Elementary Properties of Infinitely Divisible Probability Distributions for τ_T -Semigroups

Koichiro Tazawa

§ 1. Introduction.

Let T be a binary operation on [0, 1] and Δ^+ be a class of probability distributions. For any F, G in Δ^+ and for any real x, Moynihan [2] defined

$$\tau_T(F, G) = \sup\{T(F(u), G(v)); u + v = x\}$$
(1.1)

and obtained a commutative semigroup (Δ^+ , τ_T), called the τ_{T^-} semigroup. Moynihan [4], [5] defined the conjugate transform $C_T F$ and obtained the similar properties of characteristic functions in Lukacs [1].

As pointed out by Schweizer and Sklar in [6], several open problems on the arithmetic for τ_T -semigroups are left. One of the interesting problems is a characterization of the class of infinitely divisible elements in (Δ^+, τ_T) .

In this paper we study two elementary properties for this class (**Theorem3. 1** and **Theorem 3. 2**). These are well-known for the semigroup $(\Delta^+, *)$, the semigroup of probability distributions under the convolution *. But (Δ^+, τ_T) is not isomorphic to $(\Delta^+, *)$ (Moynihan [3] Theorem 1. 5). Furthermore, τ_T is not derivable from any function on random variables ([6] p113 Theorem 7. 6. 5).

Therefore our results are not trivial ones.

§ 2. τ_T -Semigroups.

Definition 2.1. A *t*-norm is any two-place function $T: [0, 1] \rightarrow [0, 1]$ satisfying

- (a) T(a, 1) = a
- (b) $T(c, d) \ge T(a, b)$ for $c \ge a, d \ge b$
- (c) T(a, b) = T(b, a)
- (d) T(T(a, b), c) = T(a, T(b, c)).

A t-norm T is strict if T is continuous on $[0, 1] \times [0, 1]$ and strictly increasing in each place on $[0, 1] \times [0, 1]$.

A strict t-norm has the following representation ([6] p68 Theorem 5. 5. 5. and Theorem 5. 5. 7).

Theorem 2. 1. (1) A t-norm T is strict if and only if it admits the representation $T(x, y) = k^{-1}(k(x) \ k(y))$ for all x, y in [0, 1] (2. 1)

where k is a continuous and strictly increasing function from [0, 1] onto [0, 1], so that

k(0) = 0 and k(1) = 1.

- (We say that k (•) is the *multiplicative generator* of T.)
- (2) If k_1 and k_2 are multiplicative generators of a strict t-norm T then there is an r > 0 such that

$$k_2(x) = (k_1(x))^r$$
 for all x in [0, 1] (2.2)

Examples.

T(x, y) = xy is a strict t-norm with the multiplicative generator k(x) = x.
 2.

$$T_{p}(x, y) = \begin{cases} (\operatorname{Max} (x^{p} + y^{p} - 1, 0))^{1/p} & p \neq 0\\ xy & p = 0 \end{cases}$$
(2.3)

 T_p is a strict t-norm if and only if $p \leq 0$, and has the multiplicative generator

$$k_{P}(x) = \begin{cases} \exp\{(x^{P} - 1)/p\} & p < 0\\ x & p = 0 \end{cases}$$
(2.4)

Definition 2. 2. $\Delta^+ = \{F : \mathbb{R} \to [0, 1]; F \text{ is left-cotinuous nondecreasing and } F(0) = 0\}.$ For *F*, *G* in Δ^+ , *x* in **R** and for a strict t-norm *T*,

 $\tau_{\tau}(F, G)(x)$ is defined by (1, 1). Then we have ([2])

Theorem 2. 2. (1) (Δ^+, τ_T) is a commutative semigroup, that is

- (a) $\tau_T(F, G)$ is in Δ^+ for any F, G in Δ^+ .
- (b) $\tau_T(F, \epsilon_0) = F$, where $\epsilon_0(x) = 1$ for x > 0 and = 0 for $x \leq 0$.
- (c) $\tau_T(F, G) = \tau_T(G, F).$
- (d) $\tau_T(\tau_T(F, G), H) = \tau_T(F, \tau_T(G, H)).$
- (2) If we introduce the modified Lévy metric L in Δ^+ , then (Δ^+, τ_T, L) is a topological semigroup, where

$$\begin{split} L(F, \ G) &= \inf \left\{ \delta \ ; \ F(x) \leq G(x+\delta) + \delta, \right. \\ G(x) &\leq F(x+\delta) + \delta, \ 0 < x < 1/\delta \right\}. \end{split}$$

Following [2], we say that (Δ^+, τ_T) is the τ_T -semigroup. In [4], [5] Moynihan introduced the *conjugate transform* in (Δ^+, τ_T) , which plays the similar role as the characteristic function in usual probability theory.

Definition 2.3. Let T be a strict t-norm and $k(\cdot)$ be the multiplicative generator of T. For any F in Δ^+ and for $z \ge 0$ the conjugate transform of T is defined by

$$C_T \ F(z) = \sup \{ e^{-xz} \ kF(x) \ ; \ x \ge 0 \}$$
(2.5)

where kF(x) = k(F(x)) for x > 0 and = 0 for $x \le 0$.

Definition 2.4. For any strict t-norm T

(i) Let $A_T = \{ \phi : [0, \infty] \to [0, 1] ; \phi \text{ is positive, non-increasing, log-convex and contin$ $uous} \cup \{ \theta_{\infty} \}$, where $\theta_{\infty}(z) = 0$ for all $z \ge 0$.

(ii) For any ϕ in A_T

$$C_{T}^{*} \cdot \phi(x) = k^{-1} (\inf \{ e^{xz} \ \phi(z) \ ; \ z \ge 0 \}).$$
(2.6)

(iii) For *F* in Δ^+ , $b_F = \sup \{x ; F(x) = 0\}$.

The following fundamental properties of conjugate transforms are in Moynihan [4], [5].

Theorem 2. 3. (1) $C_T(\tau_T(F, G))(z) = C_T F(z) \cdot C_T G(z).$

- (2) $A_T = \{C_T F; F \in \Delta^+\}.$
- (3) $C_T: \Delta^+_T \to A_T$ is a bijection with inverse C_T^* , where $\Delta_T^+ = \{F \in \Delta^+; kF \text{ is log-concave}\}$.
- (4) $C_T^*(C_T F \cdot C_T G) = \tau_T(F_T, G_T)$, where F_T and G_T are the log-concave envelope of F and G respectively.
- (5) Let $\{G_n\}$ be a sequence in Δ^+ , which coverges weakly to some G in Δ^+ then $C_T G_n(z)$ converges to $C_T G(z)$ for any z > 0.
- (6) Let $\{\phi_n\}$ be a sequence in $A_T \setminus \{\theta_\infty\}$ and $\lim_{n \to \infty} \phi_n(z) = \phi(z)$ for any $z \ge 0$ and if $\phi(z)$ is cotinuous at 0 then there exists a F in $\Lambda^+ \setminus \{e_n\}$ such that $\phi(z) = C_-F(z)$ for

$$\phi(z)$$
 is cotinuous at 0 then there exists a F in $\Delta^+ \setminus \{\epsilon_{\infty}\}$ such that $\phi(z) = C_T F(z)$ for any $z \ge 0$.

(6) is an analogy of the Lévy's continuity theorem for chracteristic functions.

Definition 2.5. *F* in Δ^+ is *infinitely divisible under* τ_T if for any positive integer *n* there exists a *G* in Δ^+ such that

 $G^n = F$, where G^n is recursively defined by $G^1 = G$, $G^n = \tau_T(G^{n-1}, G)$ for $n \ge 2$.

Let $\mathfrak{B}_T = \{F \in \Delta^+; kF \text{ is log-concave on } (b_F, \infty)\}$, then following result is in Moynihan [5] Theorem 4.2.

Theorem 2.4. Every F in $\mathfrak{B}_T \setminus \{\epsilon_{\infty}\}$ is infinitely divisible under τ_T .

§ 3. Main results.

Theorem 3.1. Let T be a strict t-norm. Then the τ_{T} -product of a finite number of infinitely divisible probability distributions in Δ^+ is infinitely divisible under τ_{T} .

Proof It is sufficient to prove the theorem for the case of two factors. Suppose that F, G in Δ^+ are infinitely divisible under τ_T . Then there exist for any positive integer n two probability distributions F_n and G_n in Δ^+ such that $F = (F_n)^n$, $G = (G_n)^n$, where $(F_n)^n$ and $(G_n)^n$ are defined in Definition 2. 5.

Set
$$H = \tau_T(F, G)$$
 and $H_n = \tau_T(F_n, G_n)$. Then by Theorem 2. 3 (1) we have $C_T H(z) = C_T F(z) \cdot C_T G(z)$

$$= (C_T \ F_n)^n(z)(C_T \ G_n)^n(z) = (C_T \ H_n)^n(z) = (C_T \ H_n^n)(z)$$

Operating C_{r}^{*} on both sides, we have by Theorem 2. 3 (3), (4)

 $H = \{(H_n)_T\}^n.$

129

Since $(H_n)_T$ is the log-cocave envelope of H_n and so, it is in Δ^+ , H is infinitely divisible under τ_T . (Q. E. D.)

Theorem 3. 2. A distribution function in Δ^+ , which is the weak limit of a sequence of infinitely divisible distribution functions in Δ^+ is infinitely divisible under τ_{T} .

Proof. Let $\{F_{k}\}$ be a sequence of infinitely divisible distribution functions in Δ^{+} and suppose that this sequence converges weakly to a probability distribution function F in Δ^{+} , By Theorem 2. 3 (5) we have

$$(C_T F)(z) = \lim_{k \to \infty} (C_T F_k)(z) \text{ for any } z > 0.$$
 (3.1)

Since $\{F_k\}$ is infinitely divisible, there exists for any positive integer *n* a sequence $\{F_{k,n}\}$ in Δ^+ such that $F_k = (F_{k,n})^n$.

Then, by Theorem 2. 3 (1) we have

$$C_T F_k(z) = (C_T F_{k,n})^n(z)$$
 (3.2)

It follows from (3. 1) and (3. 2) that

$$\lim_{k \to \infty} (C_T \ F_{k,n})(z) = \lim_{k \to \infty} (C_T \ F_k)^{1/n}(z)$$

=
$$\lim_{k \to \infty} \exp\{(\log \ C_T \ F_k(z))/n\}(z)$$

=
$$\exp\{\log \ C_T \ F(z))/n\}(z)$$

=
$$\{(C_T \ F)(z)\}^{1/n}, \ (z).$$

If we define $(C_T F)(0)$ by $\lim_{z \downarrow 0} (C_T F)(z)$, then $\{(C_T F)(z)\}^{1/n}$ is continuous at

z = 0 and by Theorem 2. 3 (6) there exists a G in $\Delta^+ \setminus \{\epsilon_{\infty}\}$ such that

 $(C_T \ G)(z) = \{(C_T \ F)(z)\}^{1/n}.$

Therefore we have

$$(C_T F)(z) = (C_T G)(z))^n = (C_T G^n)(z)$$
(3.3)

Operating C_T^* on both sides, we have by Theorem 2. 3 (3), (4) that $F = (G_T)^n$ and since G_T is in Δ^+ , F is infinitely divisible under τ_T . (Q. E. D.)

Corollary of Theorem 3. 2. $F \in \Delta^+$ is infinitely divisible under τ_T if and only if $(C_T F)^r \in A_T$ for any positive r, where

$$(\mathbf{C}_T \ F)^r(z) = \exp\{r\log \mathbf{C}_T \ F(z)\}.$$

Proof. Since the only part is trivial, we prove the if part. The general case is proved by Theorem 3. 2, it is sufficient to prove in the case of r is a positive rational number.

If r = n/m then F^n is infinitely divisible by Teorem 3. 1. Then there exists a G_m in Δ^+ such that $F^n = (G_m)^m$.

Therefere we have

$$F^r = F^{n/m} = G_m \in \Delta^+$$
 and by Theorem 2. 3 (3), $(C_T F)^r \in A_T$. (Q. E. D.)

References

- [1] Lukacs, E.: Characteristic Functions. 2nd ed. Griffin, London, 1970.
- [2] Moynihan, R.: On the class of τ_T -semigroups of probability distribution functions. Aequationes Math. **12** (1975) 249-261.
- [3] Moynihan, R.: On τ_r -semigroups of probability distribution functions II. Aequationes Math. 17 (1978) 19-40.
- [4] Moynihan, R. : Conjugate transforms and limit theorems for τ_T -semigroups. Studia Math. 69 (1980) 1-18.
- [5] Moynihan, R.: Conjugate transforms for τ_T -semigroups of probability distribution functions. J. Math. Anal. Appl. 74 (1980) 15-30.
- [6] Schweizer, B. and Sklar, A.: Probabilistic Metric Spaces. North Holland, New York, Amsterdam, Oxford, 1983.

(Received January 9. 1992)