_{\infty}(z)=0$ for all $z \geqq 0$ ．
（ii）For any ϕ in A_{T}

$$
\begin{equation*}
C_{T}^{*} \cdot \phi(x)=k^{-1}\left(\inf \left\{\mathrm{e}^{x z} \phi(z) ; z \geqq 0\right\}\right) . \tag{2.6}
\end{equation*}
$$

(iii) For F in $\Delta^{+}, b_{F}=\sup \{x ; F(x)=0\}$.

The following fundamental properties of conjugate transforms are in Moynihan [4], [5].
Theorem 2.3. (1) $C_{T}\left(\tau_{T}(F, G)\right)(z)=C_{T} F(z) \cdot C_{T} G(z)$.
(2) $A_{T}=\left\{\mathrm{C}_{\mathrm{T}} \mathrm{F} ; \mathrm{F} \in \Delta^{+}\right\}$.
(3) $C_{T}: \Delta^{+}{ }_{T} \rightarrow A_{T}$ is a bijection with inverse $\mathrm{C}_{T^{*}}{ }^{*}$, where $\Delta_{T}{ }^{+}=\left\{F \in \Delta^{+} ; k F\right.$ is log. concave $\}$.
(4) $C_{T}{ }^{*}\left(C_{T} F \cdot C_{T} G\right)=\tau_{T}\left(F_{T}, G_{T}\right)$, where F_{T} and G_{T} are the log-concave envelope of F and G respectively.
(5) Let $\left\{G_{n}\right\}$ be a sequence in Δ^{+}, which coverges weakly to some G in Δ^{+}then $C_{T} G_{n}(z)$ converges to $C_{T} G(z)$ for any $z>0$.
(6) Let $\left\{\phi_{n}\right\}$ be a sequence in $A_{T} \backslash\left\{\theta_{\infty}\right\}$ and $\lim _{n \rightarrow \infty} \phi_{n}(z)=\phi(z)$ for any $z \geqq 0$ and if $\phi(z)$ is cotinuous at 0 then there exists a F in $\Delta^{+} \backslash\left\{\epsilon_{\infty}\right\}$ such that $\phi(z)=C_{r} F(z)$ for any $z \geqq 0$.
(6) is an analogy of the Lévy's continuity theorem for chracteristic functions.

Definition 2.5. F in Δ^{+}is infinitely divisible under τ_{T} if for any positive integer n there exists a G in Δ^{+}such that
$G^{n}=F$, where G^{n} is recursively defined by $G^{1}=G, G^{n}=\boldsymbol{\tau}_{T}\left(G^{n-1}, G\right)$ for $n \geqq 2$.
Let $\mathfrak{B}_{T}=\left\{F \in \Delta^{+} ; k F\right.$ is log-concave on $\left.\left(b_{F}, \infty\right)\right\}$, then following result is in Moynihan [5] Theorem 4.2.
Theorem 2. 4. Every F in $\mathfrak{B}_{T} \backslash\left\{\epsilon_{\infty}\right\}$ is infinitely divisible under τ_{T}.

§ 3. Main results.

Theorem 3. 1. Let T be a strict t-norm. Then the τ_{T}-product of a finite number of infinitely divisible probability distributions in Δ^{+}is infinitely divisible under τ_{T}.
Proof It is sufficient to prove the theorem for the case of two factors. Suppose that F, G in Δ^{+}are infinitely divisible under τ_{T}. Then there exist for any positive integer n two probability distributions F_{n} and G_{n} in Δ^{+}such that $F=\left(F_{n}\right)^{n}, G=\left(G_{n}\right)^{n}$, where $\left(F_{n}\right)^{n}$ and $\left(G_{n}\right)^{n}$ are defined in Definition 2. 5.

Set $H=\tau_{r}(F, G)$ and $H_{n}=\tau_{T}\left(F_{n}, G_{n}\right)$. Then by Theorem 2.3 (1) we have

$$
\begin{aligned}
C_{T} H(z) & =C_{T} F(z) \cdot C_{T} G(z) \\
& =\left(C_{T} F_{n}\right)^{n}(z)\left(C_{T} G_{n}\right)^{n}(z) \\
& =\left(C_{T} H_{n}\right)^{n}(z)=\left(C_{T} H_{n}^{n}\right)(z)
\end{aligned}
$$

Operating $C_{T}{ }^{*}$ on both sides, we have by Theorem 2.3 (3), (4)

$$
H=\left\{\left(H_{n}\right)_{r}\right\}^{n} .
$$

Since $\left(H_{n}\right)_{T}$ is the log－cocave envelope of H_{n} and so，it is in Δ^{+}, H is infinitely divisible under τ_{T} ．
（Q．E．D．）

Theorem 3．2．A distribution function in Δ^{+}，which is the weak limit of a sequence of infinitely divisible distribution functions in Δ^{+}is infinitely divisible under τ_{T} ．
Proof．Let $\left\{F_{k}\right\}$ be a sequence of infinitely divisible distribution functions in Δ^{+}and suppose that this seqence converges weakly to a probability distribution function F in Δ^{+}，By Theorem 2． 3 （5）we have

$$
\begin{equation*}
\left(C_{T} F\right)(z)=\lim _{k \rightarrow \infty}\left(C_{T} F_{k}\right)(z) \text { for any } z>0 \tag{3.1}
\end{equation*}
$$

Since $\left\{F_{k}\right\}$ is infinitely divisible，there exists for any positive integer n a sequence $\left\{F_{k, n}\right\}$ in Δ^{+}such that $F_{h}=\left(F_{k, n}\right)^{n}$ ．

Then，by Theorem 2． 3 （1）we have

$$
\begin{equation*}
C_{T} F_{k}(z)=\left(C_{T} F_{k, n}\right)^{n}(z) \tag{3.2}
\end{equation*}
$$

It follows from（3．1）and（3．2）that

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left(C_{T} F_{k, n}\right)(z) & =\lim _{k \rightarrow \infty}\left(C_{T} F_{k}\right)^{1 / n}(z) \\
& =\lim _{k \rightarrow \infty} \exp \left\{\left(\log C_{T} F_{k}(z)\right) / n\right\}(z) \\
& \left.=\exp \left\{\log C_{T} F(z)\right) / n\right\}(z) \\
& =\left\{\left(C_{T} F\right)(z)\right\}^{1 / n},(z) .
\end{aligned}
$$

If we define $\left(C_{T} F\right)(0)$ by $\lim _{z \sim 0}\left(C_{T} F\right)(z)$ ，then $\left\{\left(C_{T} F\right)(z)\right\}^{1 / n}$ is continuous at $z=0$ and by Theorem 2.3 （6）there exists a G in $\Delta^{+} \backslash\left\{\epsilon_{\infty}\right\}$ such that

$$
\left(C_{T} G\right)(z)=\left\{\left(C_{T} F\right)(z)\right\}^{1 / n}
$$

Therefore we have

$$
\begin{equation*}
\left.\left(C_{T} F\right)(z)=\left(C_{T} G\right)(z)\right)^{n}=\left(C_{T} G^{n}\right)(z) \tag{3.3}
\end{equation*}
$$

Operating $\mathrm{C}_{\mathrm{T}}{ }^{*}$ on both sides，we have by Theorem 2.3 （3），（4）that $F=\left(G_{T}\right)^{n}$ and since G_{T} is in Δ^{+}, F is infinitely divisible under τ_{T} ．
（Q．E．D．）

Corollary of Theorem 3．2．$F \in \Delta^{+}$is infinitely divisible under τ_{T} if and only if $\left(C_{T} F\right)^{r} \in A_{T}$ for any positive r ，where

$$
\left(\mathrm{C}_{T} F\right)^{r}(z)=\exp \left\{r \log \mathrm{C}_{T} F(z)\right\}
$$

Proof．Since the only part is trivial，we prove the if part．The general case is proved by Theorem 3．2，it is sufficient to prove in the case of r is a positive rational number．

If $r=n / m$ then F^{n} is infinitely divisible by Teorem 3．1．Then there exists a G_{m} in Δ^{+}such that $F^{n}=\left(G_{m}\right)^{m}$ ．

Therefere we have
$F^{r}=F^{n / m}=G_{m} \in \Delta^{+}$and by Theorem $2.3(3),\left(C_{T} F\right)^{r} \in A_{r}$ ．

References

[1] Lukacs, E.: Characteristic Functions. 2nd ed. Griffin, London, 1970.
[2] Moynihan, R.: On the class of τ_{T}-semigroups of probability distribution functions. Aequationes Math. 12 (1975) 249-261.
[3] Moynihan, R.: On τ_{T}-semigroups of probability distribution functions II. Aequationes Math. 17 (1978) 19-40.
[4] Moynihan, R. : Conjugate transforms and limit theorems for τ_{T}-semigroups. Studia Math. 69 (1980) 1-18.
[5] Moynihan, R.: Conjugate transforms for τ_{T}-semigroups of probability distribution functions. J. Math. Anal. Appl. 74 (1980) 15-30.
[6] Schweizer, B. and Sklar, A.: Probabilistic Metric Spaces. North Holland, New York, Amsterdam, Oxford, 1983.

