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Abstract
In 2012, the Higgs boson, which is a last piece of the standard model

(SM), was discovered by the experiments at Large Hadron Collider (LHC) in
CERN. Hence, correctness of the SM has been proved. But, because the SM
includes some problems, it is not a perfect theory. For example, the SM dose
not include gravitational interaction and can not explain the origin of three
families for quarks and leptons, the mass of neutrino, and the identity of dark
matter and dark energy is unknown, and so on. In order to explain the history
of universe, physics beyond the SM is needed.

Physics beyond the SM such as supersymmetry (SUSY), higher dimen-
sional theories and technicolor (composite) theories has been proposed, and
those theories predict new particles. However, no particles other than the SM
ones have been found until now. This means that new physics should exist at
a very high energy scale, and the SM should be effective up to such a scale.

In this thesis, we focus on a family unification and the origin and identity
of unknown new particles. And, in order to solve those problem, we use the
higher dimensional theory including extra dimensional spaces called orbifold.

In the SM, matter particles are composed of six types of quarks and lep-
tons. However, in the early universe, those particles could not be distinguished
in the framework of grand unified theories (GUTs). Therefore, we construct
a unification model that all matter particles are unified under a large gauge
group.

By considering SU(N) gauge theory on six-dimensional (6D) space-time
M4 × T 2/ZM (M = 2, 3, 4, 6), we search the models to unify families and ob-
tained enormous number of models with three families of SU(5) matter multi-
plets and these with three families of the SM multiplets, from a single massless
Dirac fermion with a higher-dimensional representation of SU(N). We also
study the relationship between the family number of chiral fermions and the
Wilson line phases, based on the orbifold family unification. We show that fla-
vor numbers are independent of Wilson line phases relating extra-dimensional
component of higher-dimensional gauge field and this feature originates from
a quantum-mechanical SUSY.

Next, we study phenomenological aspects of orbifold family unification
models with SU(9) gauge group on a 6D space-time including the orbifold
T 2/Z2. Especially, we focus on a mass acquirement of the SM matter particles.
And, we also predict relations among sfermion masses in the SUSY extension
of models.

We explain the reason why new particles have not been discovered using
gauge theory on 5D based on 1D orbifold S1/Z2. We propose an idea that new
particles can be separated according to gauge quantum numbers from the SM
ones by the difference of boundary conditions (BCs) on extra dimensions, e.g.
zero modes due to orbifold breaking by inner automorphisms correspond to the
SM particles, and zero modes due to orbifold breaking by outer automorphisms
correspond to new particles. We apply this idea on a gauge-Higgs inflation
scenario. This model contains inflaton which causes the inflation and dark
matter, but they hardly interact with the SM particles.
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1 Introduction

The standard model (SM) contains by electromagnetic, weak and strong inter-
action and is constructed by gauge principle concerning the gauge group GSM =
SU(3)C × SU(2)L × U(1)Y . The SU(3)C symmetry describes the strong interac-
tion. The SU(2)L × U(1)Y symmetry is spontaneously broken down to U(1)EW by
the Higgs mechanism, and the unbroken symmetry describes the electromagnetic
interaction and the broken one describes the weak interaction. Under this gauge
group, the SM includes 12 matter particles (Table 1.1), 3 types of gauge bosons cor-
responding to SU(3)C , SU(2)L and U(1)Y and the Higgs particles. Gauge quantum
numbers of the SM particles are indicated in Table 1.2, 1.3 and 1.4. Gauge group,
gauge couplings and gauge particles of the SM are summarized in Table 1.5.

1st generation 2nd generation 3rd generation

quarks

qiL

(
uL

dL

) (
cL

sL

) (
tL

bL

)
uiR uR cR tR

diR dR sR bR

leptons

liL

(
νeL

eL

) (
νμL

μL

) (
ντL

τL

)
νiR νeR νμR ντR

eiR eR μR τR

Table 1.1: The SM matter particles.

Matter particles SU(3)C SU(2)L T 3
L Y Q(= T 3

L + Y )(
uL

dL

)
3 2

(
1
2

−1
2

)
1
6

(
2
3

−1
3

)
uR 3 1 0 2

3
2
3

dR 3 1 0 −1
3

−2
3(

νeL

eL

)
1 2

(
1
2

−1
2

)
−1

2

(
0

−1

)
eR 1 1 0 −1 −1

νeR 1 1 0 0 0

Table 1.2: Gauge quantum number of the SM matter particles.

The SM is verified with high accuracy by experiments. In 2012, the Higgs particle
was discovered at the Large Hadron Collider (LHC) in the CERN. As a result, the
SM has been completed. However, there are some unsolved problems in the SM
frame. For example,

· Quantization of gravity
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Gauge particles SU(3)C SU(2)L T 3
L Y Q(= T 3

L + Y )

Gα
μ 8 1 0 0 0

W a
μ ⇒

⎛
⎜⎝ W+

μ

W 0
μ

W−
μ

⎞
⎟⎠ 1 3

⎛
⎜⎝ +1

0

−1

⎞
⎟⎠ 0

⎛
⎜⎝ +1

0

−1

⎞
⎟⎠

Bμ 1 1 0 0 0

Table 1.3: Gauge quantum number of the SM gauge particles.

Higgs particle SU(3)C SU(2)L T 3
L Y Q(= T 3

L + Y )

Φ =

(
φ+

φ0

)
1 2

(
1
2

−1
2

)
1
2

(
1

0

)

Table 1.4: Gauge quantum number of the SM Higgs particles.

Gauge group SU(3)C SU(2)L U(1)Y

Gauge coupling gs g g′

Gauge particle Gα
μ W a

μ Bμ

Generator Tα
C = λα/2 T α

L = σa/2 Y

Table 1.5: Gauge group, gauge couplings and gauge particles of the SM.

· Hierarchy problem (fune-tuning problem)

· Strong CP ploblem

· The number of family

· Neutrino mass

· Dark matter and energy

· Baryon asymmetry

· Grand unification

Those problems must be solved by considering new physics beyond the SM. Actu-
ally, physics beyond the SM such as grand unified theories (GUT), supersymmetry
(SUSY), higher dimensional theories and technicolor theories have been proposed.
In order to explain that why the SM gauge group is SU(3)C × SU(2)L × U(1)Y ,
GUT is proposed.

For example, in the case of SU(5) GUT, when SU(5) is broken down to sub-
group GSM, one generation matter particles of the SM is unified into 10, 5̄ and 1
representation of SU(5) such as

10 =

(
3̄,1,

1

6

√
3

5

)
: (uR)

c ⊕
(
3,2,−2

3

√
3

5

)
: qL ⊕

(
1̄,1,

√
3

5

)
: (eR)

c , (1.1)

5̄ =

(
3̄,1,

1

3

√
3

5

)
: (dR)

c ⊕
(
1̄,2,−1

2

√
3

5

)
: lL , (1.2)
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1 = (1,1, 0) : (νeR)
c. (1.3)

And, SU(5) gauge field with 24 representation is decomposed to

24 = (8,1, 0)⊕ (1,3, 0)⊕ (1,1, 0)⊕
(
3,2,−5

6

√
3

5

)
⊕

(
3̄,2,

5

6

√
3

5

)
, (1.4)

where (8,1, 0), (1,3, 0) and (1,1, 0)0 are representation of SU(3)C , SU(2)L and
U(1)Y gauge boson, respectively. Therefore, the SM gauge bosons are unified, and
three gauge couplings are unified as gs = g =

√
5/3g′ = gGUT at GUT scale. The(

3,2,−5
6

√
3
5

)
and

(
3̄,2, 5

6

√
3
5

)
are extra gauge bosons which can cause proton

decay.
When SO(10) gauge group are broken down to subgroup SU(5)×U(1) in SO(10)

GUT, 16 representation of SO(10) is decomposed to

16 =

(
5̄,

3

2

√
1

10

)
⊕

(
10,−1

2

√
1

10

)
⊕

(
1,−5

2

√
1

10

)
. (1.5)

Hence, one generation of matter particles are unified to a single multiplet with 16
representation of SO(10). In GUT based on E6 gauge group, 16 representation of
SO(10) gauge group is a part of 27 of E6.

Furthermore, when exceptional group E8 is broken down to subgroup E6×SU(3),
248 representation of E8 is decomposed to

248 = (78,1)⊕ (1,8)⊕ (27,3)⊕ (27,3). (1.6)

Here, (27,3) includes all matter particles of the SM. However, there are a lot of
extra particles which do not appear in the SM.

We have studied this problems by using higher-dimensional theories. The ad-
vantage of higher-dimensional theories is that substances including mirror particles
can be reduces using the symmetry breaking concerning extra dimensions, as origi-
nally discusses in superstring theory [1–3]. Hence, a candidate realizing the family
unification is GUTs on a higher-dimensional space-time including an orbifold as an
extra space.1

Many physics beyond the SM have been proposed, but their evidences have not
been discovered. In order to explain the history of universe, we should disclose the
identity of unknown particles such as dark matter and inflaton. Because it is hard
to detect such hidden particles directly, they are supposed to interact with the SM
particles weakly. We also have studied this problems by using higher-dimensional
theories.

The contexts of this thesis are as follows. In Sec. 2, we explain the properties of
orbifold and orbifold breaking which is a kind of symmetry breaking. In Sec. 3, we
review a family unification on the basis of SU(N) gauge theory on 5D space-time,

1 Five-dimensional supersymmetric GUTs on M4 × S1/Z2 possess the attractive feature that
the triplet-doublet splitting of Higgs multiplets is elegantly realized [4, 5].
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M4 × S1/Z2 [6]. In Sec. 4, we investigate the family unification on the basis of
SU(N) gauge theory on 6D space-time, M4 × T 2/ZM (M = 2, 3, 4, 6) [7]. In Sec.
5, we investigate the relationship between the family number of chiral fermion and
the Wilson line phases, based on the orbifold family unification [8]. In Sec. 6, we
predict orbifold family unification models with SU(9) gauge group on a 6D space-
time including the orbifold T 2/Z2, and obtain relations among sfermion masses in the
SUSY extension of models [9]. In Sec. 7, we propose an idea that hidden particles
can be separated according to gauge quantum numbers from the visible ones by
the difference of boundary conditions (BCs) on extra dimensions [10]. Section 8 is
devoted to conclusion and discussion.
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2 Orbifold

Orbifold is the quotient space M/H which is obtained from a manifold M with
some discrete transformation group H, and the space has fixed point (or space).
First, I consider how to generally construct orbifold.

For orbifold M/H, the discrete group H is the direct production of the space
group and discrete rotation group if space is a flat one M = R

n. If the element of
H, g = (θ, v), acts on an arbitrary point yi(i = 1, 2, · · · ,m) of Rn, it transforms as

g : yi → θijy
j + vj, (2.1)

where v is a translation for space group and θ is a discrete rotation. Speaking in
the language of the topological transformation group, a set of g is called the “orbit”
of H for yi, and because a “manifold” is divided by some discrete group, it is called
orbifold. However, orbifold is not manifold because it has fixed points. In fixed
points, the curvature diverges.

In the quotient space R
n/H, the coordinates has the equivalence relation as the

following;
yi ∼ θijy

j + vj. (2.2)

Because R
n is the flat space and H is the discrete group, Rn/H is also flat and

compact from the properties of space group. The quotient space, where the compact
flat space is divided by the discrete rotation group, is orbifold.

The fixed points f for some (θk, v0) is defined by points that satisfy the relation

f = θkf + v0 (2.3)

in the fundamental region. The number of fixed points is defined as

χ = det(1− θ) =
∏
i

4 sin2(πφi) (2.4)

by Lefschetz fixed point theorem. Here, θ is the integer representation matrix and
2πφi are all angles that are integer multiples of 2π/M rotation obtained from ZM

symmetry up to π. If χ = 0, φi = 0, and the space is non-compact orbifold or fixed
surface (torus). Therefore, the number of fixed points is automatically fixed when
ZM is determined.

2.1 S1/Z2 orbifold

2.1.1 Property

The S1/Z2 orbifold is obtained by dividing a circle S1 whose radius is R with
the identification,

S1 : y ∼ y + 2πR , (2.5)

under the Z2 symmetry,
Z2 : y ∼ −y , (2.6)

which is shown in Fig. 2.1.
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Figure 2.1: S1/Z2 orbifold

It follows that when the point y is identified with the point −y on S1/Z2, the
space is regarded as a line segment whose length is πR. The both end points y = 0
and πR are fixed points under the Z2 transformation. The transformations around
those fixed points can be defined as

s0 : y → −y , s1 : y → 2πR− y , t : y → y + 2πR . (2.7)

They satisfy the relation,

s20 = s21 = I , t = s0s1 . (2.8)

2.1.2 Orbifold breaking by inner automorphisms boundary condition

Let us discuss SU(N) gauge theory to consider boundary conditions (BCs) of
gauge, scalar and spinor field under the transformation, using inner auotomophisms.
5D Lagrangian density is given by

L5D = −1

4
F a
MNF

aMN + ψ̄iΓMDMψ + |DMφ|2 , (2.9)

where DM = ∂M − ig5A
a
MT a and F a

MN = ∂MAa
N − ∂NA

a
M + g5f

abcAb
MAc

N , and g5 is
5D gauge coupling.

First, the BCs of gauge field AM ≡ Aa
MT a are determined as

s0 : Aμ(x,−y) = P0Aμ(x, y)P
†
0 , A5(x,−y) = −P0A5(x, y)P

†
0 , (2.10)

s1 : Aμ(x, 2πR− y) = P1Aμ(x, y)P
†
1 , A5(x, 2πR− y) = −P1A5(x, y)P

†
1 , (2.11)

t1 : AM(x, y + 2πR) = UAM(x, y)U †, (2.12)

where P0, P1 and U stand for the representation matrices for the Z2, Z
′
2 and T

transformation, respectively. Those matrices satisfy the relations,

P 2
0 = P 2

1 = I , UU † = I , U = P0P1 . (2.13)

where, P0 and P1 are hermitian matrices because of P0 = P †
0 and P1 = P †

1 .
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Next, the BCs of scalar field φ are determined as

s0 :φ(x,−y) = TΦ[P0]φ(x, y) , (2.14)

s1 :φ(x, 2πR− y) = TΦ[P1]φ(x, y) , (2.15)

t1 :φ(x, y + 2πR) = TΦ[U ]φ(x, y) , (2.16)

where TΦ[P0], TΦ[P1] and TΦ[U ] represent appropriate representation matrices in-
cluding arbitrary sign factors, with the matrices P0, P1 and U . The representation
matrices satisfy

TΦ[P0]
2 = TΦ[P1]

2 = I , TΦ[U ] = TΦ[P0]TΦ[P1] . (2.17)

For example, if φ is the fundamental representation of SU(N) gauge symmetry,

TΦ[P0]φ(x, y) = ηφ0P0φ(x, y) , TΦ[P1]φ(x, y) = ηφ1P1φ(x, y) ,

TΦ[U ]φ(x, y) = ηφ2Uφ(x, y) , (2.18)

where η0, η1 and η2 are intrinsic Z2 parity and they take 1 or −1.
The BCs of spinor field ψ are determined as

s0 :ψ(x,−y) = iΓ5TΨ[P0]ψ(x, y) , (2.19)

s1 :ψ(x, 2πR− y) = iΓ5TΨ[P1]ψ(x, y) , (2.20)

t1 :ψ(x, y + 2πR) = TΨ[U ]ψ(x, y) , (2.21)

where TΨ[P0], TΨ[P1] and TΨ[U ] represent appropriate representation matrices in-
cluding arbitrary sign factors, with the matrices P0, P1 and U . The representation
matrices satisfy

TΨ[P0]
2 = TΨ[P1]

2 = I , TΨ[U ] = TΨ[P0]TΨ[P1] . (2.22)

For example, if ψ is the fundamental representation of SU(N) gauge symmetry,

s0 :ψL(x,−y) = −ηψ0P0ψL(x, y) , ψR(x,−y) = ηψ0P0ψR(x, y)

s1 :ψL(x, 2πR− y) = −ηψ1P1ψL(x, y) , ψR(x, 2πR− y) = ηψ1P1ψR(x, y)

t1 :ψL(x, y + 2πR) = ηψ2UψL(x, y) , ψR(x, y + 2πR) = ηψ2UψR(x, y) . (2.23)

note that Z2 parity of ψL is different from that of ψR. This property is important
to consider chiral theory on 4D.

Let ϕ(P0,P1)(x, y) be a component in a multiplet and have a definite Z2 parity
(P0,P1). Here, ϕ is a generic field and it is applied to scalar field φ, fermion field
ψ or gauge field AM . The Fourier expansion of ϕ(P0,P1)(x, y) is given by

ϕ(+1,+1)(x, y) =
1√
πR

ϕ(0)(x) +

√
2

πR

∞∑
n=1

ϕ(n)(x) cos
n

R
y , (2.24)

ϕ(+1,−1)(x, y) =

√
2

πR

∞∑
n=1

ϕ(n)(x) cos

(
n− 1

2

)
R

y, (2.25)
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ϕ(−1,+1)(x, y) =

√
2

πR

∞∑
n=1

ϕ(n)(x) sin

(
n− 1

2

)
R

y , (2.26)

ϕ(−1,−1)(x, y) =

√
2

πR

∞∑
n=1

ϕ(n)(x) sin
n

R
y . (2.27)

Upon compactification, massless mode ϕ(0)(x) appears on 4D when Z2 parities are
(P0,P1) = (+1,+1). The massive Kaluza-Kein (KK) modes ϕ(n)(x) do not appear
in our low energy world because they have heavy masses of O(1/R), with the same
magnitude as the unification scale. Unless all components of non-singlet field have
a common Z2 parity, a symmetry reduction occurs upon compactification because
zero modes are absent in fields with an odd parity. This type of symmetry breaking
mechanism is called orbifold breaking mechanism.2

For example, if the representation matrices P0 and P1 are

P0 = diag
( N︷ ︸︸ ︷
+1, · · · ,+1,+1, · · · ,+1,−1, · · · ,−1,−1, · · · ,−1

)
,

P1 = diag
(
+1, · · · ,+1︸ ︷︷ ︸

p

,−1, · · · ,−1︸ ︷︷ ︸
q

,+1, · · · ,+1︸ ︷︷ ︸
r

,−1, · · · ,−1︸ ︷︷ ︸
s

)
, (2.28)

where s = N − p− q − r, SU(N) gauge symmetry is broken down as

SU(N) → SU(p)× SU(q)× SU(r)× SU(s)× U(1)3−κ (2.29)

where κ is the number of SU(0) and SU(1). The SU(1) stands for U(1) and SU(0)

means nothing. In this case, the gauge field A
α(P0,P1)
M are divided as

Aα(+1,+1)
μ , Aβ(+1,−1)

μ , Aβ(−1,+1)
μ , Aβ(−1,−1)

μ ,

A
α(−1,−1)
5 , A

β(−1,+1)
5 , A

β(+1,−1)
5 , A

β(+1,+1)
5 , (2.30)

where the index α indicates the gauge generators of unbroken gauge symmetry and
the index β indicates the gauge generators of broken gauge symmetry. This shows
that the gauge symmetry is unbroken when gauge field contains zero modes.

2.1.3 Orbifold breaking by outer automorphisms boundary condition

Let us discuss SU(N) gauge theory to consider BCs of gauge, scalar and spinor
field under the transformation, using outer automorphisms. The BCs of gauge field
Aa
MT a are generated by a conjugation transformation,

s0 : Aa
μ(x,−y)T a = −Aμ(x, y)(T

a)∗ ,

Aa
5(x,−y)T a = A5(x, y)(T

a)∗ , (2.31)

t1 : Aa
M(x, y + 2πR)T a = Aa

M(x, y)T a . (2.32)

2 The Z2 orbifolding was used in superstring theory [11] and heterotic M -theory [12, 13]. In
field theoretical models, it was applied to the reduction of global SUSY [14,15], which is an orbifold
version of Scherk-Schwarz mechanism [16,17], and then to the reduction of gauge symmetry [18].
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This is an outer automorphism transformation. Such BCs relate particles with a
representation R to that with the conjugated one R as conjugate BCs [19]. In this
case of BCs, SU(N) gauge symmetry is broken down as

U(1) → nothing ,

SU(N) → SO(N) , (2.33)

and the rank is reduced (for n > 2) [20]. In the case of other gauge symmetry,
symmetries are broken down as

SO(p+ q) → SO(p)× SO(q) ,

SU(2n) → Sp(n) ,

E6 → Sp(4) , E6 → F4 .

Let us consider a U(1) gauge theory as an example. In the case of U(1), the BCs
(2.31) and (2.32) are represented such as

s0 : Aμ(x,−y) = −Aμ(x, y) , A5(x,−y) = A5(x, y) , (2.34)

t1 : AM(x, y + 2πR) = AM(x, y) . (2.35)

The 5D U(1) gauge fields AM are given by the Fourier expansions:

Aμ(x, y) =
2√
πR

∞∑
n=1

A(n)
μ (x) sin

ny

R
, (2.36)

A5(x, y) =
1√
2πR

A
(0)
5 (x) +

2√
πR

∞∑
n=1

A
(n)
5 (x) cos

ny

R
. (2.37)

The BCs of scalar field φ and spinor field ψ are determined as

s0 : φ(x,−y) = φ∗(x, y) , (2.38)

t1 : φ(x, y + 2πR) = eiβφφ(x, y) , (2.39)

s0 : ψ(x,−y) = iψc(x, y) , (2.40)

t1 : ψ(x, y + 2πR) = eiβψψ(x, y) , (2.41)

where βφ and βψ are arbitrary real constants and ψc = eiγcΓ2ψ∗. The ψc corresponds
to a charge conjugation of ψ on 4D space-time, and γc is an arbitrary real number.
From the BCs of (2.38) - (2.41), φ and ψ are given by the Fourier expansion:

φ(x, y) =
1

2
√
πR

∞∑
n=−∞

φ(n)(x)ei
2πn+βφ

2πR
y , (2.42)

ψ(x, y) =
1

2
√
πR

∞∑
n=−∞

(
ξ
(n)
α (x)

iξ̄(n)α̇(x)

)
ei

2πn+βψ
2πR

y , (2.43)

where φ(n)(x) are 4D real scalar fields (φ(n)∗(x) = φ(n)(x)), ξ
(n)
α (x) are 4D 2-component

spinor fields, and α and α̇ are spinor indices.
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2.2 T 2/ZM orbifold

In this subsection, let us explain SU(N) gauge theory on M4×T 2/ZM . Because
the properties of T 2/ZM orbifold is similar to previous subsection, we easily sum-
marize it. The details of the properties and orbifold breaking mechanism of T 2/ZM
orbifold are described in appendix.

Let z be the complex coordinate of T 2/ZM . Here, T 2 is constructed from a
two-dimensional SO(4), SU(3), SO(5) and G2 lattice on T 2/Z2, T

2/Z3, T
2/Z4 and

T 2/Z6, respectively (Fig. 2.2).

(a) T 2/Z2 orbifold (b) T 2/Z3 orbifold

(c) T 2/Z4 orbifold (d) T 2/Z6 orbifold

Figure 2.2: T 2/ZM orbifold

On T 2, the point z is equivalent to the points z + e1 and z + e2 where e1 and
e2 are the basis vectors. The orbifold T 2/ZM is obtained by dividing T 2 by the ZM

transformation: z → θz(θM = 1). As the point z is identified with the point θz on
T 2/ZM , the space is regarded as a dark area in Fig. 2.2, respectively. The fixed
point zf for the ZM transformation satisfies

zf = θkzf + ne1 +me2 , (2.44)

where k, n and m are integers. In Fig. 2.2, the fixed points is shown by filled circle.
Basis vector, transformation properties and their representation matrices of T 2/ZM
are summarized in Table 2.1. [21, 22]
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M Basis vectors (e1, e2) Transformation properties Representation matrices

2 1, i z → −z, z → e1 − z, z → e2 − z P0, P1, P2

3 1, e2πi/3 z → e2πi/3z, z → e2πi/3z + e1 Θ0, Θ1

4 1, i z → iz, z → e1 − z Q0, P1

6 1, (−3 + i
√
3)/2 z → eπi/3z, z → e1 − z Ξ0, P1

Table 2.1: The characters of T 2/ZM

3 Review of Orbifold Family Unification on M 4 ×
S1/Z2

In this section, we review family unification on the basis of SU(N) gauge theory
on 5D space-time, M4 × S1/Z2 [6].

With suitable diagonal representation matrices P0, P1 such as (2.28), the SU(N)
gauge group is broken down into its subgroup such that

SU(N) → SU(p)× SU(q)× SU(r)× SU(s)× U(1)3−κ , (3.1)

where s = N − p− q− r and κ is the number of SU(0) and SU(1), and SU(1) stand
for U(1) and SU(0) means nothing.

A fermion with spin 1/2 in 5D is regarded as a Dirac fermion or a pair of
Weyl fermions with opposite chiralities in 4D. After the breakdown of SU(N), Weyl
fermion with the rank k totally antisymmetric tensor representation [N, k]L(R), whose
dimension is NCk, is decomposed as

[N, k]L =
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

(pCl1 , qCl2 , rCl3 , sCl4)L , (3.2)

[N, k]R =
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

(pCl1 , qCl2 , rCl3 , sCl4)R , (3.3)

where l4 = k − l1 − l2 − l3, and our notation is that nCl for l > n and n > 0. The
Z2 parity of the representation (pCl1 , qCl2 , rCl3 , sCl4)L(R) are given by

P0L(R) = (−1)k+l1+l2η[N,k]L(R)
, P1L(R) = (−1)k+l1+l3η′[N,k]L(R)

, (3.4)

where η[N,k]L(R)
and η′[N,k]L(R)

are the intrinsic Z2 and Z
′
2, respectively. In order to the

kinetic term is invariant under the Z2 parity transformation, (pCl1 , qCl2 , rCl3 , sCl4)L
and (pCl1 , qCl2 , rCl3 , sCl4)R should have opposite Z2 parity to each other:

η[N,k]L = −η[N,k]R , η′[N,k]L = −η′[N,k]R . (3.5)

Therefore, P0L = −P0R and P1L = −P1R 4D Weyl fermions having even Z2

parities P0L(R) = P1L(R) = +1 compose chiral fermions in the SM.
In order to remove zero mode of unwelcome particles such as mirror particles from

low-energy spectrum, the survival hypothesis [23, 24], which is proposed by Georgi,
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is adopted. Here, the survival hypothesis is the assumption that if a symmetry is
broken down into a smaller symmetry at a scaleMSB, then any fermion masses terms
invariant under the smaller group induce fermion masses of O(MSB).

Let consider two gauge symmetry breaking pattern:

SU(N) → SU(5)× SU(q)× SU(r)× SU(s)× U(1)3−κ

SU(N) → SU(3)× SU(2)× SU(r)× SU(s)× U(1)3−κ

In the case of the gauge symmetry breaking pattern SU(N) → SU(5)×SU(q)×
SU(r) × SU(s), using the survival hypothesis and the equivalence of (5R)

c and
(1̄0R)

c with 5̄L and 10L, respectively, the number of 5̄ and 10 representations for
left-handed Weyl fermions are

n5̄ ≡ �5̄L − �5L + �5R − �5̄R

=
∑
l1=1,4

k−l1∑
l2=0

k−l1−l2∑
l3=0

(−1)l1 (PL − PR) qCl2 · rCl3 · sCl4 , (3.6)

n10 ≡ �10L − �10L + �10R − �10R

=
∑
l1=2,4

k−l1∑
l2=0

k−l1−l2∑
l3=0

(−1)l1 (PL − PR) qCl2 · rCl3 · sCl4 , (3.7)

where � represents the number of each multiplet and

PL(R) =
1− P0L(R)

2

1− P1L(R)

2
. (3.8)

In [6], many solutions which give rise to three families n5̄ = n10 = 3 have been
found.

Next, in the case of gauge symmetry breaking pattern SU(N) → SU(3) ×
SU(2) × SU(r) × SU(s) × U(1)3−κ, using the survival hypothesis and the equiv-
alence on charge conjugation, the flavor number of each chiral fermion are

nd̄ = � (3̄,1)L − � (3,1)L + � (3,1)R − � (3̄,1)R

=
∑

(l1,l2)=(2,2),(1,0)

k−l1−l2∑
l3=0

(−1)l1+l2 (PL − PR) rCl3 · sCl4 , (3.9)

nl = � (1,2)− � (1,2)L + � (1,2)R − � (1,2)R

=
∑

(l1,l2)=(3,1),(0,1)

k−l1−l2∑
l3=0

(−1)l1+l2 (PL − PR) rCl3 · sCl4 , (3.10)

nū = � (3̄,1)− � (3,1)L + � (3,1)R − � (3̄,1)R

=
∑

(l1,l2)=(2,0),(1,2)

k−l1−l2∑
l3=0

(−1)l1+l2 (PL − PR) rCl3 · sCl4 , (3.11)

nē = � (1,1)− � (1,1)L + � (1,1)R − � (1,1)R

=
∑

(l1,l2)=(0,2),(3,0)

k−l1−l2∑
l3=0

(−1)l1+l2 (PL − PR) rCl3 · sCl4 , (3.12)
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nq = � (3,2)− � (3̄,2)L + � (3̄,2)R − � (3,2)R

=
∑

(l1,l2)=(1,1),(2,1)

k−l1−l2∑
l3=0

(−1)l1+l2 (PL − PR) rCl3 · sCl4 . (3.13)

The total number of heavy neutrino singlets (νe)
c is

nν̄ = � (1,1) + � (1,1)L + � (1,1)R + � (1,1)R

=
∑

(l1,l2)=(0,0),(3,2)

k−l1−l2∑
l3=0

(−1)l1+l2 (PL − PR) rCl3 · sCl4 . (3.14)

In [6], it is found that there is no solution satisfying nd̄ = nl = nū = nē = nq = nν̄ =
3.

Therefore, we think that it is important to expand space dimension. In next
section, we study family unification on 6D M4 × T 2/ZM .
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4 Orbifold family unification on M 4 × T 2/ZM

In this section, we study the possibility of family unification on basis of SU(N)
gauge theory on M4 × T 2/ZM (M = 2, 3, 4, 6), in the framework of 6D SU(N)
GUTs.

4.1 ZM orbifold breaking and formulas for numbers of species

Fields possess discrete charges relating eigenvalues of representation matrices
for ZM transformation. The discrete charges are assigned as numbers n/M (n =
0, 1, · · · ,M − 1) and e2πin/M are elements of ZM transformation. We refer to them
as ZM elements.

A fermion with spin 1/2 in 6D is regarded as a Dirac fermion or a pair of Weyl
fermions with opposite chiralities in 4D. There are two choices in a 6D Weyl fermion,
i.e.,

Ψ+ =
1 + Γ7

2
Ψ =

(
1−γ5
2

0
0 1+γ5

2

)(
Ψ1

Ψ2

)
=

(
Ψ1
L

Ψ2
R

)
, (4.1)

Ψ− =
1− Γ7

2
Ψ =

(
1+γ5
2

0
0 1−γ5

2

)(
Ψ1

Ψ2

)
=

(
Ψ1
R

Ψ2
L

)
, (4.2)

where Ψ+ and Ψ− are fermions with positive and negative chirality, respectively,
and Γ7 and γ5 are the chirality operators for 6D fermions and 4D ones, respectively.
3 Here and hereafter, the subscript ± stands for the chiralities on 6D.

From the ZM invariance of kinetic term and the transformation property of
the covariant derivatives ZM : Dz → ρDz and Dz → ρDz with ρ = e−2πi/M and
ρ = e2πi/M , the following relations hold between the ZM element of Ψ1

L(R) and

Ψ2
R(L),

PΨ2
R
= ρPΨ1

L
, PΨ1

R
= ρPΨ2

L
, (4.3)

where z ≡ x5 + ix6 and z ≡ x5 − ix6.
Chiral gauge theories including Weyl fermions on even dimensional space-time

become, in general, anomalous in the presence of gauge anomalies, gravitational
anomalies, mixed anomalies and/or global anomaly [26, 27]. In SU(N) GUTs on
6D space-time, the global anomaly is absent because of Π6(SU(N)) = 0 for N ≥ 4.
Here, Π6(SU(N)) is the 6-th homotopy group of SU(N). In our analysis, we consider
a massless Dirac fermion (Ψ+,Ψ−) under the SU(N) gauge group (N ≥ 8) on 6D
space-time. In this case, anomalies are canceled out by the contributions from
fermions with different chiralities

4.2 Formulae for numbers of species

With suitable diagonal representation matrices Ra (a = 0, 1, 2 for T 2/Z2 and
a = 0, 1 for T 2/Z3, T

2/Z4 and T 2/Z6), the SU(N) gauge group is broken down into
its subgroup such that

SU(N) → SU(p1)× SU(p2)× · · · × SU(pn)× U(1)n−m−1 , (4.4)
3 For more detailed explanations for 6D fermions, see Ref. [25].
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where N =
∑n

i=1 pi. Here and hereafter, SU(1) unconventionally stands for U(1),
SU(0) means nothing and m is a sum of the number of SU(0) and SU(1). The
concrete form of Ra will be given in the next section.

After the breakdown of SU(N), the rank k totally antisymmetric tensor repre-
sentation [N, k], whose dimension is NCk, is decomposed into a sum of multiplets of
the subgroup SU(p1)× · · · × SU(pn) as

[N, k] =
k∑

l1=0

k−l1∑
l2=0

· · ·
k−l1−···−ln−2∑

ln−1=0

(p1Cl1 , p2Cl2 , · · · , pnCln) , (4.5)

where ln = k − l1 − · · · − ln−1 and our notation is that nCl = 0 for l > n and l < 0.
Here and hereafter, we use nCl instead of [n, l] in many cases. We sometimes use
the ordinary notation for representations too, e.g., 5 and 5 in place of 5C1 and 5C4.

The [N, k] is constructed by the antisymmetrization of k-ple product of the
fundamental representation N = [N, 1]:

[N, k] = (N × · · · ×N )A . (4.6)

We define the intrinsic ZM elements ηak such that

(N × · · · ×N)A → ηak(RaN × · · · ×RaN)A . (4.7)

By definition, ηak take a value of ZM elements, i.e., e2πin/M (n = 0, 1, · · · ,M − 1).
Note that ηak for Ψ+ are not necessarily same as those of Ψ−, and the chiral symmetry
is still respected.

Let us investigate the family unification in two cases. Each breaking pattern is
given by

SU(N) → SU(5)× SU(p2)× · · · × SU(pn)× U(1)n−m−1 , (4.8)

SU(N) → SU(3)× SU(2)× SU(p3)× · · · × SU(pn)× U(1)n−m−1 , (4.9)

where SU(3) and SU(2) are identified with SU(3)C and SU(2)L in the SM gauge
group.

4.2.1 Formulae for SU(5) multiplets

We study the breaking pattern (4.8). After the breakdown of SU(N), [N, k] is
decomposed as

[N, k] =
k∑

l1=0

k−l1∑
l2=0

· · ·
k−l1−···−ln−2∑

ln−1=0

(5Cl1 , p2Cl2 , · · · , pnCln) . (4.10)

As mentioned before, 5C0, 5C1, 5C2, 5C3, 5C4 and 5C5 stand for representations 1,
5, 10, 10, 5 and 1. 4

4 We denote the SU(5) singlet relating to 5C5 as 1, for convenience sake, to avoid the confusion
over singlets.
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Utilizing the survival hypothesis and the equivalence of (5R)
c and (10R)

c with
5L and 10L, respectively,

5 we write the numbers of 5 and 10 representations for
left-handed Weyl fermions as

n5̄ ≡ �5L − �5L + �5R − �5R , (4.11)

n10 ≡ �10L − �10L + �10R − �10R , (4.12)

where � represents the number of each multiplet.
The SU(5) singlets are regarded as the right-handed neutrinos, which can obtain

heavy Majorana masses among themselves as well as the Dirac masses with left-
handed neutrinos. Some of them can be involved in see-saw mechanism [28–30].
The total number of SU(5) singlets (with heavy masses) is given by

n1 ≡ �1L + �1L + �1R + �1R . (4.13)

Formulae for n5̄, n10 and n1 from a Dirac fermion (Ψ+,Ψ−) whose intrinsic ZM

elements are (ηak+, η
a
k−)are given by

n5̄ =
∑
±

∑
l1=1,4

(−1)l1

⎛
⎜⎝ ∑

{l2,··· ,ln−1}na
l1L±

−
∑

{l2,··· ,ln−1}na
l1R±

⎞
⎟⎠ p2Cl2 · · · pnCln , (4.14)

n10 =
∑
±

∑
l1=2,3

(−1)l1

⎛
⎜⎝ ∑

{l2,··· ,ln−1}na
l1L±

−
∑

{l2,··· ,ln−1}na
l1R±

⎞
⎟⎠ p2Cl2 · · · pnCln , (4.15)

n1 =
∑
±

∑
l1=0,5

⎛
⎜⎝ ∑

{l2,··· ,ln−1}na
l1L±

+
∑

{l2,··· ,ln−1}na
l1R±

⎞
⎟⎠ p2Cl2 · · · pnCln , (4.16)

where pn = N − ∑n−1
i=1 pi and ln = N − ∑n−1

i=1 li.
∑

± represents the summation
of contributions from Ψ+ and Ψ−. Furthermore,

∑
{l2,··· ,ln−1}na

l1L±
means that the

summations over lj = 0, · · · , k − l1 − · · · − lj−1 (j = 2, · · · , n − 1) are carried
out under the condition that lj should satisfy specific relations on T 2/ZM given in
Table 4.1. The relations will be confirmed in the next section. In the same way,∑

{l2,··· ,ln−1}na
l1R±

means that the summations over lj = 0, · · · , k − l1 − · · · − lj−1

(j = 2, · · · , n− 1) are carried out under the condition that lj should satisfy specific
relations nal1R± = nal1L± ∓ 1 (mod M) for Ψ±. The formulae (4.14) – (4.16) will
be rewritten in more concrete form for each T 2/ZM (M = 2, 3, 4, 6), by the use of
projection operators, in the next section.

5 As usual, (5R)
c and (10R)

c represent the charge conjugate of 5R and 10R, respectively. Note
that (5R)

c and (10R)
c transform as the left-handed Weyl fermions under the 4-dimensional Lorentz

transformations.
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Orbifolds ρkηak± Specific relations

T 2/Z2

(−1)kη0k± = (−1)α± n0
l1L± ≡ l2 + l3 + l4 = 2− l1 − α± (mod 2)

(−1)kη1k± = (−1)β± n1
l1L± ≡ l2 + l5 + l6 = 2− l1 − β± (mod 2)

(−1)kη2k± = (−1)γ± n2
l1L± ≡ l3 + l5 + l7 = 2− l1 − γ± (mod 2)

T 2/Z3

(e−2πi/3)kη0k± = (e2πi/3)α± n0
l1L± ≡ l2 + l3 + 2(l4 + l5 + l6)

= 3− l1 − α± (mod 3)

(e−2πi/3)kη1k± = (e2πi/3)β±
n1
l1L± ≡ l4 + l7 + 2(l2 + l5 + l8)

= 3− l1 − β± (mod 3)

T 2/Z4

(−i)kη0k± = iα± n0
l1L± ≡ l2 + 2(l3 + l4) + 3(l5 + l6)

= 4− l1 − α± (mod 4)

(−1)kη1k± = (−1)β± n1
l1L± ≡ l3 + l5 + l7 = 2− l1 − β± (mod 2)

T 2/Z6

(e−πi/3)kη0k± = (eπi/3)α±

n0
l1L± ≡ l2 + 2(l3 + l4) + 3(l5 + l6)

+4(l7 + l8) + 5(l9 + l10)

= 6− l1 − α± (mod 6)

(−1)kη1k± = (−1)β±
n1
l1L± ≡ l3 + l5 + l7 + l9 + l11

= 2− l1 − β± (mod 2)

Table 4.1: The specific relations for lj for SU(5) multiplets.

4.2.2 Formulae for the SM multiplets

We study the breaking pattern (4.9). After the breakdown of SU(N), [N, k] is
decomposed as

[N, k] =
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

· · ·
k−l1−···−ln−2∑

ln−1=0

(3Cl1 , 2Cl2 , p3Cl3 , · · · , pnCln) . (4.17)

The flavor numbers of down-type anti-quark singlets (dR)
c, lepton doublets lL,

up-type anti-quark singlets (uR)
c, positron-type lepton singlets (eR)

c, and quark
doublets qL are denoted as nd̄, nl, nū, nē and nq. Using the survival hypothesis and
the equivalence on charge conjugation, we define the flavor number of each chiral
fermion as

nd̄ ≡ �(3C2, 2C2)L − �(3C1, 2C0)L + �(3C1, 2C0)R − �(3C2, 2C2)R , (4.18)

nl ≡ �(3C3, 2C1)L − �(3C0, 2C1)L + �(3C0, 2C1)R − �(3C3, 2C1)R , (4.19)

nū ≡ �(3C2, 2C0)L − �(3C1, 2C2)L + �(3C1, 2C2)R − �(3C2, 2C0)R , (4.20)

nē ≡ �(3C0, 2C2)L − �(3C3, 2C0)L + �(3C3, 2C0)R − �(3C0, 2C2)R , (4.21)

nq ≡ �(3C1, 2C1)L − �(3C2, 2C1)L + �(3C2, 2C1)R − �(3C1, 2C1)R , (4.22)

where � again represents the number of each multiplet. The total number of (heavy)
neutrino singlets (νR)

c is denoted nν̄ and defined as

nν̄ ≡ �(3C0, 2C0)L + �(3C3, 2C2)L + �(3C3, 2C2)R + �(3C0, 2C0)R. (4.23)
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Formulae for the SM species including neutrino singlets are given by

nd̄ =
∑
±

∑
(l1,l2)=(2,2),(1,0)

(−1)l1+l2

⎛
⎜⎝ ∑

{l3,··· ,ln−1}na
l1l2L±

−
∑

{l3,··· ,ln−1}na
l1l2R±

⎞
⎟⎠ p3Cl3 · · · pnCln ,

(4.24)

nl =
∑
±

∑
(l1,l2)=(3,1),(0,1)

(−1)l1+l2

⎛
⎜⎝ ∑

{l3,··· ,ln−1}na
l1l2L±

−
∑

{l3,··· ,ln−1}na
l1l2R±

⎞
⎟⎠ p3Cl3 · · · pnCln ,

(4.25)

nū =
∑
±

∑
(l1,l2)=(2,0),(1,2)

(−1)l1+l2

⎛
⎜⎝ ∑

{l3,··· ,ln−1}na
l1l2L±

−
∑

{l3,··· ,ln−1}na
l1l2R±

⎞
⎟⎠ p3Cl3 · · · pnCln ,

(4.26)

nē =
∑
±

∑
(l1,l2)=(0,2),(3,0)

(−1)l1+l2

⎛
⎜⎝ ∑

{l3,··· ,ln−1}na
l1l2L±

−
∑

{l3,··· ,ln−1}na
l1l2R±

⎞
⎟⎠ p3Cl3 · · · pnCln ,

(4.27)

nq =
∑
±

∑
(l1,l2)=(1,1),(2,1)

(−1)l1+l2

⎛
⎜⎝ ∑

{l3,··· ,ln−1}na
l1l2L±

−
∑

{l3,··· ,ln−1}na
l1l2R±

⎞
⎟⎠ p3Cl3 · · · pnCln ,

(4.28)

nν̄ =
∑
±

∑
(l1,l2)=(0,0),(3,2)

⎛
⎜⎝ ∑

{l3,··· ,ln−1}na
l1l2L±

+
∑

{l3,··· ,ln−1}na
l1l2R±

⎞
⎟⎠ p3Cl3 · · · pnCln , (4.29)

where
∑

{l3,··· ,ln−1}na
l1l2L±

means that the summations over lj = 0, · · · , k−l1−· · ·−lj−1

(j = 3, · · · , n− 1) are carried out under the condition that lj should satisfy specific
relations on T 2/ZM given in Table 4.2. The relations will be confirmed in the
next section. In the same way,

∑
{l3,··· ,ln−1}na

l1l2R±
means that the summations over

lj = 0, · · · , k− l1 − · · · − lj−1 (j = 3, · · · , n− 1) are carried out under the condition
that lj should satisfy specific relations nal1l2R± = nal1l2L± ∓ 1 (mod M) for Ψ±. The
formulae (4.24) – (4.29) will be also rewritten in more concrete form for each T 2/ZM ,
by the use of projection operators, in the next section.

4.3 Total numbers of models with three families

We investigate the family unification in SU(N) GUTs for each T 2/ZM (M =
2, 3, 4, 6). Let us present total numbers of models with the three families, for refer-
ence. Total numbers of models with the three families of SU(5) multiplets and the
SM multiplets, which originate from a Dirac fermion whose representation is [N, k]
(k ≤ N/2) of SU(N), are summarized up to SU(12) in Table 4.5 and up to SU(13)

18



Orbifolds ρkηak± Specific relations

T 2/Z2

(−1)kη0k± = (−1)α± n0
l1l2L± ≡ l3 + l4 = 2− l1 − l2 − α± (mod 2)

(−1)kη1k± = (−1)β± n1
l1l2L± ≡ l5 + l6 = 2− l1 − l2 − β± (mod 2)

(−1)kη2k± = (−1)γ± n2
l1l2L± ≡ l3 + l5 + l7 = 2− l1 − γ± (mod 2)

T 2/Z3

(e−2πi/3)kη0k± = (e2πi/3)α± n0
l1l2L± ≡ l3 + 2(l4 + l5 + l6)

= 3− l1 − l2 − α± (mod 3)

(e−2πi/3)kη1k± = (e2πi/3)β±
n1
l1l2L± ≡ l4 + l7 + 2(l5 + l8)

= 3− l1 − 2l2 − β± (mod 3)

T 2/Z4

(−i)kη0k± = iα± n0
l1l2L± ≡ 2(l3 + l4) + 3(l5 + l6)

= 4− l1 − l2 − α± (mod 4)

(−1)kη1k± = (−1)β± n1
l1l2L± ≡ l3 + l5 + l7 = 2− l1 − β± (mod 2)

T 2/Z6

(e−πi/3)kη0k± = (eπi/3)α±

n0
l1l2L± ≡ 2(l3 + l4) + 3(l5 + l6)

+4(l7 + l8) + 5(l9 + l10)

= 6− l1 − l2 − α± (mod 6)

(−1)kη1k± = (−1)β±
n1
l1l2L± ≡ l3 + l5 + l7 + l9 + l11

= 2− l1 − β± (mod 2)

Table 4.2: The specific relations for lj for the SM multiplets.

in Table 4.10, respectively. In the Tables, the hyphen (-) means no models. We omit
the total numbers of models from [N,N−k], because each flavor number from [N, k]
with intrinsic ZM elements ηak± is equal to that from [N,N − k] with appropriate
ones ηaN−k±.

4.3.1 Numbers of SU(5) multiplets on T 2/ZM

After the breakdown SU(N) → SU(5) × SU(p2) × · · · × SU(pn) × U(1)n−m+1,
[N, k]± is decomposed as

[N, k]± =
k∑

l1=0

k−l1∑
l2=0

· · ·
k−l1−···−ln−1∑

ln−1=0

(5Cl1 , p2Cl2 , · · · , pnCln)± , (4.30)

where ln = k − l1 − l2 − · · · − ln−1.
The ZM elements of the representation (p1Cl1 , p2Cl2 , · · · , pnCln)± are given by

Table 4.3. Using the assignment of ZM elements, we find that zero modes appear if
the specific relations of Table 4.1 are satisfied.

Utilizing the survival hypothesis and equivalence of charge conjugation, we obtain
the formulate the formulae (4.14) – (4.16). The ZM projection operator that picks
up zero modes of left- and right-handed ones represents PM±. For each T 2/ZM , the
ZM projection operators are defined as

P
(θ,θ,θ)
2± ≡ 1

8
(1 + θ̄P0±)(1 + θ̄P1±)(1 + θ̄P2±) for T 2/Z2 , (4.31)
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Orbifolds n the ZM elements

T 2/Z2 8

P0± = (−1)l1+l2+l3+l4+α±

P1± = (−1)l1+l2+l5+l6+β±

P2± = (−1)l1+l3+l5+l7+γ±

T 2/Z3 9
P0± = ωl1+l2+l3+2(l4+l5+l6)+α±

P1± = ωl1+l4+l7+2(l2+l5+l8)+β±

T 2/Z4 8
P0± = il1+l2+2(l3+l4)+3(l5+l6)+α±

P1± = (−1)l1+l3+l5+l7+β±

T 2/Z6 12
P0± = ρl1+l2+2(l3+l4)+3(l5+l6)+4(l7+l8)+5(l9+l10)+α±

P1± = (−1)l1+l3+l5+l7+l9+l11+β±

Table 4.3: The ZM elements for each T 2/ZM

P
(θ,θ)
3± ≡ 1

9
(1 + θ̄P0± + θ̄2P2

0±)(1 + θ̄P1± + θ̄2P2
1±) for T 2/Z3 , (4.32)

P
(θ,θ′)
4± ≡ 1

8
(1 + θ̄P0± + θ̄2P2

0± + θ̄3P3
0±)(1 + θ̄′P1±) for T 2/Z4 , (4.33)

P
(θ,θ′)
6± ≡ 1

12
(1 + θ̄P0± + θ̄2P2

0± + θ̄3P3
0± + θ̄4P4

0± + θ̄5P5
0±)

× (1 + θ̄′P1±) for T 2/Z6 . (4.34)

Using the ZM projection operators, the formulae (4.14) – (4.16) are rewritten as

n5̄ =
∑
l1=1,4

k−l1∑
l2=0

· · ·
k−l1−···−ln−2∑

ln−1=0

(−1)l1

× (
PM+ − P ′

M+ + PM− − P ′
M−

)
p2Cl2 · · · pnCln , (4.35)

n10 =
∑
l1=2,3

k−l1∑
l2=0

· · ·
k−l1−···−ln−2∑

ln−1=0

(−1)l1

× (
PM+ − P ′

M+ + PM− − P ′
M−

)
p2Cl2 · · · pnCln , (4.36)

n1 =
∑
l1=0,5

k−l1∑
l2=0

· · ·
k−l1−···−ln−2∑

ln−1=0

(
PM+ + P ′

M+ + PM− + P ′
M−

)
p2Cl2 · · · pnCln . (4.37)

Here, we give a list of ZM projection operator in Table 4.4.
Total numbers of models with the three families of SU(5) multiplets, which

originate from a Dirac fermion whose representation is [N, k] (k ≤ N/2) of SU(N),
are summarized up to SU(12) in Table 4.5.

Here, we give some examples for representations and BCs to derive n5̄ = n10 = 3,
for each T 2/ZM orbifold, in Table 4.6 – 4.9.
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Orbifolds PM+ P ′
M+ PM− P ′

M−

T 2/Z2 P
(1,1,1)
2+ P

(−1,−1,−1)
2+ P

(1,1,1)
2− P

(−1,−1,−1)
2−

T 2/Z3 P
(1,1)
3+ P

(ω,ω)
3+ P

(1,1)
3− P

(ω̄,ω̄)
3−

T 2/Z4 P
(1,1)
4+ P

(i,−1)
4+ P

(1,1)
4− P

(−i,−1)
4−

T 2/Z6 P
(1,1)
6+ P

(ρ,−1)
6+ P

(1,1)
6− P

(ρ̄,−1)
6−

Table 4.4: The ZM projection operator for picking up zero modes.

T 2/Z2 T 2/Z3 T 2/Z4 T 2/Z6

SU(8) -
[8,3]:24 [8,3]:14 [8,3]:28

[8,4]:12 [8,4]:16 [8,4]:20

SU(9)
[9,3]:192 [9,3]:182 [9,3]:142 [9,3]:512

[9,4]:348 [9,4]:32 [9,4]:800

SU(10) -

[10,3]:852 [10,3]:160 [10,3]:2484

[10,4]:1308 [10,4]:92 [10,4]:2654

[10,5]:48 [10,5]:1532

SU(11)

[11,3]:768 [11,3]:1608 [11,3]:456 [11,3]:6530

[11,4]:768 [11,4]:1716 [11,4]:436 [11,4]:6768

[11,5]:1794 [11,5]:186 [11,5]:5540

SU(12)

[12,3]:1104 [12,3]:2214 [12,3]:748 [12,3]:17084

[12,4]:1020 [12,4]:676 [12,4]:13692

[12,5]:534 [12,5]:10498

[12,6]:632 [12,6]:13188

Table 4.5: Total numbers of models with the three families of SU(5) multiplets.

[N, k] (p1, p2, p3, p4, p5, p6, p7, p8) (α+, β+, γ+) (α−, β−, γ−)

[9,3] (5,0,0,0,3,0,0,1) (0,1,1) (0,0,1)

[11,3] (5,0,1,0,4,0,1,0) (0,0,1) (1,1,0)

[11,4] (5,0,3,1,0,1,1,0) (0,0,0) (0,0,1)

[12,3] (5,2,0,0,2,0,1,2) (1,0,1) (0,0,0)

Table 4.6: Examples for the three families of SU(5) from T 2/Z2.
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[N, k] (p1, p2, p3, p4, p5, p6, p7, p8, p9) (α+, β+) (α−, β−)

[8,3] (5,0,0,0,3,0,0,0,0) (2,0) (2,2)

[8,4] (5,1,1,0,1,0,0,0,0) (0,0) (2,2)

[9,3] (5,0,0,2,0,1,0,0,1) (2,0) (2,1)

[9,4] (5,0,2,0,0,0,0,2,0) (2,2) (0,2)

[10,3] (5,0,0,0,3,2,0,0,0) (2,0) (2,2)

[10,4] (5,0,0,1,0,1,1,1,1) (2,2) (2,2)

[10,5] (5,1,0,0,1,0,2,0,1) (0,0) (0,0)

[11,3] (5,1,0,0,1,4,0,0,0) (0,0) (2,1)

[11,4] (5,2,2,0,0,1,0,1,0) (1,2) (2,1)

[11,5] (5,1,1,1,1,0,0,0,2) (0,1) (1,1)

[12,3] (5,0,0,3,3,0,0,0,1) (2,0) (0,2)

[12,4] (5,0,3,1,0,1,0,2,0) (1,2) (0,1)

Table 4.7: Examples for the three families of SU(5) from T 2/Z3.

[N, k] (p1, p2, p3, p4, p5, p6, p7, p8) (α+, β+) (α−, β−)

[8,3] (5,0,0,0,0,0,3,0) (2,1) (0,0)

[8,4] (5,0,0,3,0,0,0,0) (0,0) (2,0)

[9,3] (5,3,0,0,0,0,0,1) (1,0) (0,1)

[9,4] (5,0,2,0,0,0,1,1) (2,0) (2,0)

[10,3] (5,0,0,0,3,0,0,2) (1,0) (2,0)

[10,4] (5,0,0,0,0,4,0,1) (0,0) (2,1)

[11,3] (5,0,0,1,2,2,0,1) (3,1) (2,0)

[11,4] (5,0,3,1,2,0,0,0) (2.0) (1,1)

[11,5] (5,0,0,2,0,0,1,3) (0,1) (3,0)

[12,3] (5,4,0,1,0,0,0,2) (3,1) (1,0)

[12,4] (5,0,4,0,1,2,0,0) (2,0) (3,0)

[12,5] (5,1,2,0,2,2,0,0) (3,1) (1,1)

[12,6] (5,0,3,0,1,0,3,0) (2,0) (2,1)

Table 4.8: Examples for the three families of SU(5) from T 2/Z4.
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[N, k] (p1, p2, p3, · · · , p11, p12) (α+, β+) (α−, β−)

[8,3] (5,0,0,3,0,0,0,0,0,0,0,0) (0,1) (2,0)

[8,4] (5,0,0,1,0,0,0,2,0,0,0,0) (0,0) (2,0)

[9,3] (5,0,0,0,0,0,3,0,0,0,0,1) (0,1) (5,0)

[9,4] (5,2,0,1,0,0,1,0,0,0,0,0) (2,0) (2,0)

[10,3] (5,0,0,1,1,0,0,0,0,0,3,0) (0,1) (4,1)

[10,4] (5,0,1,0,1,1,0,0,0,1,1,0) (5,0) (2,0)

[10,5] (5,0,0,0,0,0,1,2,0,2,0,0) (4,1) (1,0)

[11,3] (5,0,0,1,0,0,0,0,0,1,4,0) (3,1) (4,1)

[11,4] (5,0,0,0,0,2,0,0,2,1,0,1) (5,0) (2,0)

[11,5] (5,3,0,0,0,0,0,0,0,0,3,0) (1,1) (1,1)

[12,3] (5,3,0,1,0,0,0,0,0,0,0,3) (0,1) (3,0)

[12,4] (5,0,0,0,0,0,0,1,0,4,1,1) (5,0) (2,0)

[12,5] (5,0,0,0,0,0,2,1,2,1,1,0) (1,1) (1,1)

[12,6] (5,0,0,0,0,3,1,1,2,0,0,0) (3,0) (0,0)

Table 4.9: Examples for the three families of SU(5) from T 2/Z6.

4.3.2 Numbers of the SM multiplets on T 2/ZM

After the breakdown SU(N) → SU(3) × SU(3) × SU(p3) × · · · × SU(pn) ×
U(1)n−m+1, [N, k]± is decomposed as

[N, k]± =
k∑

l1=0

k−l1∑
l2=0

· · ·
k−l1−···−ln−1∑

ln−1=0

(3Cl1 , 2Cl2 , p3Cl3 , · · · , pnCln)± , (4.38)

where ln = k − l1 − l2 − · · · − ln−1.
Using the ZM projection operators (4.31) – (4.34), the formulae (4.24) – (4.29)

are rewritten as

nd̄ =
∑

(l1,l2)=(2,2),(1,0)

k−l1−l2∑
l3=0

· · ·
k−l1−···−l6∑

l7=0

(−1)l1+l2

× (
PM+ − P ′

M+ + PM− − P ′
M−

)
p3Cl3 · · · pnCln ,

(4.39)

nl =
∑

(l1,l2)=(3,1),(0,1)

k−l1−l2∑
l3=0

· · ·
k−l1−···−l6∑

l7=0

(−1)l1+l2

× (
PM+ − P ′

M+ + PM− − P ′
M−

)
p3Cl3 · · · pnCln ,

(4.40)

nū =
∑

(l1,l2)=(2,0),(1,2)

k−l1−l2∑
l3=0

· · ·
k−l1−···−l6∑

l7=0

(−1)l1+l2
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× (
PM+ − P ′

M+ + PM− − P ′
M−

)
p3Cl3 · · · pnCln ,

(4.41)

nē =
∑

(l1,l2)=(0,2),(3,0)

k−l1−l2∑
l3=0

· · ·
k−l1−···−l6∑

l7=0

(−1)l1+l2

× (
PM+ − P ′

M+ + PM− − P ′
M−

)
p3Cl3 · · · pnCln ,

(4.42)

nq =
∑

(l1,l2)=(1,1),(2,1)

k−l1−l2∑
l3=0

· · ·
k−l1−···−l6∑

l7=0

(−1)l1+l2

× (
PM+ − P ′

M+ + PM− − P ′
M−

)
p3Cl3 · · · pnCln ,

(4.43)

nν̄ =
∑

(l1,l2)=(0,0),(3,2)

k−l1−l2∑
l3=0

· · ·
k−l1−···−l6∑

l7=0

× (
PM+ + P ′

M+ + PM− + P ′
M−

)
p3Cl3 · · · pnCln ,

(4.44)

where each ZM projection operator are listed in Table 4.4. Total numbers of models
with the three families of the SM multiplets, which originate from a Dirac fermion
whose representation is [N, k] (k ≤ N/2) of SU(N), are summarized up to SU(13)
in Table 4.10.

T 2/Z2 T 2/Z3 T 2/Z4 T 2/Z6

SU(8) - - - -

SU(9)
[9,3]:32

-
[9,3]:8 [9,3]:8

[9,4]:32

SU(10) - - -
[10,3]:80

[10,4]:108

SU(11)

[11,3]:80 [11,4]:80 [11,3]:20 [11,3]:84

[11,4]:80 [11,4]:20 [11,4]:144

[11,5]:156

SU(12)

[12,3]:120 [12,3]:80 [12,4]:88 [12,3]:392

[12,6]:240 [12,4]:120

[12,5]:72

[12,6]:552

SU(13)

[13,3]:144

-

[13,4]:40 [13,3]:712

[13,4]:88

[13,5]:140

[13,6]:200

Table 4.10: Total numbers of models with the three families of SM multiplets.
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Here, we give a list of all BCs to derive three families of SM fermions from [9, 3]
from T 2/Z2, in Table 4.11, and some examples for representations and BCs to derive
three families of SM fermions from T 2/Z3, T

2/Z3 and T 2/Z6, in Table 4.12 – 4.14.

4.4 Generic features of flavor numbers

We list generic features of flavor numbers.

(i) Each flavor number from [N, k] with intrinsic ZM elements ηak± is equal to that
from [N,N − k] with appropriate ones ηaN−k±.

Let us explain this feature using the SU(5) multiplets. From (4.10) and the
decomposition of [N,N − k] such that

[N,N − k] =
k∑

l1=0

k−l1∑
l2=0

· · ·
k−l1−···−ln−2∑

ln−1=0

(5C5−l1 , p2Cp2−l2 , · · · , pnCpn−ln) , (4.45)

there is a one-to-one correspondence between (5C5−l1 , p2Cp2−l2 , · · · , pnCpn−ln) in [N,N−
k] and (5Cl1 , p2Cl2 , · · · , pnCln) in [N, k]. The right-handed Weyl fermion whose repre-
sentation is (5C5−l1 , p2Cp2−l2 , · · · , pnCpn−ln) is regarded as the left-handed one whose
representation is the conjugate representation (5Cl1 , p2Cl2 , · · · , pnCln), and hence we
obtain the same numbers for (4.14) – (4.16) with a suitable assignment of intrinsic
ZM elements for [N,N − k].

Here, we give an example for T 2/Z2. Each flavor number obtained from [N, k]
with (−1)kη0k± = (−1)α± , (−1)kη1k± = (−1)β± and (−1)kη2k± = (−1)γ± agrees with

that from [N,N − k] with (−1)N−kη0N−k± = (−1)α
′
± , (−1)N−kη1N−k± = (−1)β

′
± and

(−1)N−kη2N−k± = (−1)γ
′
± , where α′

±, β
′
± and γ′

± satisfy the relations α′
± = α±+p2+

p3 + p4(mod2), β′
± = β± + p2 + p5 + p6(mod2) and γ′

± = γ± + p3 + p5 + p7(mod2),
respectively.

(ii) Each flavor number from [N, k] with intrinsic Z2 elements (−1)kηak± = (−1)δ
a
±

is equal to that from [N, k] with the exchanged ones (δa+ ↔ δa−), i.e., (−1)kηak± =
(−1)δ

a
∓.

This feature is understood from the fact that specific relations on lj for Ψ+

change into those of Ψ− and vice versa, under the exchange of Z2 parity of Ψ+ and
that of Ψ−.

Here, we give an example for T 2/Z2. Under the exchange of α+ and α−, n0
l1L+

and n0
l1R+ change into n0

l1L− and n0
l1R− (mod2), respectively. Each flavor number

remains the same, because the summation is taken for Ψ+ and Ψ−.

(iii) Each flavor number from [N, k] is invariant under several types of exchange
among pj and intrinsic ZM elements.

From specific relations in Table 4.1, we find that the same number for each SU(5)
multiplet is obtained under the exchange,

(p3, p4, α±) ⇐⇒ (p5, p6, β±) ,

(p2, p6, β±) ⇐⇒ (p3, p7, γ±) ,
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[N, k] (p1, p2, p3, p4, p5, p6, p7, p8) (α+, β+, γ+) (α−, β−, γ−)

[9,3]

(3,2,0,0,0,3,0,1) (0,1,1) (0,1,0)

(3,2,0,0,0,3,0,1) (0,1,0) (0,1,1)

(3,2,0,0,0,3,1,0) (0,1,1) (0,1,0)

(3,2,0,0,0,3,1,0) (0,1,0) (0,1,1)

(3,2,0,0,3,0,0,1) (0,1,1) (0,1,0)

(3,2,0,0,3,0,0,1) (0,1,0) (0,1,1)

(3,2,0,0,3,0,1,0) (0,1,1) (0,1,0)

(3,2,0,0,3,0,1,0) (0,1,0) (0,1,1)

(3,2,0,3,0,0,0,1) (1,0,1) (1,0,0)

(3,2,0,3,0,0,0,1) (1,0,0) (1,0,1)

(3,2,0,3,0,0,1,0) (1,0,1) (1,0,0)

(3,2,0,3,0,0,1,0) (1,0,0) (1,0,1)

(3,2,3,0,0,0,0,1) (1,0,1) (1,0,0)

(3,2,3,0,0,0,0,1) (1,0,0) (1,0,1)

(3,2,3,0,0,0,1,0) (1,0,1) (1,0,0)

(3,2,3,0,0,0,1,0) (1,0,0) (1,0,1)

(3,2,0,0,1,2,0,1) (0,1,1) (0,1,0)

(3,2,0,0,1,2,0,1) (0,1,0) (0,1,1)

(3,2,0,0,1,2,1,0) (0,1,1) (0,1,0)

(3,2,0,0,1,2,1,0) (0,1,0) (0,1,1)

(3,2,0,0,2,1,0,1) (0,1,1) (0,1,0)

(3,2,0,0,2,1,0,1) (0,1,0) (0,1,1)

(3,2,0,0,2,1,1,0) (0,1,1) (0,1,0)

(3,2,0,0,2,1,1,0) (0,1,0) (0,1,1)

(3,2,1,2,0,0,0,1) (1,0,1) (1,0,0)

(3,2,1,2,0,0,0,1) (1,0,0) (1,0,1)

(3,2,1,2,0,0,1,0) (1,0,1) (1,0,0)

(3,2,1,2,0,0,1,0) (1,0,0) (1,0,1)

(3,2,2,1,0,0,0,1) (1,0,1) (1,0,0)

(3,2,2,1,0,0,0,1) (1,0,0) (1,0,1)

(3,2,2,1,0,0,1,0) (1,0,1) (1,0,0)

(3,2,2,1,0,0,1,0) (1,0,0) (1,0,1)

Table 4.11: The three families of SM multiplets from [9, 3] on T 2/Z2.
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[N, k] (p1, p2, p3, p4, p5, p6, p7, p8, p9) (α+, β+) (α−, β−)

[11,4] (3,2,0,0,1,2,3,0,0) (0,1) (0,1)

[12,3] (3,2,0,1,1,0,1,2,2) (1,0) (0,1)

Table 4.12: Examples for the three families of SM multiplets from T 2/Z3.

[N, k] (p1, p2, p3, p4, p5, p6, p7, p8) (α+, β+) (α−, β−)

[9,3] (3,2,1,0,0,0,2,1) (0,1) (0,0)

[11,3] (3,2,1,1,0,4,0,0) (1,0) (1,1)

[11,4] (3,2,0,0,3,1,1,1) (0,1) (0,0)

[12,4] (3,2,1,0,2,1,3,0) (0,1) (0,0)

[12,6] (3,2,1,2,0,0,0,4) (0,1) (1,1)

[13,4] (3,2,1,2,2,2,0,1) (0,1) (0,0)

Table 4.13: Examples for the three families of SM multiplets from T 2/Z4.

[N, k] (p1, p2, p3, · · · , p11, p12) (α+, β+) (α−, β−)

[9,3] (3,2,0,1,0,0,0,0,0,0,1,2) (0,0) (0,1)

[9,4] (3,2,0,0,0,1,0,0,1,2,0,0) (1,1) (1,0)

[10,3] (3,2,0,0,3,0,0,0,0,0,1,1) (1,0) (1,1)

[10,4] (3,2,0,1,1,2,0,0,0,0,1,0) (0,1) (0,0)

[11,3] (3,2,1,1,1,0,0,0,0,1,1,1) (0,1) (0,0)

[11,4] (3,2,0,1,0,2,0,0,0,3,0,0) (0,1) (1,0)

[11,5] (3,2,0,0,1,0,4,0,1,0,0,0) (0,1) (0,0)

[12,3] (3,2,0,1,3,1,0,1,0,0,0,1) (1,0) (1,1)

[12,4] (3,2,0,0,0,1,1,2,0,2,1,0) (1,1) (1,0)

[12,5] (3,2,1,1,0,3,1,1,0,0,0,0) (1,0) (1,1)

[12,6] (3,2,0,0,0,1,0,0,3,0,0,3) (1,1) (1,1)

[13,3] (3,2,1,0,0,0,0,3,2,0,0,2) (0,0) (0,1)

[13,4] (3,2,2,0,1,1,1,1,0,0,1,1) (1,0) (1,1)

[13,5] (3,2,1,0,0,4,0,0,0,3,0,0) (1,1) (1,0)

[13,6] (3,2,1,0,0,0,0,2,4,0,0,1) (0,0) (0,1)

Table 4.14: Examples for the three families of SM multiplets from T 2/Z6.
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(p2, p4, α±) ⇐⇒ (p5, p7, γ±) for T 2/Z2 , (4.46)

(p2, p3, p6, α±) ⇐⇒ (p4, p7, p8, β±) for T 2/Z3 , (4.47)

where the exchange is done independently.
In the same way, from specific relations in Table 4.2, we find that the same

number for each SM multiplet is obtained under the exchange,

(p3, p4, α±) ⇐⇒ (p5, p6, β±) , for T 2/Z2 . (4.48)

Under the above exchanges, although the unbroken gauge symmetry remains,
the numbers of zero modes for extra-dimensional components of gauge bosons are,
in general, different and hence a model is transformed into a different one.

(iv) Each flavor number obtained from [N, k] is invariant in the introduction of
Wilson line phases.

Let us give some examples.
On T 2/Z2, the numbers n5̄ and n10 obtained from the breaking pattern SU(N) →

SU(5)×SU(p2)×· · ·×SU(p8)×U(1)7−m are same as those from SU(N) → SU(5)×
SU(p′2)× · · · × SU(p′8)× U(1)7−m, if the following relations are satisfied,

p′2 − p2 = p′7 − p7 = p3 − p′3 = p6 − p′6 ,

p′4 = p4 , p′5 = p5 , p′8 = p8 , (4.49)

or

p′2 − p2 = p′7 − p7 = p4 − p′4 = p5 − p′5 ,

p′3 = p3 , p′6 = p6 , p′8 = p8 , (4.50)

or

p′3 − p3 = p′6 − p6 = p4 − p′4 = p5 − p′5 ,

p′2 = p2 , p′7 = p7 , p′8 = p8 . (4.51)

The above BCs are connected by a singular gauge transformation, and they
are regarded as equivalent in the presence of Wilson line phases. This equivalence
originates from the Hosotani mechanism [31–34], and is shown by the following
relations among the diagonal representatives for 2×2 submatrices of (P0, P1, P2) [22],

(τ3, τ3, τ3) ∼ (τ3, τ3,−τ3) ∼ (τ3,−τ3, τ3) ∼ (τ3,−τ3,−τ3) , (4.52)

where τ3 is the third component of Pauli matrices.
In our present case, we assume that the BC is chosen as a physical one, i.e., the

system with the physical vacuum is realized with the vanishing Wilson line phases
after a suitable gauge transformation is performed. Hence, it is understood that each
net flavor number obtained from [N, k] does not change even though the vacuum
changes different ones in the presence of Wilson line phases.

In the same way, the numbers nd̄, nl, nū, nē and nq obtained from the breaking
pattern SU(N) → SU(3)× SU(2)× SU(p3)× · · · × SU(p8)× U(1)7−m are same as
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those from SU(N) → SU(3) × SU(2) × SU(p′3) × · · · × SU(p′8) × U(1)7−m, if the
following relations are satisfied,

p′3 − p3 = p′6 − p6 = p4 − p′4 = p5 − p′5 , p′7 = p7 , p′8 = p8 . (4.53)

On T 2/Z3, the numbers n5̄ and n10 obtained from the breaking pattern SU(N) →
SU(5)×SU(p2)×· · ·×SU(p9)×U(1)8−m are same as those from SU(N) → SU(5)×
SU(p′2)× · · · × SU(p′9)× U(1)8−m, if the following relations are satisfied,

p′2 − p2 = p′6 − p6 = p′7 − p7 = p3 − p′3 = p4 − p′4 = p8 − p′8 ,

p′5 = p5 , p′9 = p9 . (4.54)

The above BCs are also connected by a singular gauge transformation, and they
are regarded as equivalent in the presence of Wilson line phases. The equivalence
is shown using the following relations among the diagonal representatives for 3× 3
submatrices of (Θ0,Θ1) on T 2/Z3 [22],

(X,X) ∼ (X,ωX) ∼ (X,ωX) , (4.55)

where ω = e2πi/3, ω = e4πi/3, and X = diag(1, ω, ω).
For these cases, it is also understood that each net flavor number does not change

even though the vacuum changes different ones in the presence of Wilson line phases.
Although this feature holds for models on T 2/Z4 and T 2/Z6, there are no ex-

amples in our setting, because of the absence of Wilson line phases changing BCs
but keeping SU(5) or the SM gauge group for T 2/Z4 and because of the absence of
equivalence relations between diagonal representatives for T 2/Z6 [22].

29



5 Relationship between the family number of chi-

ral fermions and the Wilson line phase

In this section, we study the relationship between the family number of chiral
fermions and Wilson line phases, based on the orbifold family unification of previous
section.

5.1 Family number in orbifold family unification

In section 4, we assume that the BCs are chosen as physical ones, i.e., the system
with the physical vacuum is realized with the vanishing Wilson line phases after a
suitable gauge transformation is performed. Then, the feature is expressed by

Nr|({pi},ak=0) = Nr|({p′i},ak=0) , (5.1)

where Nr is a net chiral fermion number (flavor number) for 4D fermions with the
representation r of the gauge group, unbroken even in the presence of the Wilson
line phases (2πak), and it is defined by

Nr ≡ n0
Lr − n0

Rr − n0
Lr + n0

Rr . (5.2)

Here, n0
Lr, n

0
Rr, n

0
Lr and n0

Rr are the numbers of 4D left-handed massless fermions
with r, 4D right-handed one with r, 4D left-handed one with the complex conjugate
representation r and 4D right-handed one with r, respectively. Note that 4D right-
handed fermion with r and 4D left-handed one with r are transformed into each
other under the charge conjugation.

On the other hand, the equivalence due to the dynamical rearrangement is ex-
pressed by

Nr|({pi},ak �=0) = Nr|({p′i},ak=0) . (5.3)

From (5.1) and (5.3), we obtain the relation,

Nr|({pi},ak=0) = Nr|({pi},ak �=0) , (5.4)

and find that each flavor number obtained from [N, k] does not change even though
the vacuum changes different ones in the presence of the Wilson line phases.

In this way, we arrive at the conjecture that each flavor number in the SM is
independent of the Wilson line phases that respect the SM gauge group. If there
were a Wilson line phase with a non-vanishing SM gauge quantum number, (a part
of) the SM gauge symmetry can be broken down. Hence, we assume that such a
Wilson line phase is vanishing or switched off.

5.2 Fermion numbers and hidden supersymmetry

On a higher-dimensional space-time M4×K
D−4, a massless fermion Ψ = Ψ(x, y)

satisfies the equation,
iΓMDMΨ = 0 , (5.5)
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where KD−4 is an (D−4)-dimensional extra space, ΓM (M = 0, 1, 2, 3, 5, · · · , D) are
matrices that satisfy the Clifford algebra ΓMΓN+ΓNΓM = 2ηMN , DM ≡ ∂M+igAM

and Ψ is a fermion with 2[D/2]-components. Here, g is a gauge coupling constant,
AM(= Aα

MTα) are gauge bosons, and [∗] is the Gauss symbol. The coordinates xμ

(μ = 0, 1, 2, 3) on M4 and xm (m = 5, · · · , D) on K
D−4 are denoted by x and y,

respectively.
After the breakdown of gauge symmetry, Ψ is decomposed as

Ψ(x, y) =
∑
rH

∑
{ni}

[
ψ

{ni}
LrH

(x)φ
{ni}
LrH

(y) + ψ
{ni}
RrH

(x)φ
{ni}
RrH

(y)
]
, (5.6)

where ψ
{ni}
LrH

(x) and ψ
{ni}
RrH

(x) are 4D left-handed spinors and right-handed ones, re-
spectively. The subscript rH stands for some representation of the unbroken gauge
group H, and the superscript {ni} represents a set of numbers relating massive

modes and those concerning components of multiplet rH . The functions φ
{ni}
LrH

(y)

and φ
{ni}
RrH

(y) form complete sets on K
D−4.

We define the chiral fermion number relating r as

nr ≡ n0
Lr − n0

Rr , (5.7)

where r is a representation of the subgroup unbroken in the presence of the Wilson
line phases. The net chiral fermion number Nr is given by Nr = nr − nr.

In case that nr is independent of the Wilson line phases (2πak), n
0
Lr and n0

Rr

must be expressed as

n0
Lr = n′0

Lr + fr(ak) and n0
Rr = n′0

Rr + fr(ak) , (5.8)

respectively. Here, n′0
Lr and n′0

Rr are some constants irrelevant to ak and fr(ak) is a
function of ak.

5.2.1 An example

Let us calculate n0
Lr and n0

Rr, and verify the relations (5.8), using an SU(3) gauge
theory on M4 × S1/Z2.

On 5D space-time, Ψ is expressed as

Ψ =

(
ψL

ψR

)
, (5.9)

where ψL and ψR are components containing 4D left-handed fermions and 4D right-
handed ones, respectively.

The equation (5.5) is divided into two parts,

iσμDμψL −DyψR = 0 , iσμDμψR +DyψL = 0 , (5.10)

where Dy ≡ ∂y + igAy. For ψL and ψR, the BCs are given by

ψL(x,−y) = η0P0ψL(x, y) , ψL(x, 2πR− y) = η1P1ψL(x, y) , (5.11)

ψR(x,−y) = −η0P0ψR(x, y) , ψR(x, 2πR− y) = −η1P1ψR(x, y) , (5.12)
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where P0 and P1 are the representation matrices for the Z2 transformation y → −y
and the Z2 transformation y → 2πR− y, respectively. η0 and η1 are the intrinsic Z2

parities for the left-handed component. Note that Z2 parities for the right-handed
one are opposite to those of the left-handed one. For the gauge bosons, the BCs are
given by

Aμ(x,−y) = P0Aμ(x, y)P
†
0 , Aμ(x, 2πR− y) = P1Aμ(x, y)P

†
1 , (5.13)

Ay(x,−y) = −P0Ay(x, y)P
†
0 , Ay(x, 2πR− y) = −P1Ay(x, y)P

†
1 . (5.14)

We take the representation matrices,

P0 = diag(1, 1,−1) , P1 = diag(1, 1,−1) . (5.15)

Then SU(3) is broken down to SU(2) × U(1). We consider the fermion with the
representation 3 of SU(3) and (η0, η1) = (1, 1). Then, ψL and ψR are expanded as

ψL =

⎛
⎜⎜⎜⎜⎜⎝

∞∑
n=0

ψ1
Ln(x) cos

n
R
y

∞∑
n=0

ψ2
Ln(x) cos

n
R
y

∞∑
n=1

ψ3
Ln(x) sin

n
R
y

⎞
⎟⎟⎟⎟⎟⎠ , ψR =

⎛
⎜⎜⎜⎜⎜⎝

∞∑
n=1

ψ1
Rn(x) sin

n
R
y

∞∑
n=1

ψ2
Rn(x) sin

n
R
y

∞∑
n=0

ψ3
Rn(x) cos

n
R
y

⎞
⎟⎟⎟⎟⎟⎠ . (5.16)

After a suitable SU(2) gauge transformation, the vacuum expectation value
(VEV) of Ay is parameterized as

〈Ay〉 = −i

gR

⎛
⎝ 0 0 a

0 0 0
−a 0 0

⎞
⎠ , (5.17)

where 2πa is the Wilson line phase. From the periodicity, we limit the domain of
definition for a as 0 ≤ a < 1. In case with a �= 0, SU(2) is broken down to U(1),
and then every 4D fermion becomes a singlet.

Inserting (5.16) and (5.17) into (5.10), we obtain a set of 4D equations,

iσμDμψ
1
L0 −

a

R
ψ3
R0 = 0 , iσμDμψ

3
R0 −

a

R
ψ1
L0 = 0 , (5.18)

iσμDμψ
2
L0 = 0 , (5.19)

iσμDμψ
1
Ln −

n

R
ψ1
Rn −

a

R
ψ3
Rn = 0 (n = 1, 2, · · · ) , (5.20)

iσμDμψ
2
Ln −

n

R
ψ2
Rn = 0 (n = 1, 2, · · · ) , (5.21)

iσμDμψ
3
Ln +

n

R
ψ3
Rn +

a

R
ψ1
Rn = 0 (n = 1, 2, · · · ) , (5.22)

iσμDμψ
1
Rn −

n

R
ψ1
Ln +

a

R
ψ3
Ln = 0 (n = 1, 2, · · · ) , (5.23)

iσμDμψ
2
Rn −

n

R
ψ2
Ln = 0 (n = 1, 2, · · · ) , (5.24)

iσμDμψ
3
Rn +

n

R
ψ3
Ln −

a

R
ψ1
Ln = 0 (n = 1, 2, · · · ) . (5.25)
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Using the equations (5.20), (5.22), (5.23) and (5.25), we derive a set of 4D equations,

iσμDμ(ψ
1
Ln + ψ3

Ln)−
n− a

R
(ψ1

Rn − ψ3
Rn) = 0 (n = 1, 2, · · · ) , (5.26)

iσμDμ(ψ
1
Ln − ψ3

Ln)−
n+ a

R
(ψ1

Rn + ψ3
Rn) = 0 (n = 1, 2, · · · ) , (5.27)

iσμDμ(ψ
1
Rn + ψ3

Rn)−
n+ a

R
(ψ1

Ln − ψ3
Ln) = 0 (n = 1, 2, · · · ) , (5.28)

iσμDμ(ψ
1
Rn − ψ3

Rn)−
n− a

R
(ψ1

Ln + ψ3
Ln) = 0 (n = 1, 2, · · · ) . (5.29)

From (5.18), ψ1
L0 and ψ3

R0 form a 4D Dirac fermion. In the same way, we find
that (ψ2

Ln, ψ
2
Rn), (ψ

1
Ln + ψ3

Ln, ψ
1
Rn − ψ3

Rn) and (ψ1
Ln − ψ3

Ln, ψ
1
Rn + ψ3

Rn) form 4D Dirac
fermions for n = 1, 2, · · · from (5.21) and (5.24), (5.26) and (5.29), and (5.27) and
(5.28), respectively.

The numbers of 4D massless fermions are evaluated as

n0
L = 1 + δ0a , n0

R = δ0a , (5.30)

where δ0a represents the Kronecker delta. From (5.30), we confirm that the fermion
number n(≡ n0

L − n0
R = 1) does not depend on the Wilson line phase. The mass

spectrum for 4D fermions in this model is depicted as Figure 5.1.
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Figure 5.1: Mass spectrum of 4D fermions. The filled circles and the open ones represent
left-handed fermions and right-handed ones, respectively.

5.2.2 Hidden quantum-mechanical supersymmetry

We explore a physics behind the feature that the fermion numbers are indepen-
dent of the Wilson line phases.

From Figure 5.1, we anticipate that the feature originates from a hidden quantum-
mechanical SUSY. Here, the quantum-mechanical SUSY means the symmetry gen-
erated by the supercharge Q that satisfies the algebraic relations [35, 36],

H = Q2 ,
{
Q, (−1)F

}
= 0 ,

(
(−1)F

)2
= I , (5.31)
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where H, F and I are the Hamiltonian, the “fermion” number operator and the
identity operator, respectively. The eigenvalue of (−1)F is given by +1 for “bosonic”
states and −1 for “fermionic” states, and Tr (−1)F is a topological invariant, called
the Witten index [37].

It is known that the system with 4D fermions has the hidden SUSY where the
4D Dirac operator plays the role of Q [38, 39]. The correspondences are given by

Q ↔ iγμDμ =

(
0 iσμDμ

iσμDμ 0

)
, (−1)F ↔ γ5 , (5.32)

where γ5 is the chirality operator defined by γ5 ≡ iγ0γ1γ2γ3. The trace of γ5 is the
index of the 4D Dirac operator, and the following relations hold,

Tr γ5|r = n0
Rr[Aμ]− n0

Lr[Aμ] = dimker σμDμ|r − dimker σμDμ|r
=

1

32π2

∫
trrεμναβF

μνF αβd4x , (5.33)

from the Atiyah-Singer index theorem. Here, n0
Rr[Aμ] and n0

Lr[Aμ] are the num-
bers of normalizable solutions (massless fermions) satisfying iσμDμψRr = 0 and
iσμDμψLr = 0, respectively. Note that massive fermions exist in pairs (ψRr and
ψLr) and do not contribute to the index. The integral quantity in (5.33) is called
the Pontryagin number, and it is deeply connected to the configuration of gauge
bosons Aμ on 4D space-time.

It is pointed out that higher-dimensional theories with extra dimensions also pos-
sess the hidden SUSY [40,41]. In the system with a 5D fermion, the Dirac operator
relating the fifth-coordinate plays the role of Q and there are the correspondences,

Q ↔ D̃y =

(
0 Dy

−Dy 0

)
, (−1)F ↔ Γ̃ ≡

(
1 0
0 −1

)
. (5.34)

Note that Γ̃ = −γ5. The counterpart of the Witten index is given by

Tr Γ̃
∣∣∣
r
= ñ0

Rr(a)− ñ0
Lr(a) , (5.35)

where ñ0
Rr(a) and ñ0

Lr(a) are the numbers of eigenfunctions, that satisfy the equa-
tions,

D̃y

(
0
ψR

)
=

(
DyψR

0

)
=

(
0
0

)
(5.36)

and

D̃y

(
ψL

0

)
=

(
0

−DyψL

)
=

(
0
0

)
, (5.37)

respectively. Note that the eigenvalue equations are given by DyψR = λψR and
DyψL = λ′ψL, eigenfunctions with non-zero eigenvalues exist in pairs, which corre-
spond to 4D massive fermions as seen from (5.10), and they do not contribute to the
index. From the equations (5.10), there is a one-to-one correspondence such that

DyψR = 0 ↔ iσμDμψL = 0 , DyψL = 0 ↔ iσμDμψR = 0 . (5.38)
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Let us generalize to a system with a fermion on a higher-dimensional space-time.
For the case that D = 2n (n = 3, 4, · · · ), the correspondences are given by

Q ↔ D̃ ≡
D∑

m=5

iΓmDm , (−1)F ↔ Γ̃ ≡ −ΓD+1 , (5.39)

where ΓD+1 is the chirality operator defined by ΓD+1 = (−i)n+1Γ0Γ1 · · ·ΓD.
For the case that D = 2n+ 1 (n = 2, 3, · · · ), the correspondences are given by

Q ↔ D̃ ≡ U †
D∑

m=5

iΓmDmU , (−1)F ↔ Γ̃ ≡ iΓD , (5.40)

where U is the unitary matrix that satisfies the relation iΓD = U †Γ1U , and iΓD is a
diagonal matrix with the same form as the chirality operator onD(= 2n)-dimensions
up to a sign factor.

The equation (5.5) is written by

iΓμDμΨ+
D∑

m=5

iΓmDmΨ = 0 . (5.41)

For the case that D = 2n+ 1, after the unitary transformation Γ′M = U †ΓMU and
Ψ′ = U †Ψ is performed, Γ′M and Ψ′ are again denoted as ΓM and Ψ in (5.41). The
counterpart of the Witten index is given by

Tr Γ̃
∣∣∣
r
= ñ0

Rr(ak)− ñ0
Lr(ak) , (5.42)

where ñ0
Rr(ak) and ñ0

Lr(ak) are the numbers of eigenfunctions, that satisfy D̃ψR = 0
and D̃ψL = 0, respectively. From (5.41), there is a one-to-one correspondence such
that

D̃ψR = 0 ↔ iΓμDμψL = 0 , D̃ψL = 0 ↔ iΓμDμψR = 0 . (5.43)

Here ψR and ψL are a 4D right-handed spinor component and a 4D left-handed one
in Ψ, that are eigenspinors of the 4D chirality operator Γ5 ≡ iΓ0Γ1Γ2Γ3 whose eigen-
values are 1 and −1, respectively. Note that components with a different 4D chirality
involve each other through the equation (5.41), because Γ5 is anti-commutable to
iΓμDμ but it is commutable to D̃.

From (5.43), the following relations hold,

ñ0
Rr(ak) = n0

Lr , ñ0
Lr(ak) = n0

Rr , (5.44)

and, using (5.44), we derive the relation,

Tr Γ̃
∣∣∣
r
= ñ0

Rr(ak)− ñ0
Lr(ak) = n0

Lr − n0
Rr . (5.45)

Because Tr Γ̃
∣∣∣
r
is a topological invariant and the Wilson line phases determine

the vacuum with 〈Fmn〉 = 0 globally in our orbifold family unification models,
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nr(= n0
Lr − n0

Rr) is independent of the Wilson line phases. Hence, Nr(= nr − nr) is
also independent of the Wilson line phases.

Finally, we give a comment on Tr Γ̃
∣∣∣
r
. As seen from the Atiyah-Singer index the-

orem relating the Dirac operator for extra-dimensions, fermion numbers are deeply
connected to the topological structure on K

D−4 including the configurations of Am

on K
D−4. From this point of view, the family number has been studied in the

Kaluza-Klein theory [42] and superstring theory [20].
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6 Prediction of SU(9) orbifold family unification

In this section, we study predictions of orbifold family unification models with
SU(9) gauge group on a 6D space-time including the orbifold T 2/Z2. For the pre-
dictions, we search specific relations among sfermion masses on the SUSY extention
of models.

6.1 SU(9) orbifold family unification

We have found 32 possibilities that just three families of the SM fermions survive
as zero modes from a pair of Weyl fermions with the 84(= 9C3) representation of
SU(9). For the list of (p1, p2, p3, p4, p5, p6, p7, p8) to derive them, see Table 4.11.
They are classified into two cases based on the pattern of gauge symmetry breaking
such that SU(9) → SU(3)C × SU(2)L × SU(3)F × U(1)3 and SU(9) → SU(3)C ×
SU(2)L × SU(2)F × U(1)4. We study how well the three families of fermions in the
SM are embedded into Ψ+ and Ψ−, in the following.

6.1.1 SU(9) → SU(3)C × SU(2)L × SU(3)F × U(1)3

For the case that p1 = 3, p2 = 2, either of p3, p4, p5 or p6 is 3 and either of p7 or
p8 is 1, SU(9) is broken down as

SU(9) → SU(3)C × SU(2)L × SU(3)F × U(1)1]× U(1)2 × U(1)3, (6.1)

where SU(3)F is the gauge group concerning the family of fermions, U(1)1 belongs
to a subgroup of SU(5) and is identified with U(1)Y in the SM, and others are
originated from SU(9) and SU(4) as

SU(9) ⊃ SU(5)× SU(4)× U(1)2, (6.2)

SU(4) ⊃ SU(3)× U(1)3. (6.3)

Let us illustrate the survival of three families in the SM, using two typical BCs.

(BC1) : (p1, p2, p3, p4, p5, p6, p7, p8) = (3, 2, 3, 0, 0, 0, 0, 1)
In this case, 84 is decomposed into particles with the SM gauge quantum num-

bers and its opposite ones, and their U(1) charges and Z2 parities are listed in Table
6.1. In the first and second columns, particles are denoted by using the symbols
in the SM, and those with primes are regarded as mirror particles. Here, mirror
particles are particles with opposite quantum numbers under the SM gauge group
GSM = SU(3)C × SU(2)L × U(1)Y . The U(1) charges are given up to the normal-

ization. The Z2 parities of ψ
1(2)
L are given by omitting the subscript k(= 3) in the

last column. The Z2 parities of ψ
2(1)
R are opposite to those of ψ

1(2)
L .

When we assign the intrinsic Z2 parities of ψ1
L and ψ2

L as

(η0+, η
1
+, η

2
+) = (+1,−1,+1), (η0−, η

1
−, η

2
−) = (+1,−1,−1), (6.4)

all mirror particles have an odd Z2 parity and disappear in the low-energy world.
Then, just three sets of SM fermions (qiL, (u

i
R)

c, (diR)
c, liL, (e

i
R)

c) survive as zero modes

37



ψ
1(2)
L ψ

1(2)
R SU(3)C × SU(2)L × SU(3)F U(1)1 U(1)2 U(1)3 (P0,P1,P2)

(e′R)
c eR (3C3, 2C0, 3C0) = (1,1,1) −6 12 0 (+η0,+η1,+η2)

q′L (qL)
c (3C2, 2C1, 3C0) = (3,2,1) −1 12 0 (+η0,+η1,−η2)

(u′
R)

c uR (3C1, 2C2, 3C0) = (3,1,1) 4 12 0 (+η0,+η1,+η2)

(uR)
c u′

R (3C2, 2C0, 3C1) = (3,1,3) −4 3 1 (+η0,−η1,+η2)

(uR)
c u′

R (3C2, 2C0, 3C0) = (3,1,1) −4 3 −3 (−η0,−η1,−η2)

qL (q′L)
c (3C1, 2C1, 3C1) = (3,2,3) 1 3 1 (+η0,−η1,−η2)

qL (q′L)
c (3C1, 2C1, 3C0) = (3,2,1) 1 3 −3 (−η0,−η1,+η2)

(eR)
c e′R (3C0, 2C2, 3C1) = (1,1,3) 6 3 1 (+η0,−η1,+η2)

(eR)
c e′R (3C0, 2C2, 3C0) = (1,1,1) 6 3 −3 (−η0,−η1,−η2)

(d′R)
c dR (3C1, 2C0, 3C2) = (3,1,3) −2 −6 2 (+η0,+η1,+η2)

(d′R)
c dR (3C1, 2C0, 3C1) = (3,1,3) −2 −6 −2 (−η0,+η1,−η2)

l′L (lL)
c (3C0, 2C1, 3C2) = (1,2,3) 3 −6 2 (+η0,+η1,−η2)

l′L (lL)
c (3C0, 2C1, 3C1) = (1,2,3) 3 −6 −2 (−η0,+η1,+η2)

(νR)
c ν̂R (3C0, 2C0, 3C3) = (1,1,1) 0 −15 3 (+η0,−η1,+η2)

(νR)
c ν̂R (3C0, 2C0, 3C2) = (1,1,3) 0 −15 −1 (−η0,−η1,−η2)

Table 6.1: Decomposition of 84 for (p1, p2, p3, p4, p5, p6, p7, p8) = (3, 2, 3, 0, 0, 0, 0, 1).

and they belong to the following chiral fermions,

ψ1
L ⊃ (uiR)

c, (eiR)
c, (νR)

c, ψ2
R ⊃ diR, ψ1

R ⊃ (liL)
c, ψ2

L ⊃ qiL, (6.5)

where i(= 1, 2, 3) stands for the family index. By exchanging ηa+ for ηa−, ψ
1
L and ψ2

R

are exchanged for ψ2
L and ψ1

R, respectively. Note that a right-handed neutrino (νR)
c

appears alone. We obtain the same result (6.5) by assigning the intrinsic Z2 parities
suitably, in case with p4, p5 or p6 = 3 in place of p3 = 3.

(BC2) : (p1, p2, p3, p4, p5, p6, p7, p8) = (3, 2, 3, 0, 0, 0, 1, 0)
In this case, 84 is decomposed into particles with the same gauge quantum

numbers but sightly different Z2 parities from those of (BC1). Concretely, the third
Z2 parity P2 of fields with l7 = 1 is opposite to that with l8 = 1, i.e., P2 of
(3C2, 2C0, 3C0), (3C1, 2C1, 3C0), (3C0, 2C2, 3C0), (3C1, 2C0, 3C1), (3C0, 2C1, 3C1) and
(3C0, 2C0, 3C2) is given by +η2, −η2, +η2, +η2, −η2 and +η2, respectively.

Under the same assignment of the intrinsic Z2 parities as (6.4), all mirror particles
have an odd Z2 parity and disappear in the low-energy world. Then, just three sets
of SM fermions survive as zero modes such that

ψ1
L ⊃ (uiR)

c, (eiR)
c, (νR)

c, ψ2
R ⊃ (liL)

c, ψ1
R ⊃ diR, ψ2

L ⊃ qiL. (6.6)

Note that (liL)
c and diR are embedded into ψ2

R and ψ1
R, respectively, different from

the case of (BC1). We obtain the same result (6.6) by assigning the intrinsic Z2

parities suitably, in case with p4, p5 or p6 = 3 in place of p3 = 3.
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We summarize fermions with zero modes and those gauge quantum numbers in
Table 6.2. Here, G323 = SU(3)C × SU(2)L × SU(3)F , la is a number appearing
in a representation paCla of SU(3)F for a = 3, 4, 5 or 6, and, in the 7-th and 8-th
columns, the way of embeddings for the SM species are shown for p8 = 1 and p7 = 1,
respectively.

species G323 (l1, l2, la) U(1)1 U(1)2 U(1)3 p8 = 1 p7 = 1

qiL (3,2,3) (1, 1, 1) 1 3 1 ψ
2(1)
L ψ

2(1)
L

(uiR)
c (3,1,3) (2,0,1) −4 3 1 ψ

1(2)
L ψ

1(2)
L

diR (3,1,3) (1, 0, 1) −2 −6 −2 ψ
2(1)
R ψ

1(2)
R

(liL)
c (1,2,3) (0, 1, 1) 3 −6 −2 ψ

1(2)
R ψ

2(1)
R

(eiR)
c (1,1,3) (0, 2, 1) 6 3 1 ψ

1(2)
L ψ

1(2)
L

(νR)
c (1,1,1) (0, 0, 3) 0 −15 3 ψ

1(2)
L ψ

1(2)
L

Table 6.2: Gauge quantum numbers of fermions with even Z2 parities for SU(9) →
G323 × U(1)1 × U(1)2 × U(1)3.

6.1.2 SU(9) → SU(3)C × SU(2)L × SU(2)F × U(1)4

For the case that p1 = 3, p2 = 2, either of (p3, p4) or (p5, p6) is (2, 1) or (1, 2) and
either of p7 or p8 is 1, SU(9) is broken down as

SU(9) → SU(3)C × SU(2)L × SU(2)F × U(1)1 × U(1)2 × U(1)3 × U(1)4, (6.7)

where U(1)1 belongs to a subgroup of SU(5) and is identified with U(1)Y in the SM,
and others are originated from SU(9), SU(4) and SU(3) as

SU(9) ⊃ SU(5)× SU(4)× U(1)2, (6.8)

SU(4) ⊃ SU(3)× U(1)3, (6.9)

SU(3) ⊃ SU(2)× U(1)4. (6.10)

The embedding of species are classified into two types, according to p8 = 1 or
p7 = 1.

(BC3)
For the case with p8 = 1, just three sets of SM fermions survive as zero modes

such that

ψ
1(2)
L ⊃ (uiR)

c, (eiR)
c, qL, ψ

2(1)
R ⊃ diR, (lL)

c,

ψ
1(2)
R ⊃ dR, (l

i
L)
c, ψ

2(1)
L ⊃ (uR)

c, (eR)
c, qiL, (νR)

c, (6.11)

where i = 1, 2.

(BC4)
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For the case with p7 = 1, just three sets of SM fermions survive as zero modes
such that

ψ
1(2)
L ⊃ (uiR)

c, (eiR)
c, qL, ψ

2(1)
R ⊃ dR, (l

i
L)
c,

ψ
1(2)
R ⊃ diR, (lL)

c, ψ
2(1)
L ⊃ (uR)

c, (eR)
c, qiL, (νR)

c, (6.12)

where i = 1, 2.
We summarize fermions with zero modes and those gauge quantum numbers in

Table 6.3. Here, G322 = SU(3)C × SU(2)L × SU(2)F .

species G322 U(1)1 U(1)2 U(1)3 U(1)4 p8 = 1 p7 = 1

(u1
R)

c, (u2
R)

c (3,1,2) −4 3 1 1 ψ
1(2)
L ψ

1(2)
L

(uR)
c (3,1,1) −4 3 1 −2 ψ

2(1)
L ψ

2(1)
L

q1L, q
2
L (3,2,2) 1 3 1 1 ψ

2(1)
L ψ

2(1)
L

qL (3,2,1) 1 3 1 −2 ψ
1(2)
L ψ

1(2)
L

(e1R)
c, (e2R)

c (1,1,2) 6 3 1 1 ψ
1(2)
L ψ

1(2)
L

(eR)
c (1,1,1) 6 3 1 −2 ψ

2(1)
L ψ

2(1)
L

d1R, d
2
R (3,1,2) −2 −6 −2 1 ψ

2(1)
R ψ

1(2)
R

dR (3,1,1) −2 −6 −2 −2 ψ
1(2)
R ψ

2(1)
R

(l1L)
c, (l2L)

c (1,2,2) 3 −6 −2 1 ψ
1(2)
R ψ

2(1)
R

(lL)
c (1,2,1) 3 −6 −2 1 ψ

2(1)
R ψ

1(2)
R

(νL)
c (1,1,1) 0 −15 3 0 ψ

2(1)
L ψ

2(1)
L

Table 6.3: Gauge quantum numbers of fermions with even Z2 parities for SU(9) →
G322 × U(1)1 × U(1)2 × U(1)3 × U(1)4.

6.2 Predictions

6.2.1 Yukawa interactions

We examine whether four types of SU(9) orbifold family unification models,
where the embedding of the SM fermions are realized as (6.5), (6.6), (6.11) and
(6.12), are realistic or not,by adopting the appearance of Yukawa interactions from
interactions in the 6D bulk as a selection rule. This rule is not almighty to select
models, because Yukawa interactions can also be constructed on the fixed points
of T 2/Z2. Here, we carry out the analysis under the assumption that such brane
interactions are small compared with the bulk ones in the absence of SUSY.

We assume that the Yukawa interactions in the SM come from interaction terms
containing fermions in the bilinear form and products of scalar fields in the 6D bulk.
6 From the Lorentz, gauge and Z2 invariance, the Lagrangian density containing

6 We assume that fermion condensations and Lorentz tensor fields are not involved with the
generation of Yukawa interactions.
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interactions among a pair of Weyl fermions (Ψ+,Ψ−) and scalar fields ΦI on 6D
space-time is, in general, written as

Lint =
∑
a,··· ,f

Ψ+abcΨ
def
− F abc

def (Φ
I) +

∑
a,··· ,f

ΨTabc
+ EΨdef

− Gabcdef (Φ
I) + h.c.

=
∑(

ψ
1

Lψ
1
R + ψ

2

Rψ
2
L

)
F (ΦI) +

∑(
(ψ1

L)
c†ψ2

L + (ψ1
R)

c†ψ2
R

)
G(ΦI) + h.c.,

(6.13)

where Ψ+ ≡ Ψ†
+Γ

0, ψ
1(2)

L(R) = ψ
1(2)†
L(R)γ

0, and (ψ
1(2)
L(R))

c = iγ0γ2ψ
1(2)∗
L(R) . In the final

expression of (6.13), we omit indices of SU(9) such as a, b, · · · , f designating the
components to avoid complications. The F (ΦI) and G(ΦI) are some polynomials of
ΦI , e.g., F (ΦI) is expressed by

F (ΦI) =
∑
I1

fI1Φ
I1 +

∑
I1,I2

fI1I2Φ
I1ΦI2 + · · · =

∑
n

∑
I1,··· ,In

fI1···InΦ
I1 · · ·ΦIn , (6.14)

where fI1···In are coupling constants. Note that mass terms of Ψ± such as mDΨ+Ψ−
andmMΨ

T
+EΨ− are forbidden at the tree level, in case that Ψ+ and Ψ− have different

intrinsic Z2 parities. Using the representation given by 6D gamma matrices, E is
written as

E ≡ Γ1Γ3Γ6 =

⎛
⎜⎜⎝

0 0 iσ2 0
0 0 0 iσ2

−iσ2 0 0 0
0 −iσ2 0 0

⎞
⎟⎟⎠ , (6.15)

where σ2 is the second element of Pauli matrices. It is shown that Lint is invariant
under the 6D Lorentz transformation, Ψ± → exp

[− i
4
ωMNΣ

MN
]
Ψ±, where ΣMN =

i
2
[ΓM ,ΓN ] and ωMN are parameters relating 6D Lorentz boosts and rotations.
After the dimensional reduction occurs and some components acquire the vacuum

expectation values (VEVs) generating the breakdown of extra gauge symmetries, the
linear terms of the Higgs doublet φh and its charge conjugated one φ̃h can appear in
F (ΦI) and G(ΦI) and then the Yukawa interactions are derived. For instance, the
linear term f̃φh appears from F (ΦI) = fΦ1Φ3Φ5 where Φm are scalar fields whose
representations are

(
9
m

)
, after some SM singlets in Φ3 and Φ5 acquire the VEVs.

From the above observations, we impose the selection rule that Yukawa inter-

actions fuijq
i
Lu

j
Rφ̃h, f

d
ijq

i
Ld

j
Rφh and f eijl

i

Le
j
Rφh in the SM can be derived from Lint on

orbifold family unification models.
For (BC1), the following Lagrangian density is derived at the compactification

scale MC,

L(BC1) =
3∑

i,j=1

d
i

Rq
j
LF̃

(1)
1ij (φ) +

3∑
i,j=1

l
i

Le
j
RF̃

(1)
2ij (φ) +

3∑
i,j=1

uiRq
j
LG̃

(1)
ij (φ) + h.c., (6.16)

using (6.5), and Yukawa interactions in the SM can be obtained, after some SM

singlet scalar fields in the polynomials F̃
(1)
1 (φ), F̃

(1)
2 (φ) and G̃(1)(φ) acquire the
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VEVs. Because all gauge quantum numbers of the operator qiLd
j
R are same as those

of l
i

Le
j
R, there is a possibility that F̃

(1)
1 (φ) is identical with F̃

(1)
2 (φ) as a simple case.

In this case, we have the relations fdij = f eji at the extra gauge symmetry breaking
scale.

For (BC2), the following Lagrangian density is derived,

L(BC2) =
3∑

i,j=1

uiRq
j
LG̃

(2)
ij (φ) + h.c., (6.17)

using (6.6). In this case, down-type quark and charged leptons masses cannot be
obtained from Lint at the tree level at MC.

For (BC3), the following Lagrangian density is derived,

L(BC3) =
2∑

i,j=1

d
i

Rq
j
LF̃

(3)
1ij (φ) + qLdRF̃

(3)
2 (φ) +

2∑
i,j=1

l
i

Le
j
RF̃

(3)
3ij (φ) + eRlLF̃

(3)
4 (φ) + h.c.

+
2∑

i,j=1

uiRq
j
LG̃

(3)
1ij(φ) + qLuRG̃

(3)
2 (φ) + h.c., (6.18)

using (6.11). For (BC4), the following Lagrangian density is derived,

L(BC4) =
2∑
i=1

(
dRq

i
LF̃

(4)
1i (φ) + qLd

i
RF̃

(4)
2i (φ) + lLe

i
RF̃

(4)
3i (φ) + eRl

i
LF̃

(4)
4i (φ)

)
+ h.c.

+
2∑

i,j=1

uiRq
j
LG̃

(4)
1ij(φ) + qLuRG̃

(4)
2 (φ) + h.c., (6.19)

using (6.12). In both cases, the full flavor mixing cannot be realized at the tree level
at MC.

In this way, we find that the model based on the embedding (6.5) is a possible
candidate to realize the fermion mass hierarchy and flavor mixing, in case that
radiative corrections are too small to generate mixing terms with suitable size for
(BC2), (BC3) and (BC4). In any case, we have no powerful principle to determine
the polynomials of scalar fields, and hence we obtain no useful predictions from the
fermion sector.

6.2.2 Sfermion masses

The SUSY grand unified theories on an orbifold have a desirable feature that
the triplet-doublet splitting of Higgs multiplets is elegantly realized [4,5]. Hence, it
would be interesting to construct a SUSY extension of orbifold family unification
models.

In the presence of SUSY, the model with (BC1) does not obtain advantages of
fermion sector over that with (BC2), (BC3) or (BC4), because any interactions other
than gauge interactions are not allowed in the bulk and Yukawa interactions must
appear from brane interactions. In SUSY models, complex scalar fields (Φ+,Φ−)
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are introduced as superpartners of (Ψ+,Ψ−), and they consist of two sets of com-
plex scalar fields Φ+ = (φ1

+, φ
2
+) and Φ− = (φ1

−, φ
2
−), where φ1

+, φ
2
+, φ

1
− and φ2

−
are superpartners of ψ1

L, ψ
2
R, ψ

1
R and ψ2

L, respectively. Here, we pay attention to
superpartners of the SM fermions called sfermions and study predictions of models.

Based on the assignment (6.5) for (BC1), sfermions are embedded into scalar
fields as follows,

φ1
+ ⊃ ũi∗R , ẽi∗R , ν̃∗

R, φ2
+ ⊃ d̃iR, φ1

− ⊃ l̃i∗L , φ2
− ⊃ q̃iL. (6.20)

Gauge quantum numbers for sfermions are given in Table 6.4. Here, the charge
conjugation is performed for scalar fields d̃iR and l̃i∗L corresponding to the right-
handed fermions, and G323 = SU(3)C × SU(2)L × SU(3)F . Note that (l1, l2, la) is
untouched by change as a mark of the place of origin in 84.

species G323 (l1, l2, la) U(1)1 U(1)2 U(1)3

q̃iL (3,2,3) (1, 1, 1) 1 3 1

ũi∗R (3,1,3) (2, 0, 1) −4 3 1

d̃i∗R (3,1,3) (1, 0, 1) 2 6 2

l̃iL (1,2,3) (0, 1, 1) −3 6 2

ẽi∗R (1,1,3) (0, 2, 1) 6 3 1

ν̃∗
R (1,1,1) (0, 0, 3) 0 −15 3

Table 6.4: Gauge quantum numbers of sfermions with even Z2 parities for SU(9) →
G323 × U(1)1 × U(1)2 × U(1)3.

We study the sfermion masses based on the following two assumptions.

1) The SUSY is broken down by some mechanism and sfermions acquire the soft
SUSY breaking masses respecting SU(9) gauge symmetry. Then, ũi∗R , ẽ

i∗
R , ν̃

∗
R

and d̃i∗R get a common mass m+, and q̃iL and l̃iL get a common mass m− at
some scale MS.

2) Extra gauge symmetries SU(3)F × U(1)2 × U(1)3 are broken down by the
VEVs of some scalar fields at MS. Then, the D-term contributions to the
scalar masses can appear as a dominant source of mass splitting.

The D-term contributions, in general, originate from D-terms related to broken
gauge symmetries when the soft SUSY breaking parameters possess non-universal
structure and the rank of gauge group decreases after the breakdown of gauge sym-
metry [43–46]. The contributions for scalar fields specifying by (l1, l2, la) are given
by

m2
D(l1,l2,la)

= (−1)l1+l2 [Q1DF1 +Q2DF2 + {9(l1 + l2)− 15}D2

+ {4la − 3(3− l1 − l2)}D3], (6.21)

where Q1 and Q2 are the diagonal charges (up to normalization) of SU(3)F for
the triplet, i.e., (Q1, Q2) = (1, 1), (−1, 1) and (0,−2). DF1, DF2, D2 and D3 are
parameters including D-term condensations for broken symmetries.
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Using m+, m− and m2
D(l1,l2,la)

, we derive the following formulae of mass square

for each species at MS:
7

m2
ũ1∗R

= m2
+ +DF1 +DF2 + 3D2 +D3, (6.22)

m2
ũ2∗R

= m2
+ −DF1 +DF2 + 3D2 +D3, (6.23)

m2
ũ3∗R

= m2
+ − 2DF2 + 3D2 +D3, (6.24)

m2
ẽ1∗R

= m2
+ +DF1 +DF2 + 3D2 +D3, (6.25)

m2
ẽ2∗R

= m2
+ −DF1 +DF2 + 3D2 +D3, (6.26)

m2
ẽ3∗R

= m2
+ − 2DF2 + 3D2 +D3, (6.27)

m2
d̃1∗R

= m2
+ −DF1 −DF2 + 6D2 + 2D3, (6.28)

m2
d̃2∗R

= m2
+ +DF1 −DF2 + 6D2 + 2D3, (6.29)

m2
d̃3∗R

= m2
+ + 2DF2 + 6D2 + 2D3, (6.30)

m2
q̃1L

= m2
− +DF1 +DF2 + 3D2 +D3, (6.31)

m2
q̃2L

= m2
− +DF1 −DF2 + 3D2 +D3, (6.32)

m2
q̃3L

= m2
− − 2DF2 + 3D2 +D3, (6.33)

m2
l̃1L
= m2

− −DF1 −DF2 + 6D2 + 2D3, (6.34)

m2
l̃2L
= m2

− −DF1 +DF2 + 6D2 + 2D3, (6.35)

m2
l̃3L
= m2

− + 2DF2 + 6D2 + 2D3. (6.36)

By eliminating unknown parameters such as m2
+, m

2
−, DF1, DF2, D2 and D3, we

obtain 15 kinds of relations 8

m2
ũ1∗R

= m2
ẽ1∗R

, m2
ũ2∗R

= m2
ẽ2∗R

, m2
ũ3∗R

= m2
ẽ3∗R

, (6.37)

m2
d̃1∗R

−m2
l̃1L
= m2

d̃2∗R
−m2

l̃2L
= m2

d̃3∗R
−m2

l̃3L

= m2
ũ1∗R

−m2
q̃1L

= m2
ũ2∗R

−m2
q̃2L

= m2
ũ3∗R

−m2
q̃3L
, (6.38)

m2
q̃1L

+m2
l̃1L
= m2

q̃2L
+m2

l̃2L
= m2

q̃3L
+m2

l̃3L
, (6.39)

m2
q̃1L

+m2
d̃1∗R

= m2
q̃2L

+m2
d̃2∗R

= m2
q̃3L

+m2
d̃3∗R

= m2
l̃1L
+m2

ũ1∗R
= m2

l̃2L
+m2

ũ2∗R
= m2

l̃3L
+m2

ũ3∗R
. (6.40)

They are compactly rewritten as

m2
ũi∗R

= m2
ẽi∗R
, m2

d̃i∗R
−m2

ũi∗R
= m2

l̃iL
−m2

q̃iL
, (6.41)

m2
ũi∗R

−m2
ũj∗R

= −m2
d̃i∗R

+m2
d̃j∗R

= m2
q̃iL

−m2
q̃jL

= −m2
l̃iL
+m2

l̃jL
, (6.42)

7 In case that the extra gauge symmetry breaking scale (MF) is lower than MS, m
2
± receive

radiative corrections between MS and MF, and the mass formulae should be modified. Here, we
consider the simplest case to avoid complications.

8 Sum rules among sfermion masses have also been derived using the orbifold family unification
models on five-dimensional (5D) space-time [47–49].
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where i, j = 1, 2, 3.
In the same way, based on (6.6) for (BC2), we obtain the relations,

m2
ũi∗R

= m2
ẽi∗R
, m2

l̃iL
−m2

ũi∗R
= m2

d̃i∗R
−m2

q̃iL
, (6.43)

m2
ũi∗R

−m2
ũj∗R

= −m2
d̃i∗R

+m2
d̃j∗R

= m2
q̃iL

−m2
q̃jL

= −m2
l̃iL
+m2

l̃jL
, (6.44)

where i, j = 1, 2, 3. Note that these relations are obtained by exchanging m2
d̃i∗R

for

m2
l̃iL

in those for (BC1).

Furthermore, we obtain the specific relations,

m2
ũi∗R

= m2
ẽi∗R
, m2

d̃i∗R
−m2

ũi∗R
= m2

l̃iL
−m2

q̃iL
, (6.45)

m2
ũi∗R

−m2
ũj∗R

= −m2
l̃iL
+m2

l̃jL
, m2

q̃iL
−m2

q̃jL
= −m2

d̃i∗R
+m2

d̃j∗R
, (6.46)

m2
ũ1∗R

−m2
ũ2∗R

= m2
q̃1L

−m2
q̃2L
, (6.47)

m2
ũ1∗R

+m2
ũ3∗R

= m2
q̃1L

+m2
q̃3L
, m2

d̃1∗R
+m2

d̃3∗R
= m2

l̃1L
+m2

l̃3L
(6.48)

for (BC3) and

m2
ũi∗R

= m2
ẽi∗R
, m2

l̃iL
−m2

ũi∗R
= m2

d̃i∗R
−m2

q̃iL
, (6.49)

m2
ũi∗R

−m2
ũj∗R

= −m2
d̃i∗R

+m2
d̃j∗R

, m2
q̃iL

−m2
q̃jL

= −m2
l̃iL
+m2

l̃jL
, (6.50)

m2
ũ1∗R

−m2
ũ2∗R

= m2
q̃1L

−m2
q̃2L
, (6.51)

m2
ũ1∗R

+m2
ũ3∗R

= m2
q̃1L

+m2
q̃3L
, m2

d̃1∗R
+m2

d̃3∗R
= m2

l̃1L
+m2

l̃3L
(6.52)

for (BC4). Here, i, j = 1, 2, 3 and we denote ũ∗
R, ẽ

∗
R, d̃

∗
R, l̃L and q̃L as ũ3∗

R , ẽ3∗R , d̃3∗R , l̃3L
and q̃3L. The relations for (BC4) are obtained by exchanging m2

d̃i∗R
for m2

l̃iL
in those

for (BC3).
The above relations become predictions to probe models because they are specific

to models, in case that the extra gauge symmetry breaking scale is near MS.
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7 Separation of the SM and hidden particles on

5D

In this section, we propose that hidden particles can be separated according to
gauge quantum numbers from the visible ones by the different BCs. Especially, we
show that the separation of visible and hidden particles can be realized in gauge
interactions using a 5D extension of the SM with an extra U(1) gauge symmetry
coexisting different types of BCs. Furthermore, we also study models that hidden
particles relating to conjugate BCs are identified with dark matter or inflaton.

7.1 Why hidden

In order to obtain some hints to explore the origin of dark matter and the identity
of inflaton and to address the reason for their existence, we search for an factor that
it is hard to detect hidden particles based on the following assumptions.

• There is an extra gauge group Ghidden other than the SM one GSM (or some
extension such as a grand unified group GGUT), and Ghidden leaves little trace
behind around the terascale.

• Hidden particles such as dark matter and inflaton possess gauge quantum
numbers of Ghidden or are some components of gauge bosons in a hidden sector,
and they are gauge singlets of GSM (or GGUT).

• The SM particles are gauge singlets of Ghidden.

Gauge quantum numbers are suitably assigned to construct a realistic model,
but in most cases, it would be done without any foundation except for symmetry
principle. We expect a reason or a mechanism that a subtle separation of gauge
quantum numbers in the above assumptions is realized naturally, and propose a hy-
pothesis that hidden particles can be separated according to gauge quantum numbers
from the visible ones by the difference of BCs on extra dimensions. 9

To embody our hypothesis, we consider a 5D theory with GSM × U(1)C gauge
group as an extension of the SM with an extra U(1) gauge boson CM = CM(x, y)
and an extra matter ϕ̃ = ϕ̃(x, y). For simplicity, we pay attention to scalar fields
and U(1) gauge bosons and treat the Lagrangian density,

L5D = (DMH)∗(DMH)−m2
H |H|2 − 1

4
BMNB

MN

+ (DM ϕ̃)∗(DM ϕ̃)−m2
ϕ̃|ϕ̃|2 −

1

4
CMNC

MN

− λ
(|H|2)2 − λϕ̃

(|ϕ̃|2)2 − λmix|H|2|ϕ̃|2 + · · · , (7.1)

where H = H(x, y) is 5D complex scalar field containing the SM Higgs doublet as
its zero mode (H(0)), and λ, λϕ̃ and λmix are quartic couplings of scalar fields.

9 According to a similar idea that a dark matter possesses different features from the SM
particles on extra dimensions, a truncated-inert-doublet model has been constructed that the SM
ones belong to Z2 even zero modes and the dark matter is one of Z2 odd zero modes on a warped
extra dimension [50].
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If BM which is the 5D extension of the U(1)Y gauge boson in the SM satisfies
the BCs such as (2.10) – (2.12) and CM satisfies the BCs such as (2.34) and (2.35),
H and ϕ̃ cannot own both non-zero U(1) charges. In other words, H is separated
from ϕ̃ in gauge interactions through the difference of BCs.

After the dimensional reduction, we obtain the following 4D Lagrangian density
for zero modes H(0), ϕ̃(0), B

(0)
μ and C

(0)
5 , at the tree level,

L(0)
4D = (D(0)

μ H(0))∗(D(0)μH(0))−m2
H |H(0)|2 − 1

4
B(0)
μν B

(0)μν

+
1

2
∂μϕ̃

(0)∂μϕ̃(0) − 1

2

{
m2
ϕ̃ +

(
βϕ̃ − q̃ϕ̃θ

2πR

)2
}
(ϕ̃(0))2 +

1

2
∂μC

(0)
5 ∂μC

(0)
5

− λ
(|H(0)|2)2 − 1

4
λϕ̃(ϕ̃

(0))4 − 1

2
λmix|H(0)|2(ϕ̃(0))2 + · · · , (7.2)

where where θ is the Wilson line phase defined by

θ = g̃5

∫ πR

−πR

1√
2πR

C
(0)
5 dy =

√
2πRg̃5C

(0)
5 , (7.3)

and the ellipse in (7.2) stands for parts containing Kaluza-Klein modes of gauge

bosons and the kinetic term of C
(0)
5 . Note that the U(1) gauge symmetry is broken

by orbifolding, and θ is a remnant of the U(1). And, we use the Fourier expansion
(2.24) for H and (2.42) for ϕ̃.

As seen from (7.2), C
(0)
5 is massless at the tree level. After receiving radiative

corrections, the effective potential relating to C
(0)
5 is induced and C

(0)
5 acquires a

mass through the Hosotani mechanism [31, 32]. Concretely, the one-loop effective

potential for the Wilson line phase θ(=
√
2πRg̃5C

(0)
5 ) is derived as

Veff [θ] =
1

2

∫
d4pE
(2π)4

∞∑
n=−∞

ln

{
p2E +m2

ϕ̃ +

(
2πn+ βϕ̃ − q̃ϕ̃θ

2πR

)2
}

= E0 − 3

64π6R4

∞∑
n=1

(
1

n5
+

rϕ̃
n4

+
r2ϕ̃
3n3

)
e−nrϕ̃ cos {n (βϕ̃ + q̃ϕ̃θ)} , (7.4)

where pE is a 4D Euclidean momentum, E0 is a θ-independent constant and rϕ̃ =

2πRmϕ̃. The physical vacuum is realized at βϕ̃ − q̃ϕ̃θ = 0 and C
(0)
5 decouples in the

low-energy theory, if R is small enough, by acquiring the mass of O(1/R).
The scalar field ϕ̃(0)(x) survives in a post-SM at the terascale for βϕ̃ − q̃ϕ̃θ = 0

and mϕ̃ < O(1)TeV, and we find that our Lagrangian density agrees with that
containing a dark matter in a specific model called the New Minimal Standard
Model (NMSM) [51,52]. Then, ϕ̃(0)(x) becomes a possible candidate of dark matter.

The ϕ̃(0)(x) couples to the SM Higgs doublet through the quartic interaction
−(1/2)λmix|H(0)|2(ϕ̃(0))2. In the presence of this term as the Higgs portal, the run-
ning of λ based on the renormalization group equation changes compared with that
in the SM, and the vacuum stability of Higgs potential can be improved [52,53].

Here, as a complementary comment on our hypothesis, we state a feature that
matters are not necessarily classified into the visible ones and the hidden ones, even
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if a system has two U(1) gauge bosons BM and CM with different types of BCs,
because there can exist particles that possess both U(1) charges. Let us show it using
a model described by the Lagrangian density,

Lϕ̃a =
∑
a=1,2

{
(DM ϕ̃a)

∗(DM ϕ̃a)−m2
ϕ̃a |ϕ̃a|2

}− 1

4
BMNB

MN − 1

4
CMNC

MN , (7.5)

where DM = ∂M − ig5qϕ̃aBM − ig̃5q̃ϕ̃aCM for a pair of complex scalar fields ϕ̃a =
ϕ̃a(x, y) (a = 1, 2). In case that qϕ̃1 = qϕ̃2 , q̃ϕ̃1 = −q̃ϕ̃2 and mϕ̃1 = mϕ̃2 , Lϕ̃a is a
single-valued function under the BCs (2.10) – (2.12), (2.34), (2.35) and

ϕ̃a(x, y + 2πR) = eiβϕ̃ϕ̃a(x, y), ϕ̃1(x,−y) = ηϕ̃ϕ̃2(x, y), (7.6)

where βϕ̃ takes 0 or π and ηϕ̃ takes 1 or −1. We refer to the U(1) gauge symmetry
concerning the BCs (2.34), (2.35) and (7.6) as an exotic U(1) symmetry [54, 55]. 10

Then, we find that ϕ̃a own both U(1) gauge quantum numbers. A similar feature
holds on a theory containing non-abelian gauge symmetries: matters can possess
both gauge quantum numbers whose gauge bosons satisfy different types of BCs if
the theory is vector-like.

7.2 Gauge-higgs inflation

7.2.1 Inflation

Inflation has been proposed to solve some problems in Big Bang cosmology such
as horizon problem, flatness problem and magnetic-monopole problem by K. Sato
and A. Guth in the early 1980s [57, 58]. Inflation is an exponential expansion of
space in the early universe. It is realized by a vacuum energy of inflaton potential.
Here, inflaton is any scalar field.

Especially, slow-roll inflation models which have been proposed by A. Linde
is one of the most important model [59]. Inflation can be estimated by inflation
parameters, which are observable, only using inflaton potential. From observation
and theoretical analysis, inflation parameters are restricted as follow:

· Minimum value of inflaton potential V (φ) is almost zero:

V (〈φ〉) � 0 . (7.7)

· The slow-roll conditions:

ε ≡ M2
G

2

(
V ′(φ)
V (φ)

)2

� 1 , η ≡ M2
G

∣∣∣∣V ′′(φ)
V (φ)

∣∣∣∣ � 1 , (7.8)

MG = 2.4× 1018GeV : the reduced Planck scale ,

V ′(φ) =
∂V (φ)

∂φ
, V ′′(φ) =

∂2V (φ)

∂φ2
.

10 The orbifolding due to these BCs is regarded as a variant of the diagonal embedding proposed
in [56].
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· The e-folding number:

N ≡
∫ te

t∗
Hdt =

1

M2
G

∣∣∣∣
∫ φe

φ∗

V (φ)

V ′(φ)
dφ

∣∣∣∣ � 50 ∼ 60 , (7.9)

H : the Hubble constant

φ∗ : the value of inflaton field in the start point of inflation

φe : the value of inflaton field in the end point of inflation

· The scalar power spectrum:

Pζ ≡ 1

12π2M6
G

(V (φ))3

(V ′(φ))2

∣∣∣∣
φ=φ∗

= (2.196± 0.079)× 10−9 (7.10)

· The spectral index:

ns = 1− 6ε∗ + 2η∗ = 0.9655± 0.0062 , (7.11)

ε∗, η∗ : the quantities at the horizon exit

· The tensor-to-scalar ratio:

r ≡ Ph
Pζ = 16ε∗ < 0.12 , (7.12)

Ph = 2V (φ)

3π2M4
G

The first conditions are assumed because the current cosmological constant is very
small value. The slow-roll conditions are demanded from the flatness of potential.
The e-folding number represents that how much exponential expansion continued.
In order to realize our universe, the e-folding number should be taken N = 50 ∼ 60.
The constraint of the scalar power spectrum, the spectral index and the tensor-to-
scalar ratio are given by Planck observation in 2015 [60].

Many slow-roll inflation models have been proposed, but in most of models,
inflaton potential have been given by hand. This causes problems such as the ori-
gin of inflaton and fine-tuning problem of parameters. Higher-dimensional theories
may solve those problems. On 5D gauge theory, gauge-Higgs field which is 5-th
component of 5D gauge field dose not have its potential in the classical level, but,
in 1-loop level, gauge-Higgs potential is generated by radiative corrections. Fine-
tuning problem is solved because this potential is finite due to 5D gauge symmetry.
N. Arkani-Hamed have proposed inflation model that gauge-Higgs field are identified
with inflaton [61]. This model can solve the origin of inflaton and the fine-tuning
problem, under the condition that the value of relevant gauge coupling constant is
tiny enough.

Recently, the models with 5D gauge theory added to 5D gravitational theory
has been constructed, and investigated fine-tuning problem and the origin of in-
flaton [62–64]. These models may solve problems of fine-tuning and the origin of
inflaton with a same magnitude of gauge coupling constant as the SM ones. On
5D gravitational theory, a scalar field called radion, which is an extra-dimensional
component of 5D gravity field, is included, and it may be also inflaton.
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7.2.2 Gauge-higgs inflation

We apply a model with conjugate BCs on a gauge-Higgs inflation scenario. Let
us consider a gravity theory coupled to a U(1)C gauge theory defined on a 5D
space-time whose classical background is M4 × S1/Z2. The starting action is given
by

Sgr
5D =

∫
d5x

√
−ĝ5

[
1

16πG5

R̂5 − 1

4
ĝMP ĝNLCMNCPL

+

c1∑
a=1

¯̃ψn
a(−iĝMN Γ̂M∇N − μa)ψ̃

n
a

+

c2∑
b=1

¯̃ψch
b (−iĝMN Γ̂MDN −mb)ψ̃

ch
b

]
, (7.13)

where ĝ5 = det ĝMN , ĝ
MN is the inverse of 5D metric ĝMN , G5 is the 5D Newton

constant, R̂5 is the 5D Ricci scalar, CMN = ∂MCN − ∂NCM , Γ̂M = Ek
MΓk (Ek

M =
Ek
M(x, y) is the fünf bein, Γk are 5D gamma matrices, and k is the space-time index

in the local Lorentz frame), ∇N = ∂N − (i/4)ω̂klNΣkl (ω̂
kl
N is the spin connection and

Σkl = i[Γk,Γl]/2), DN = ∂N − (i/4)ω̂klNΣkl − ig̃5q̃bCN for ψ̃ch
b , CN is a 5D U(1)C

gauge boson in the hidden sector and we assume that it satisfies the conjugate BCs
(2.31) and (2.32), ψ̃n

a are neutral fermions, ψ̃ch
b are U(1)C charged fermions whose

U(1)C charge is q̃b, and c1 and c2 stand for numbers of neutral and charged fermions,
respectively. The g̃5 is a 5D gauge coupling constant.

If the SM gauge bosons satisfy the ordinary BCs such as (2.10) – (2.12) and
both ψ̃n

a and ψ̃ch
b satisfy the BCs (2.40) and (2.41) with βa and βb as a twisted phase

(βψ̃), ψ̃
n
a and ψ̃ch

b should be singlets of the SM gauge group, as a consequence in the
previous section.

The BCs of ĝMN are given by

ĝMN(x, y + 2πR) = ĝMN(x, y) , (7.14)

ĝμν(x,−y) = ĝμν(x, y) , ĝμ5(x,−y) = −ĝμ5(x, y) ,

ĝ55(x,−y) = ĝ55(x, y) , (7.15)

and then the Fourier expansions of ĝMN are presented as

ĝμν(x, y) = ĝ(0)μν (x) +
∞∑
n=1

ĝ(n)μν (x) cos
ny

R
, (7.16)

ĝμ5(x, y) =
∞∑
n=1

ĝ
(n)
μ5 (x) sin

ny

R
y , (7.17)

ĝ55(x, y) = ĝ
(0)
55 (x) +

∞∑
n=1

ĝ
(n)
55 (x) cos

ny

R
. (7.18)

The spin connection ω̂klM satisfy the ordinary BCs such that

ω̂klM(x, y + 2πR) = ω̂klM(x, y) , (7.19)
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ω̂klμ (x,−y) = ω̂klμ (x, y) , ω̂kl5 (x,−y) = −ω̂kl5 (x, y), (7.20)

and then the full Lagrangian density containing both visible and hidden sectors
becomes a single-valued function on S1/Z2.

On the Minkowski background, ĝ
(0)
μν takes the classical value such as 〈g(0)μν 〉 = ημν ,

and other zero modes are assumed to have the following classical values:

〈ĝ(0)55 〉 = φ2/3 , 〈C(0)
5 〉 = θ√

2πRg̃5
, (7.21)

where φ is the radion and θ is the Wilson line phase. The Kaluza-Klein modes are
assumed to have zero classical values.

According to a usual procedure, the following effective potential is obtained at
the one-loop level,

V (ρ, θ) =
3L2m6

2π2ρ2

[
− 2ζ(5) + c1

∞∑
n=1

(
1

n5
+ rm

ρ1/3

n4
+ r2m

ρ2/3

3n3

)
e−nrmρ

1/3

+ c2

∞∑
n=1

(
1

n5
+

ρ1/3

n4
+

ρ2/3

3n3

)
e−nρ

1/3

cos {n (β − q̃θ)}
]

+
L2m

ρ1/3
ã+ · · · , (7.22)

where we take common masses μ = μa and m = mb, a common twisted phase β = βb
and a common charge q̃ = q̃b for simplicity, L = 2πR, ρ = L3m3φ, ζ(k) =

∑∞
n=1 1/n

k,
rm = μ/m and ã is some constant.

The above potential has the same form as that obtained in [63] except overall
factor and β, and hence both radion and Wilson line phase are stabilized in case with
c1 > 2+c2, and θ is, in particular, fixed as β− q̃θ = π. Furthermore, the gauge-Higgs
field θ can give rise to inflation in accord with the astrophysical data [64].

We need some modification of our model to explain the origin of the Big Bang
after inflaton decays into the SM particles. The direct coupling between inflaton and
some SM particles is necessary to produce radiations at a very early universe, but
it is difficult due to the mismatch of BCs, as explained in the previous section. As
a way out, if some SM particles or its extension form a pair of vector-like multiplet
for U(1)C and satisfy the BCs such as (7.6) or counterparts of fermions, they can

directly couple to C
(0)
5 . For instance, if there exist two Higgs doublets Ha as a

vector-like pair of U(1)C , there can appear the coupling such as g̃25 q̃
2
H |H(0)

a |2(C(0)
5 )2.

In this case, although the contributions from Ha are added to the potential (7.22),
θ might remain inflaton because they are not dominated.
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8 Conclusion and Discussion

First, we have explained feature of the orbifold S1/Z2, T
2/Z2, T

2/Z3, T
2/Z4 and

T 2/Z6. And, we have reviewed orbifold family unification on the basis of SU(N)
gauge theories on five-dimensional space-time, M4 × S1/Z2. Orbifold family unifi-
cation model on the basis of SU(N) gauge theories which is broken down to SU(5)
gauge group by orbifold breaking have been found, but orbifold family unification
model on the basis of SU(N) gauge theories which is directly broken down to the
SM gauge group by orbifold breaking have not been found.

Second, we have studied the possibility of family unification on the basis of
SU(N) gauge theory on 6 dimensional space-time, M4×T 2/ZM . We have obtained
enormous numbers of models with three families of SU(5) matter multiplets and
those with three families of the SM multiplets from a single massless Dirac fermion
with a higher-dimensional representation of SU(N), after the orbifold breaking.
The total numbers of models with the three families of SU(5) multiplets and the
SM multiplets are summarized in Table 4.5 and 4.10, respectively.

Third, we have also studied the relationship between the family number of chiral
fermions and the Wilson line phases, based on the orbifold family unification. We
have found that flavor numbers are independent of the Wilson line phases relating
extra-dimensional components of gauge boson, as far as the SM gauge symmetry is
respected. This feature originates from a hidden quantum-mechanical SUSY. The
relationship of left-handed fermions and right-handed ones corresponds to that of
bosons and fermions in quantum-mechanical SUSY.

Fourth, we have taken orbifold family unification models base on SU(9) gauge
symmetry on M4 × T 2/Z2 and have examined the reality of models by checking
the appearance of Yukawa interactions from the interactions in the 6D bulk as
a selection rule. We have picked out a candidate of model compatible with the
observed fermion masses and flavor mixing. The model has a feature that just
three families of fermions in the SM exist as zero modes and any mirror particles
of fermions do not appear in the low energy world after the breakdown of gauge
symmetry SU(9) → SU(3)C × SU(2)L × U(1)Y × SU(3)F × U(1)3 or SU(9) →
SU(3)C × SU(2)L × U(1)Y × SU(2)F × U(1)4 by orbifold breaking. Depending on
the assignment of intrinsic Z2 parities, uiR, e

i
R, d

i
R, l

i
L and qiL belong to Ψ± and Ψ∓

with 84 of SU(9), respectively. We have found out specific relations among sfermion
masses as model-dependent predictions in the SUSY extension of models.

The massless degrees of freedom relating to a family symmetry must be made
massive by further breaking. For example, extra scalar fields can play the role of
Higgs fields for the breakdown of extra gauge symmetries including non-Abelian
gauge symmetries. As a result, extra massless fields including the family gauge
bosons can be massive.

Fifth, we have formulated 5D U(1) gauge theories yielding different types of BCs
on S1/Z2. On the conjugate BCs, the 4D components of U(1)C gauge boson have
odd Z2 parities and their zero modes are projected out through the dimensional
reduction. Then, the U(1)C gauge symmetry is broken down by orbifolding. In
contrast, the 5-th component of U(1)C gauge boson has even Z2 parities, and its

zero mode C
(0)
5 survives and becomes a dynamical field. It is massless at the tree

52



level, but the effective potential relating to C
(0)
5 is induced after receiving radiative

corrections. Then, C
(0)
5 acquires a mass of O(1/R) and decouples to the low energy

theory if R is small enough. Matter fields transform into the charge conjugated ones
under the Z2 transformation. Then, only real fields such as real scalar and Majorana
fermions appear after compactification.

We have also shown that the separation of visible and hidden particles can be
realized in the gauge interactions using a 5D extension of the SM with an extra
U(1) gauge symmetry and an extra scalar field coexisting different types of BCs.
We also have derived the Lagrangian density containing a dark matter in the NMSM.
The zero mode of extra scalar field yielding the conjugate BCs becomes a possible
candidate of dark matter.

Furthermore, we have applied a 5D gravity theory coupled to a U(1) gauge theory
with conjugate BCs on a gauge-Higgs inflation scenario. We have found that the
effective potential containing the radion φ and Wilson line phase θ plays a role of
an inflaton potential and θ become inflaton.

We give a comment on the right-handed neutrinos. Because, the right-handed
neutrinos are singlets of the SM gauge group and they have Majorana masses, we
guess that there might be hidden matters obeying conjugate BCs. But, it is difficult
to realize it, because we cannot construct a Z2 invariant term in 5D Lagrangian den-
sity to derive the 4D Yukawa interaction relating to neutrino, due to the mismatch
of BCs between the SM non-singlets and singlets. Nevertheless, it would also be
interesting to examine the origin of the right-handed neutrinos from the viewpoint
of BCs.

In this thesis, we have studied the possibility of extra dimensional theories as
the physics beyond the SM choosing orbifolds as an extra dimensional space-time.
Especially, we have focused on the mystery of family number and the origin of undis-
covered particles. Our models can be attractive from the phenomenological point
of view. However, we should investigate other phenomenological and cosmological
verifications from the view point of the mass of the SM particles and observables.

It would be interesting to construct GUT models with a large gauge group be-
cause gauge theories on higher-dimensional space-time satisfying conjugate BCs
lower the rank of gauge symmetries after orbifold breaking. Extra dimensional
models satisfying conjugate BCs have not been studied very much. It would be in-
teresting to combine orbifold family unification models with orbifold with conjugate
BCs. In this case, there can be family unification models without family symmetry
after orbifold breaking.

Extra dimensional theories relate sting theory, which is the candidate of ultimate
theory. If our models are considered as effective theories of string theory, it is
interested to reconsider our models in the framework of string theory.
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A Notation

We use the natural unit system. The speed of light c and the reduced Planck
constant � are

c = � = 1. (A.1)

· Pauli matrix

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
,

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(A.2)

· 4D gamma matrix: γμ (μ = 0, 1, 2, 3)

γμ =

(
0 σμ ,
σ̄μ 0

)
(A.3)

σμ =
(
σ0 σi

)
, σ̄μ =

(
σ0 −σi

)
,

γ5 = iγ0γ1γ2γ3 =

( −12×2 0
0 12×2

)
, (A.4)

{γμ, γν} = 2gμν ,
{
γμ, γ5

}
= 0 . (A.5)

· 5D gamma matrix: ΓM (M = 0, 1, 2, 3, 5)

Γμ = γμ , Γ5 = iγ5 , (A.6){
ΓM ,ΓN

}
= 2gMN . (A.7)

· 6D gamma matrix: ΓM (M = 0, 1, 2, 3, 5, 6)

Γμ = γμ ⊗ σ3 =

(
γμ 0
0 −γμ

)
, (A.8)

Γ5 = 14×4 ⊗ iσ1 =

(
0 i14×4

i14×4 0

)
, (A.9)

Γ6 = 14×4 ⊗ iσ2 =

(
0 14×4

−14×4 0

)
, (A.10)

Γ7 ≡ Γ0Γ1Γ2Γ3Γ5Γ6 = −γ5 ⊗ σ3 =

( −γ5 0
0 γ5

)
, (A.11){

ΓM ,ΓN
}
= 2gMN ,

{
Γ5,ΓM

}
= 0 , (A.12)

Γz ≡ Γ5 + iΓ6 , Γz̄ ≡ Γ5 − iΓ6 . (A.13)

B The Properties of T 2/ZM orbifold

In this section, let us discuss SU(N) gauge thoery on M4 ×ZM in detail. Espe-
cially, we explain the properties of orbifold M4 × ZM and orbifold breaking mecha-
nism by inner automophisms boundary conditions.
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B.1 T 2/Z2 orbifold

B.1.1 Property

Let us discuss SU(N) gauge theory on M4 × T 2/Z2. On T 2/Z2, the T 2 is
constructed by SU(2)×SU(2) lattice, and its basis vector takes e1 = 1, e2 = i. The
point z is equivalent to the points z+ e1 and z+ e2, and the point −z on T 2/Z2. In
this case, the fixed points are

0 ,
e1
2

,
e2
2

,
e1 + e2

2
. (B.1)

The transformation around those fixed points can be defined as

s20 : z → −z , s21 : z → −z + e1 , s22 : z → −z + e2 ,

s23 : z → −z + e1 + e2 , t1 : z → z + e1 , t2 : z → z + e2 . (B.2)

They satisfy the relations,

s220 = s221 = s222 = s223 = I , s21 = t1s20 , s22 = t2s20 ,

s23 = t1t2s20 = s21s20s22 = s22s20s21 , t1t2 = t2t1 . (B.3)

At this time, the BCs of bulk fields are characterized by matrices (P0, P1, P2, P3,
U1, U2). Those matrices satisfy the relations,

P 2
0 = P 2

1 = P 2
2 = P 2

3 = I , P1 = U1P0 , P2 = U2P0 ,

P3 = U1U2P0 = P1P0P2 = P2P0P1 , U1U2 = U2U1 . (B.4)

Since three of those matrices is independent, we choose three matrices P0, P1, P2

which are unitary and hermitian matricies.

B.1.2 Orbifold breaking by inner automophisms boundary conditions

The BCs of gauge field are determined as

s20 : Aμ(x,−z,−z̄) = P0Aμ(x, z, z̄)P
†
0 ,

Az(x,−z,−z̄) = −P0Az(x, z, z̄)P
†
0 ,

Az̄(x,−z,−z̄) = −P0Az̄(x, z, z̄)P
†
0 , (B.5)

s21 : Aμ(x, e1 − z, ē1 − z̄) = P1Aμ(x, z, z̄)P
†
1 ,

Az(x, e1 − z, ē1 − z̄) = −P1Az(x, z, z̄)P
†
1 ,

Az̄(x, e1 − z, ē1 − z̄) = −P1Az̄(x, z, z̄)P
†
1 , (B.6)

s22 : Aμ(x, e2 − z, ē2 − z̄) = P2Aμ(x, z, z̄)P
†
2 ,

Az(x, e2 − z, ē2 − z̄) = −P2Az(x, z, z̄)P
†
2 ,

Az̄(x, e2 − z, ē2 − z̄) = −P2Az̄(x, z, z̄)P
†
2 , (B.7)

s23 : Aμ(x, e1 + e2 − z, ē1 + ē2 − z̄) = P3Aμ(x, z, z̄)P
†
3 ,

Az(x, e1 + e2 − z, ē1 + ē2 − z̄) = −P3Az(x, z, z̄)P
†
3 ,
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Az̄(x, e1 + e2 − z, ē1 + ē2 − z̄) = −P3Az̄(x, z, z̄)P
†
3 , (B.8)

t1 : AM(x, z + e1, z̄ + ē1) = U1AM(x, z, z̄)U †
1 , (B.9)

t1 : AM(x, z + e2, z̄ + ē2) = U2AM(x, z, z̄)U †
2 , (B.10)

where z = x5 + ix6, z̄ = x5 − ix6, Az = A5 + iA6 and Az̄ = A5 − iA6. The BCs of
scalar field φ and spinor field ψ are determined as

s20 : φ(x,−z,−z̄) = TΦ[P0]φ(x, z, z̄) , (B.11)

s21 : φ(x, e1 − z, ē1 − z̄) = TΦ[P1]ψ(x, z, z̄) , (B.12)

s22 : φ(x, e2 − z, ē2 − z̄) = TΦ[P2]ψ(x, z, z̄) , (B.13)

s23 : φ(x, e1 − e2 − z, ē1 − ē2 − z̄) = TΦ[P3]φ(x, z, z̄) , (B.14)

t1 : φ(x, z + e1, z̄ + ē1) = TΦ[U1]φ(x, z, z̄) , (B.15)

t2 : φ(x, z + e2, z̄ + ē2) = TΦ[U2]φ(x, z, z̄) , (B.16)

s20 : ψ(x,−z,−z̄) = TΨ[P0]ψ(x, z, z̄) , (B.17)

s21 : ψ(x, e1 − z, ē1 − z̄) = TΨ[P1]ψ(x, z, z̄) , (B.18)

s22 : ψ(x, e2 − z, ē2 − z̄) = TΨ[P2]ψ(x, z, z̄) . (B.19)

s23 : ψ(x, e1 − e2 − z, ē1 − ē2 − z̄) = TΨ[P3]φ(x, z, z̄) , (B.20)

t1 : ψ(x, z + e1, z̄ + ē1) = TΨ[U1]ψ(x, z, z̄) , (B.21)

t2 : ψ(x, z + e2, z̄ + ē2) = TΨ[U2]ψ(x, z, z̄) , (B.22)

where TΦ(Ψ)[Pi] and TΦ(Ψ)[Ui] represent appropriate representation matrices includ-
ing arbitrary sign factors, with the matices Pi and Ui. The eigenvalues of TΦ[P0],
TΦ[P1] and TΦ[P2] are interpreted as the Z2 parities for the extra space. The repre-
sentation matrices TΣ[P ](Σ = Φ,Ψ, P = P0, P1, P2, P3, U1, U2) satisfy

TΣ[P0]
2 = TΣ[P1]

2 = TΣ[P2]
2 = I , TΣ[U1]TΣ[U2] = TΣ[U2]TΣ[U1] ,

TΣ[P1] = TΣ[U1]TΣ[P0] , TΣ[P2] = TΣ[U2]TΣ[P0] ,

TΣ[P3] = TΣ[U1]TΣ[U2]TΣ[P0] = TΣ[P1]TΣ[P0]TΣ[P2] = TΣ[P2]TΣ[P0]TΣ[P1] . (B.23)

Let ϕ(P0,P1,P2)(x, z, z̄) be a component in a multiplet and have a definite Z2

parity (P0,P1,P2). Here, ϕ is a generic field and it is applied to scalar field φ,
fermion field ψ or gauge field AM . The Fourier expansion of ϕ(P0,P1,P2)(x, z, z̄) is
given by

ϕ(+1,+1,+1)(x, z, z̄) =
1

π
√
R1R2

ϕ(0,0)(x)

+
2

π
√
R1R2

∞∑
n,m=0

(n+m �=0)

ϕ(n,m)(x)[cos]n,m(z, z̄) , (B.24)

ϕ(+1,+1,−1)(x, z, z̄) =
2

π
√
R1R2

∞∑
n,m=0

(n+m�=0)

ϕ(n,m)(x)[cos]n,m+1/2(z, z̄) , (B.25)

ϕ(+1,−1,+1)(x, z, z̄) =
2

π
√
R1R2

∞∑
n,m=0

ϕ(n,m)(x)[cos]n+1/2,m(z, z̄) , (B.26)
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ϕ(−1,+1,+1)(x, z, z̄) =
2

π
√
R1R2

∞∑
n,m=0

ϕ(n,m)(x)[sin]n+1/2,m+1/2(z, z̄) , (B.27)

ϕ(+1,−1,−1)(x, z, z̄) =
2

π
√
R1R2

∞∑
n,m=0

ϕ(n,m)(x)[cos]n+1/2,m+1/2(z, z̄) , (B.28)

ϕ(−1,+1,−1)(x, z, z̄) =
2

π
√
R1R2

∞∑
n,m=0

ϕ(n,m)(x)[sin]n+1/2,m(z, z̄) , (B.29)

ϕ(−1,−1,+1)(x, z, z̄) =
2

π
√
R1R2

∞∑
n,m=0

ϕ(n,m)(x)[sin]n,m+1/2(z, z̄) , (B.30)

ϕ(−1,−1,−1)(x, z, z̄) =
2

π
√
R1R2

∞∑
n,m=0

ϕ(n,m)(x)[sin]n,m(z, z̄) , (B.31)

where

[sin]n+α,m+β(z, z̄) = sin

[
− 1

2

{(
n+ α

R1

− i
m+ β

R2

)}
z

+
1

2

{(
n+ α

R1

+ i
m+ β

R2

)}
z̄

]
,

[cos]n+α,m+β(z, z̄) = cos

[
− 1

2

{(
n+ α

R1

− i
m+ β

R2

)}
z

+
1

2

{(
n+ α

R1

+ i
m+ β

R2

)}
z̄

]
. (B.32)

Upon compactification, massless zero mode ϕ(0,0)(x) appears on 4D when Z2 parities
are (P0,P1,P2) = (+1,+1,+1). And, the massive KK modes ϕ(n,m)(x) do not
appear in our low energy world because they have heavy masses. Here, zero modes
mean 4-dimensional massless fields surviving after compactification. KK modes do
not appear in our low-energy world, because they have heavy masses of O(1/R),
with the same magnitude as the unification scale.

If the representation matrices P0, P1 and P2 are given by

P0 = diag(

N︷ ︸︸ ︷
[+1]p1 , [+1]p2 , [+1]p3 , [+1]p4 , [−1]p5 , [−1]p6 , [−1]p7 , [−1]p8) ,

P1 = diag([+1]p1 , [+1]p2 , [−1]p3 , [−1]p4 , [+1]p5 , [+1]p6 , [−1]p7 , [−1]p8) ,

P2 = diag([+1]p1 , [−1]p2 , [+1]p3 , [−1]p4 , [+1]p5 , [−1]p6 , [+1]p7 , [−1]p8) , (B.33)

where [±1]pi represents ±1 for all elements and N =
∑8

i=1 pi, the SU(N) gauge
group is broken down into its subgroup such as

SU(N) → SU(p1)× SU(p2)× · · · × SU(p8)× U(1)7−κ , (B.34)

by orbifold breaking mechanism. In this case, the gauge fields A
α(P0,P1,P2)
M are

divided as

Aα(+1,+1,+1)
μ , Aβ(+1,+1,−1)

μ , Aβ(+1,−1,+1)
μ , Aβ(−1,+1,+1)

μ ,
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Aβ(+1,−1,−1)
μ , Aβ(−1,+1,−1)

μ , Aβ(−1,−1,+1)
μ , Aβ(−1,−1,−1)

μ ,

Aβ(+1,+1,+1)
z , Aβ(+1,+1,−1)

z , Aβ(+1,−1,+1)
z , Aβ(−1,+1,+1)

z ,

Aβ(+1,−1,−1)
z , Aβ(−1,+1,−1)

z , Aβ(−1,−1,+1)
z , Aα(−1,−1,−1)

z ,

A
β(+1,+1,+1)
z̄ , A

β(+1,+1,−1)
z̄ , A

β(+1,+1,−1)
z̄ , A

β(+1,+1,−1)
z̄ ,

A
β(+1,−1,−1)
z̄ , A

β(−1,+1,−1)
z̄ , A

β(−1,−1,+1)
z̄ , A

α(−1,−1,−1)
z̄ , (B.35)

where the index α indicates the gauge generators of unbroken gauge symmetry and
the index β indicates the gauge generators of broken gauge symmetry.

B.2 T 2/Z3 orbifold

B.2.1 Property

Let us discuss SU(N) gauge theory on M4×T 2/Z3. On T 2/Z3, T
2 is constructed

by SU(3) lattice, and its basic vectors takes e1 = 1 and e2 = e2πi/3 ≡ ω. The point
z is equivalent to the points z + e1 and z + e2, and the points ωz on M4 × T 2/Z3.
The fixed points for the Z3 transformation z → ωz are

0 ,
2e1 + e2

3
,

e1 + 2e2
3

. (B.36)

The transformation around those fixed points can be defined as

s30 : z → ωz , s31 : z → ωz + e1 , s32 : z → ωz + e2 ,

t1 : z → z + e1 , t2 : z → z + e2 , (B.37)

where satisfy the relation,

s330 = s331 = s332 = s30s31s32 = s31s32s30 = s32s30s31 = I ,

s31 = t1s30 , s32 = t2t1s30 , t1t2 = t2t1 . (B.38)

At this time, the BCs of bulk fields are characterized by matrices (Θ0, Θ1, Θ2, Θ3,
U1, U2). Those matrices satisfy the relations,

Θ3
0 = Θ3

1 = Θ3
2 = Θ0Θ1Θ2 = Θ1Θ2Θ0 = Θ2Θ0Θ1 = I ,

Θ1 = U1Θ0 , Θ2 = U2U1Θ0 , U1U2 = U2U1 . (B.39)

Since two of those matrices is independent, we choose two matrices Θ0, Θ1 which
are unitary matrices.

B.2.2 Orbifold breaking by inner automophisms boundary conditions

The BCs of gauge field are determined as

s30 : Aμ(x, ωz, ω̄z̄) = Θ0Aμ(x, z, z̄)Θ
†
0,

Az(x, ωz, ω̄z̄) = ω̄Θ0Az(x, z, z̄)Θ
†
0,

Az̄(x, ωz, ω̄z̄) = ωΘ0Az̄(x, z, z̄)Θ
†
0, (B.40)
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s31 : Aμ(x, ωz + e1, ω̄z̄ + ē1) = Θ1Aμ(x, z, z̄)Θ
†
1,

Az(x, ωz + e1, ω̄z̄ + ē1) = ω̄Θ1Az(x, z, z̄)Θ
†
1,

Az̄(x, ωz + e1, ω̄z̄ + ē1) = ωΘ1Az̄(x, z, z̄)Θ
†
1, (B.41)

s32 : Aμ(x, ωz + e1 + e2, ω̄z̄ + ē1 + ē2) = Θ2Aμ(x, z, z̄)Θ
†
2,

Az(x, ωz + e1 + e2, ω̄z̄ + ē1 + ē2) = ω̄Θ2Az(x, z, z̄)Θ
†
2,

Az̄(x, ωz + e1 + e2, ω̄z̄ + ē1 + ē2) = ωΘ2Az̄(x, z, z̄)Θ
†
2, (B.42)

t1 : AM(x, z + e1, z̄ + ē1) = U1AM(x, z, z̄)U †
1 , (B.43)

t2 : AM(x, z + e2, z̄ + ē2) = U2AM(x, z, z̄)U †
2 , (B.44)

where z = x5 + ix6, z̄ = x5 − ix6, Az = A5 + iA6 and Az̄ = A5 − iA6, and ω ≡ e2πi/3

and ω̄ ≡ e4πi/3. The BCs of scalar field φ areand spinor field ψ are determined as

s30 : φ(x, ωz, ω̄z̄) = TΦ[Θ0]φ(x, z, z̄) , (B.45)

s31 : φ(x, ωz + e1, ω̄z̄ + ē1) = TΦ[Θ1]ψ(x, z, z̄) , (B.46)

s32 : φ(x, ωz + e1 + e2, ω̄z̄ + ē1 + ē2) = TΦ[Θ2]ψ(x, z, z̄) , (B.47)

t1 : φ(x, z + e1, z̄ + ē1) = TΦ[Ξ1]φ(x, z, z̄) , (B.48)

t2 : φ(x, z + e2, z̄ + ē2) = TΦ[Ξ2]φ(x, z, z̄) , (B.49)

s30 : ψ(x, ωz, ω̄z̄) = TΨ[Θ0]ψ(x, z, z̄) , (B.50)

s31 : ψ(x, ωz + e1, ω̄z̄ + ē1) = TΨ[Θ1]ψ(x, z, z̄) , (B.51)

s32 : ψ(x, ωz + e1 + e2, ω̄z̄ + ē1 + ē2) = TΨ[Θ2]ψ(x, z, z̄) . (B.52)

t1 : ψ(x, z + e1, z̄ + ē1) = TΨ[U1]ψ(x, z, z̄) , (B.53)

t2 : ψ(x, z + e2, z̄ + ē2) = TΨ[U2]ψ(x, z, z̄) , (B.54)

where TΦ(Ψ)[Θi] and TΦ(Ψ)[Ui] represent appropriate representation matrices includ-
ing arbitrary sign factors, with the matices Θi and Ui. The representation matrices
TΣ[P ](Σ = Φ,Ψ, P = Θ0, Θ1, Θ2, U1, U2) satisfy

TΣ[Θ0]
3 = TΣ[Θ1]

3 = TΣ[Θ2]
3

= TΣ[Θ0]TΣ[Θ1]TΣ[Θ2] = TΣ[Θ1]TΣ[Θ2]TΣ[Θ0] = TΣ[Θ2]TΣ[Θ0]TΣ[Θ1] = I ,

TΣ[Θ1] = TΣ[U1]TΣ[Θ0] , TΣ[Θ2] = TΣ[U2]TΣ[U1]TΣ[Θ0] ,

TΣ[U1]TΣ[U2] = TΣ[U2]TΣ[U1] . (B.55)

Let ϕ(P0,P1)(x, z, z̄) be a component in a multiplet and have a definite the Z3

elements P0 and P1 which relate the representation matrices Θ0 and Θ1, and take
1, ω or ω̄, respectively. Here, ϕ is a generic field and it is applied to scalar field
φ, fermion field ψ or gauge field AM . The Fourier expansion of ϕ(P0,P1)(x, z, z̄) is
given by

ϕ(1,1)(x, z, z̄) =
31/4

π
√
2R1R2

ϕ(0,0)(x)

+
1

π
√
12R1R2

∞∑
n,m=0

(n+m�=0)

ϕ(n,m)(x)F (0)
n,m(z, z̄) , (B.56)
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ϕ(1,ω)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

ϕ(n,m)(x)F (0)
n+1/3,m+1/3(z, z̄) , (B.57)

ϕ(1,ω̄)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

ϕ(n,m)(x)F (0)
n+2/3,m+2/3(z, z̄) , (B.58)

ϕ(ω,ω)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

(n+m �=0)

ϕ(n,m)(x)F (1)
n,m(z, z̄) , (B.59)

ϕ(ω,ω̄)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

ϕ(n,m)(x)F (1)
n+1/3,m+1/3(z, z̄) , (B.60)

ϕ(ω,+1)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

ϕ(n,m)(x)F (1)
n+2/3,m+2/3(z, z̄) , (B.61)

ϕ(ω̄,ω̄)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

(n+m �=0)

ϕ(n,m)(x)F (2)
n,m(z, z̄) , (B.62)

ϕ(ω̄,+1)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

ϕ(n,m)(x)F (2)
n+1/3,m+1/3(z, z̄) , (B.63)

ϕ(ω̄,ω)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

ϕ(n,m)(x)F (2)
n+2/3,m+2/3(z, z̄) , (B.64)

where

F (0)
n+α,m+β(z, z̄) = Fn+α,m+β(z, z̄) + Fn+α,m+β(ωz, ω̄z̄) + Fn+α,m+β(ω̄z, ωz̄) ,

F (1)
n+α,m+β(z, z̄) = ω̄Fn+α,m+β(z, z̄) + ωFn+α,m+β(ωz, ω̄z̄) + Fn+α,m+β(ω̄z, ωz̄) ,

F (2)
n+α,m+β(z, z̄) = ωFn+α,m+β(z, z̄) + ω̄Fn+α,m+β(ωz, ω̄z̄) + Fn+α,m+β(ω̄z, ωz̄) ,

Fn+α,m+β(z, z̄) = exp

[
− i

2

{(
n+ α

R1

− i
n+ α√
3R1

− i
2(m+ β)√

3R2

)
z

+

(
n+ α

R1

+ i
n+ α√
3R1

+ i
2(m+ β)√

3R2

)
z̄

}]
. (B.65)

Upon compactification, massless zero mode ϕ(0,0)(x) appears on 4D when Z3 ele-
ments are (P0,P1) = (1, 1). The massive KK modes ϕ(n,m)(x) do not appear in
our low energy world because they have heavy masses.

If the representation matrices Θ0 and Θ1 are given by

Θ0 = diag(

N︷ ︸︸ ︷
[1]p1 , [1]p2 , [1]p3 , [ω]p4 , [ω]p5 , [ω]p6 , [ω̄]p7 , [ω̄]p8 , [ω̄]p9) ,

Θ1 = diag([1]p1 , [ω]p2 , [ω̄]p3 , [1]p4 , [ω]p5 , [ω̄]p6 , [1]p7 , [ω]p8 , [ω̄]p9) , (B.66)

where [1]pi , [ω]pi and [ω̄]pi represent +1, ω and ω̄ for all elements and N =
∑9

i=1 pi,
the SU(N) gauge group is broken down into its subgroup such as

SU(N) → SU(p1)× SU(p2)× · · · × SU(p9)× U(1)8−κ , (B.67)
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by orbifold breaking mechanism. In this case, the gauge fields A
α(P0,P1)
M are divided

as

Aα(1,1)
μ , Aβ(1,ω)

μ , Aβ(1,ω̄)
μ , Aβ(ω,ω)

μ , Aβ(ω,ω̄)
μ ,

Aβ(ω,1)
μ , Aβ(ω̄,ω̄)

μ , Aβ(ω̄,1)
μ , Aβ(ω̄,ω)

μ ,

Aβ(1,1)
z , Aβ(1,ω)

z , Aβ(1,ω̄)
z , Aα(ω,ω)

z , Aβ(ω,ω̄)
z ,

Aβ(ω,1)
z , Aβ(ω̄,ω̄)

z , Aβ(ω̄,1)
z , Aβ(ω̄,ω)

z ,

A
β(1,1)
z̄ , A

β(1,ω)
z̄ , A

β(1,ω̄)
z̄ , A

β(ω,ω)
z̄ , A

β(ω,ω̄)
z̄ ,

A
β(ω,1)
z̄ , A

α(ω̄,ω̄)
z̄ , A

β(ω̄,1)
z̄ , A

β(ω̄,ω)
z̄ , (B.68)

where the index α indicates the gauge generators of unbroken gauge symmetry and
the index β indicates the gauge generators of broken gauge symmetry.

B.3 T 2/Z4 orbifold

B.3.1 Property

Let us discuss SU(N) gauge theory on M4×T 2/Z4. On T 2/Z4, T
2 is constructed

by SU(2)×SU(2)(� SO(4)) lattice, and its basic vectors are e1 = 1 and e2 = i, The
point z is equivalent to the points z+ e1 and z+ e2, and the point z is equivalent to
the points −z and iz. The fixed points for the Z4 transformation z → θz = iz are

0 ,
e1 + e2

2
, (B.69)

and it for the Z2 transformation z → θz = −z are

0 ,
e1
2

,
e2
2

,
e1 + e2

2
. (B.70)

The transformation around those fixed points can be defined as

s40 : z → iz , s41 : z → iz + e1 , s20 : z → −z ,

s21 : z → −z + e1 , s22 : z → −z + e2 , s23 : z → −z + e1 + e2 ,

t1 : z → z + e1 , t2 : z → z + e2 , (B.71)

They satisfy the relations,

s440 = s441 = s220 = s221 = s222 = s223 = I , s41 = t1s40 , s21 = t1s20 ,

s22 = t2s20 , s20 = s240 , s21 = s41s40 , s22 = s40s41 ,

s23 = t1t2s20 = s21s20s22 = s22s20s21 , t1t2 = t2t1 . (B.72)

At this time, the BCs of bulk fields are characterized by matrices (Q0, Q1, P0, P1,
P2, P3, U1, U2). Those matrices satisfy the relations,

Q4
0 = Q4

1 = P 2
0 = P 2

1 = P 2
2 = P 2

3 = I , Q1 = U1Q0 , P1 = U1P0 ,

P2 = U2P0 , P0 = Q2
0 , P1 = Q1Q0 , P2 = Q0Q1 ,

P3 = U1U2P0 = P1P0P2 = P2P0P1 , U1U2 = U2U1 , (B.73)

where Qi are unitary matrices, and Pi are unitary and hermitian matrices. Since
two of those matrices is independent, we choose two matrices Q0, P1.
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B.3.2 Orbifold breaking by inner automophisms boundary conditions

The BCs of gauge field are determined as

s40 : Aμ(x, iz,−iz̄) = Q0Aμ(x, z, z̄)Q
†
0,

Az(x, iz,−iz̄) = −iQ0Az(x, z, z̄)Q
†
0,

Az̄(x, iz,−iz̄) = iQ0Az̄(x, z, z̄)Q
†
0, (B.74)

s41 : Aμ(x, iz + e1,−iz̄ + ē1) = Q1Aμ(x, z, z̄)Q
†
1,

Az(x, iz + e1,−iz̄ + ē1) = −iQ1Az(x, z, z̄)Q
†
1,

Az̄(x, iz + e1,−iz̄ + ē1) = iQ1Az̄(x, z, z̄)Q
†
1, (B.75)

s20 : Aμ(x,−z,−z̄) = P0Aμ(x, z, z̄)P
†
0 ,

Az(x,−z,−z̄) = −P0Az(x, z, z̄)P
†
0 ,

Az̄(x,−z,−z̄) = −P0Az̄(x, z, z̄)P
†
0 , (B.76)

s21 : Aμ(x,−z + e1,−z̄ + ē1) = P1Aμ(x, z, z̄)P
†
1 ,

Az(x,−z + e1,−z̄ + ē1) = −P1Az(x, z, z̄)P
†
1 ,

Az̄(x,−z + e1,−z̄ + ē1) = −P1Az̄(x, z, z̄)P
†
1 , (B.77)

s22 : Aμ(x,−z + e2,−z̄ + ē2) = P2Aμ(x, z, z̄)P
†
2 ,

Az(x,−z + e2,−z̄ + ē2) = −P2Az(x, z, z̄)P
†
2 ,

Az̄(x,−z + e2,−z̄ + ē2) = −P2Az̄(x, z, z̄)P
†
2 , (B.78)

s23 : Aμ(x,−z + e1 + e2,−z̄ + ē1 + ē2) = P3Aμ(x, z, z̄)P
†
3 ,

Az(x,−z + e1 + e2,−z̄ + ē1 + ē2) = −P3Az(x, z, z̄)P
†
3 ,

Az̄(x,−z + e1 + e2,−z̄ + ē1 + ē2) = −P3Az̄(x, z, z̄)P
†
3 , (B.79)

t1 : AM(x, z + e1, z̄ + ē1) = U1AM(x, z, z̄)U †
1 , (B.80)

t1 : AM(x, z + e2, z̄ + ē2) = U2AM(x, z, z̄)U †
2 , (B.81)

where z = x5 + ix6, z̄ = x5 − ix6, Az = A5 + iA6 and Az̄ = A5 − iA6. The BCs of
scalar field φ and spinor field ψ are determined as

s40 : φ(x, iz,−iz̄) = TΦ[Q0]φ(x, z, z̄) , (B.82)

s41 : φ(x, iz + e1,−iz̄ + ē1) = TΦ[Q1]ψ(x, z, z̄) , (B.83)

s20 : φ(x,−z,−z̄) = TΦ[P0]φ(x, z, z̄) , (B.84)

s21 : φ(x,−z + e1,−z̄ + ē1) = TΦ[P1]φ(x, z, z̄) , (B.85)

s22 : φ(x,−z + e2,−z̄ + ē2) = TΦ[P2]φ(x, z, z̄) , (B.86)

s23 : φ(x,−z + e1 + e2,−z̄ + ē1 + ē2) = TΦ[P3]ψ(x, z, z̄) , (B.87)

t1 : φ(x, z + e1, z̄ + ē1) = TΦ[U1]φ(x, z, z̄) , (B.88)

t2 : φ(x, z + e2, z̄ + ē2) = TΦ[U2]φ(x, z, z̄) , (B.89)

s40 : ψ(x, iz,−iz̄) = TΨ[Q0]ψ(x, z, z̄) , (B.90)

s41 : ψ(x, iz + e1,−iz̄ + ē1) = TΨ[Q1]ψ(x, z, z̄) , (B.91)

s20 : ψ(x,−z,−z̄) = TΨ[P0]ψ(x, z, z̄) , (B.92)
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s21 : ψ(x,−z + e1,−z̄ + ē1) = TΨ[P1]ψ(x, z, z̄) , (B.93)

s22 : ψ(x,−z + e2,−z̄ + ē2) = TΨ[P2]ψ(x, z, z̄) , (B.94)

s23 : ψ(x,−z + e1 + e2,−z̄ + ē1 + ē2) = TΨ[P3]ψ(x, z, z̄) . (B.95)

t1 : ψ(x, z + e1, z̄ + ē1) = TΨ[U1]ψ(x, z, z̄) , (B.96)

t2 : ψ(x, z + e2, z̄ + ē2) = TΨ[U2]ψ(x, z, z̄) , (B.97)

where TΦ(Ψ)[Pi], TΦ(Ψ)[Qi] and TΦ(Ψ)[Ui] represent appropriate representation matri-
ces including arbitrary sign factors, with the matices Pi, Qi and Ui. The represen-
tation matrices TΣ[P ](Σ = Φ,Ψ, P = Q0, Q1, P0, P1, P2, P3, U1, U2) satisfy

TΣ[Q0]
4 = TΣ[Q1]

4 = TΣ[P0]
2 = TΣ[P1]

2 = TΣ[P2]
2 = TΣ[P3]

2 = I

TΣ[Q1] = TΣ[U1]TΣ[Q0] , TΣ[P1] = TΣ[U1]TΣ[P0] ,

TΣ[P2] = TΣ[U2] , TΣ[P1] = TΣ[Q1]TΣ[Q0] , TΣ[P2] = TΣ[Q0]TΣ[Q1] ,

TΣ[P3] = TΣ[U1]TΣ[U2]TΣ[P0] = TΣ[P1]TΣ[P0]TΣ[P2] = TΣ[P2]TΣ[P0]TΣ[P1] ,

TΣ[U1]TΣ[U2] = TΣ[U2]TΣ[U1] . (B.98)

Let ϕ(P0,P1)(x, z, z̄) be a component in a multiplet and have a definite the Z4

elements P0 and P1 which relate the representation matrices Q0 and P1, respec-
tively. The eigenvalue of Q0 takes +1, −1, +i or −i under the Z4 symmetry, and
of P1 takes +1 or −1 under the Z2 symmetry. Here, ϕ is a generic field and it is
appied to scalar field φ, fermion field ψ or gauge field AM . The Fourier expansion
of ϕ(P0,P1)(x, z, z̄) is given by

ϕ(+1,+1)(x, z, z̄) =

√
2

π
√
R1R2

ϕ(0,0)(x)

+
2
√
2

π
√
R1R2

∞∑
n,m=0

(n+m �=0)

ϕ(n,m)(x){[cos]n,m(z, z̄) + [cos]n,m(iz,−iz̄)} ,

(B.99)

ϕ(+1,−1)(x, z, z̄) =
2
√
2

π
√
R1R2

∞∑
n,m=0

ϕ(n,m)(x){[cos]n+1/2,m+1/2(z, z̄)

+ [cos]n+1/2,m+1/2(iz,−iz̄)} ,
(B.100)

ϕ(+i,+1)(x, z, z̄) =
2
√
2

π
√
R1R2

∞∑
n,m=0

ϕ(n,m)(x){[sin]n+1/2,m+1/2(z, z̄)

+ i[sin]n,m(iz,−iz̄)} , (B.101)

ϕ(+i,−1)(x, z, z̄) =
2
√
2

π
√
R1R2

∞∑
n,m=0

ϕ(n,m)(x){[sin]n,m(z, z̄)

+ i[sin]n+1/2,m+1/2(iz,−iz̄)} ,
(B.102)

ϕ(−1,+1)(x, z, z̄) =
2
√
2

π
√
R1R2

∞∑
n,m=0

ϕ(n,m)(x){[cos]n,m(z, z̄)
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− [cos]n,m(iz,−iz̄)} , (B.103)

ϕ(−1,−1)(x, z, z̄) =
2
√
2

π
√
R1R2

∞∑
n,m=0

ϕ(n,m)(x){[cos]n+1/2,m+1/2(z, z̄)

− [cos]n+1/2,m+1/2(iz,−iz̄)} ,
(B.104)

ϕ(−i,+1)(x, z, z̄) =
2
√
2

π
√
R1R2

∞∑
n,m=0

ϕ(n,m)(x){[sin]n+1/2,m+1/2(z, z̄)

− i[sin]n,m(iz,−iz̄)} , (B.105)

ϕ(−i,−1)(x, z, z̄) =
2
√
2

π
√
R1R2

∞∑
n,m=0

ϕ(n,m)(x){[sin]n,m(z, z̄)

− i[sin]n+1/2,m+1/2(iz,−iz̄)} ,
(B.106)

where

[cos]n+α,m+β = cos

[
− 1

2
√
2

{(
n+ α

R1

− i
n+ α

R1

− i
m+ β

R2

)
z

+

(
n+ α

R1

+ i
n+ α

R1

+ i
m+ β

R2

)
z̄

}]
,

[cos]n+α,m+β = sin

[
− 1

2
√
2

{(
n+ α

R1

− i
n+ α

R1

− i
m+ β

R2

)
z

+

(
n+ α

R1

+ i
n+ α

R1

+ i
m+ β

R2

)
z̄

}]
. (B.107)

Upon compactification, massless mode ϕ(0,0)(x) appears on 4D when Z4 elements
are (P0,P1) = (+1,+1). The massive KK modes ϕ(n,m)(x) do not appear in our
low energy world because they have heavy masses.

If the representation matrices Q0 and P1 are given by

Q0 = diag(

N︷ ︸︸ ︷
[+1]p1 , [+1]p2 , [+i]p3 , [+i]p4 , [−1]p5 , [−1]p6 , [−i]p7 , [−i]p8) ,

P1 = diag([+1]p1 , [−1]p2 , [+1]p3 , [−1]p4 , [+1]p5 , [−1]p6 , [+1]p7 , [−1]p8) , (B.108)

where [±1]pi and [±i]pi represent ±1 and ±i for all elements and N =
∑8

i=1 pi, the
SU(N) gauge group is broken down into its subgroup such as

SU(N) → SU(p1)× SU(p2)× · · · × SU(p8)× U(1)7−κ , (B.109)

by orbifold breaking mechanism. In this case, the gauge fields A
α(P0,P1)
M are divided

as

Aα(+1,+1)
μ , Aβ(+1,−1)

μ , Aβ(+i,+1)
μ , Aβ(+i,+1)

μ ,

Aβ(−1,+1)
μ , Aβ(−1,−1)

μ , Aβ(−i,+1)
μ , Aβ(−i,−1)

μ ,

Aβ(+1,+1)
z , Aβ(+1,−1)

z , Aβ(+i,+1)
z , Aα(+i,−1)

z ,
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Aβ(−1,+1)
z , Aβ(−1,−1)

z , Aβ(−i,+1)
z , Aβ(−i,−1)

z ,

A
β(+1,+1)
z̄ , A

β(+1,−1)
z̄ , A

β(+i,+1)
z̄ , A

β(+i,−1)
z̄ ,

A
β(−1,+1)
z̄ , A

β(−1,−1)
z̄ , A

β(−i,+1)
z̄ , A

α(−i,−1)
z̄ , (B.110)

where the index α indicates the gauge generators of unbroken gauge symmetry and
the index β indicates the gauge generators of broken gauge symmetry.

B.4 T 2/Z6 orbifold

B.4.1 Property

Let us discuss SU(N) gauge theory on M4×T 2/Z6. On T 2/Z6, T
2 is constructed

by G2 lattice, its basic vectors are e1 = 1 and e2 = (−3 + i
√
3)/2 (|e2| =

√
3). The

point z is equivalent to the points z+ e1 and z+ e2, and the point z is equivalent to
the points ρz where ρ6 = 1 (ρ = eiπ/3). The fixed point for the Z6 transformation
z → ρz is

0 , (B.111)

it for the Z3 transformation z → ρ2z = ωz are

0 ,
e1
3

,
e2
3

, (B.112)

and it for the Z2 transformation z → ρ3z = −z are

0 ,
e1
2

,
e2
2

,
e1 + e2

2
. (B.113)

The transformation around those fixed points can be defined as

s60 : z → ρz , s30 : z → ρ2z , s32 : z → ρ2z + e1 + e2 ,

s33 : z → ρ2z + 2e1 + 2e2 , s20 : z → ρ3z , s21 : z → ρ3z + e1 ,

s22 : z → ρ3z + e2 , s23 : z → ρ3z + e1 + e2 ,

t1 : z → z + e1 , t2 : z → z + e2 , (B.114)

They satisfy the relations,

s660 = s330 = s332 = s333 = s220 = s221 = s222 = s223 = I ,

s32 = t1t2s30 , s33 = t21t
2
2s30 , s21 = t1s20 , s22 = t2s20 ,

s30s32s33 = s32s33s30 = s33s30s32 = I ,

s23 = t1t2s20 = s21s20s22 = s22s20s21 = s32s60 ,

s30 = s260 , s20 = s360 , t1t2 = t2t1 (B.115)

At this time, the BCs of bulk fields are characterized by matrices (Ξ0, Θ0, Θ2, Θ3,
P0, P1, P2, P3, U1, U2). Those matrices satisfy the relationa,

Ξ6
0 = Θ3

0 = Θ3
1 = Θ3

3 = P 2
0 = P 2

1 = P 2
2 = P 2

3 = I ,

Θ2 = U1U2Θ0 , Θ3 = U2
1U

2
2Θ0 , P1 = U1P0 , P2 = U2P0 ,
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Θ0Θ2Θ3 = Θ2Θ3Θ0 = Θ3Θ0Θ2 = I ,

P3 = U1U2P0 = P1P0P2 = P2P0P1 = Θ2Ξ0 ,

Θ0 = Ξ2
0 , P0 = Ξ3

0 , U1U2 = U2U1 . (B.116)

Since two of those matrices is independent, we choose two matrices Ξ0, P1.
11

B.4.2 Orbifold breaking by inner automophisms boundary conditions

The BCs of gauge field are determined as

s60 : Aμ(x, ρz, ρ
5z̄) = Ξ0Aμ(x, z, z̄)Ξ

†
0,

Az(x, ρz, ρ
5z̄) = ρ5Ξ0Az(x, z, z̄)Ξ

†
0,

Az̄(x, ρz, ρ
5z̄) = ρΞ0Az̄(x, z, z̄)Ξ

†
0, (B.117)

s30 : Aμ(x, ρ
2z, ρ4z̄) = Θ0Aμ(x, z, z̄)Θ

†
0,

Az(x, ρ
2z, ρ4z̄) = ρ4Θ0Az(x, z, z̄)Θ

†
0,

Az̄(x, ρ
2z, ρ4z̄) = ρ2Θ0Az̄(x, z, z̄)Θ

†
0, (B.118)

s32 : Aμ(x, ρ
2z + e1 + e2, ρ

4z̄ + ē1 + ē2) = Θ2Aμ(x, z, z̄)Θ
†
2,

Az(x, ρ
2z + e1 + e2, ρ

4z̄ + ē1 + ē2) = ρ4Θ2Az(x, z, z̄)Θ
†
2,

Az̄(x, ρ
2z + e1 + e2, ρ

4z̄ + ē1 + ē2) = ρ2Θ2Az̄(x, z, z̄)Θ
†
2, (B.119)

s33 : Aμ(x, ρ
2z + 2e1 + 2e2, ρ

4z̄ + 2ē1 + 2ē2) = Θ3Aμ(x, z, z̄)Θ
†
3,

Az(x, ρ
2z + 2e1 + 2e2, ρ

4z̄ + 2ē1 + 2ē2) = ρ4Θ3Az(x, z, z̄)Θ
†
3,

Az̄(x, ρ
2z + 2e1 + 2e2, ρ

4z̄ + 2ē1 + 2ē2) = ρ2Θ3Az̄(x, z, z̄)Θ
†
3, (B.120)

s20 : Aμ(x, ρ
3z, ρ3z̄) = P0Aμ(x, z, z̄)P

†
0 ,

Az(x, ρ
3z, ρ3z̄) = ρ3P0Az(x, z, z̄)P

†
0 ,

Az̄(x, ρ
3z, ρ3z̄) = ρ3P0Az̄(x, z, z̄)P

†
0 , (B.121)

s21 : Aμ(x, ρ
3z + e1, ρ

3z̄ + ē1) = P1Aμ(x, z, z̄)P
†
1 ,

Az(x, ρ
3z + e1, ρ

3z̄ + ē1) = ρ3P1Az(x, z, z̄)P
†
1 ,

Az̄(x, ρ
2z + e1, ρ

4z̄ + ē1) = ρ3P1Az̄(x, z, z̄)P
†
1 , (B.122)

s22 : Aμ(x, ρ
3z + e2, ρ

3z̄ + ē2) = P2Aμ(x, z, z̄)P
†
2 ,

Az(x, ρ
3z + e2, ρ

3z̄ + ē2) = ρ3P2Az(x, z, z̄)P
†
2 ,

Az̄(x, ρ
3z + e2, ρ

3z̄ + ē2) = ρ3P2Az̄(x, z, z̄)P
†
2 , (B.123)

s23 : Aμ(x, ρ
3z + e1 + e2, ρ

3z̄ + ē1 + ē2) = P3Aμ(x, z, z̄)P
†
3 ,

Az(x, ρ
3z + e1 + e2, ρ

3z̄ + ē1 + ē2) = ρ3P3Az(x, z, z̄)P
†
3 ,

Az̄(x, ρ
3z + e1 + e2, ρ

3z̄ + ē1 + ē2) = ρ3P3Az̄(x, z, z̄)P
†
3 , (B.124)

t1 : AM(x, z + e1, z̄ + ē1) = U1AM(x, z, z̄)U †
1 , (B.125)

11 Though the number of independent representation matrices for T 2/Z6 is stated to be three
in [65], it should be two because other operations are generated using s0 : z → eπi/3z and r1 :
z → e1 − z. For example, t1 : z → z + e1 and t2 : z → z + e2 are generated as t1 = r1(s0)

3 and
t2 = (s0)

2r1(s0)
4r1, respectively.
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t1 : AM(x, z + e2, z̄ + ē2) = U2AM(x, z, z̄)U †
2 , (B.126)

where z = x5 + ix6, z̄ = x5 − ix6, Az = A5 + iA6 and Az̄ = A5 − iA6. The BCs of
scalar field φ and spinor field ψ are determined as

s60 : φ(x, ρz, ρ5z̄) = TΦ[Ξ0]φ(x, z, z̄) , (B.127)

s30 : φ(x, ρ2z, ρ4z̄) = TΦ[Θ0]φ(x, z, z̄) , (B.128)

s32 : φ(x, ρ2z + e1 + e2, ρ
4z̄ + ē1 + ē2) = TΦ[Θ2]ψ(x, z, z̄) , (B.129)

s33 : φ(x, ρ2z + 2e1 + 2e2, ρ
4z̄ + 2ē1 + 2ē2) = TΦ[Θ3]ψ(x, z, z̄) , (B.130)

s20 : φ(x, ρ3z, ρ3z̄) = TΦ[P0]φ(x, z, z̄) , (B.131)

s21 : φ(x, ρ3z + e1, ρ
3z̄ + ē1) = TΦ[P1]ψ(x, z, z̄) , (B.132)

s22 : φ(x, ρ3z + e2, ρ
3z̄ + ē2) = TΦ[P2]ψ(x, z, z̄) , (B.133)

s23 : φ(x, ρ3z + e1 + e2, ρ
3z̄ + ē1 + ē2) = TΦ[P3]ψ(x, z, z̄) , (B.134)

t1 : φ(x, z + e1, z̄ + ē1) = TΦ[U1]φ(x, z, z̄) , (B.135)

t2 : φ(x, z + e2, z̄ + ē2) = TΦ[U2]φ(x, z, z̄) , (B.136)

s60 : ψ(x, ρz, ρ5z̄) = TΨ[Ξ0]φ(x, z, z̄) , (B.137)

s30 : ψ(x, ρ2z, ρ4z̄) = TΨ[Θ0]φ(x, z, z̄) , (B.138)

s32 : ψ(x, ρ2z + e1 + e2, ρ
4z̄ + ē1 + ē2) = TΨ[Θ2]ψ(x, z, z̄) , (B.139)

s33 : ψ(x, ρ2z + 2e1 + 2e2, ρ
4z̄ + 2ē1 + 2ē2) = TΨ[Θ3]ψ(x, z, z̄) , (B.140)

s20 : ψ(x, ρ3z, ρ3z̄) = TΨ[P0]φ(x, z, z̄) , (B.141)

s21 : ψ(x, ρ3z + e1, ρ
3z̄ + ē1) = TΨ[P1]ψ(x, z, z̄) , (B.142)

s22 : ψ(x, ρ3z + e2, ρ
3z̄ + ē2) = TΦ[P2]ψ(x, z, z̄) , (B.143)

s23 : ψ(x, ρ3z + e1 + e2, ρ
3z̄ + ē1 + ē2) = TΨ[P3]ψ(x, z, z̄) , (B.144)

t1 : ψ(x, z + e1, z̄ + ē1) = TΨ[U1]ψ(x, z, z̄) , (B.145)

t2 : ψ(x, z + e2, z̄ + ē2) = TΨ[U2]ψ(x, z, z̄) , (B.146)

where TΦ(Ψ)[Ξ0], TΦ(Ψ)[Θi], TΦ(Ψ)[Pi] and TΦ(Ψ)[Ui] represent appropriate represen-
tation matrices including arbitrary sign factors, with the matices Ξ0, Θi, Pi and Ui.
The representation matrices TΣ[P ](Σ = Φ,Ψ, P = Ξ0, Θ0, Θ2, Θ3, P0, P1, P2, P3, U1, U2)
satisfy

TΣ[Ξ0]
6 = TΣ[Θ0]

3 = TΣ[Θ1]
3 = TΣ[Θ3]

3

= TΣ[P0]
2 = TΣ[P1]

2 = TΣ[P2]
2 = TΣ[P3]

2 = I ,

TΣ[Θ2] = TΣ[U1]TΣ[U2]TΣ[Θ0] , TΣ[Θ3] = TΣ[U1]
2TΣ[U2]

2TΣ[Θ0] ,

TΣ[P1] = TΣ[U1]TΣ[P0] , TΣ[P2] = TΣ[U2TΣ[P0] ,

TΣ[Θ0]TΣ[Θ2]TΣ[Θ3] = TΣ[Θ2]TΣ[Θ3]TΣ[Θ0] = TΣ[Θ3]TΣ[Θ0]TΣ[Θ2] = I ,

TΣ[P3] = TΣ[U1]TΣ[U2]TΣ[P0] = TΣ[P1]TΣ[P0]TΣ[P2]

= TΣ[P2]TΣ[P0]TΣ[P1] = TΣ[Θ2]TΣ[Ξ0] ,

TΣ[Θ0] = TΣ[Ξ0]
2 , TΣ[P0] = TΣ[Ξ0]

3 , TΣ[U1]TΣ[U2] = TΣ[U2]TΣ[U1] . (B.147)

Let ϕ(P0,P1)(x, z, z̄) be a component in a multiplet and have a definite the Z3

elements P0 and P1 which relate the representation matrices Ξ0 and P1, respec-
tively. The eigenvalue of Ξ0 takes ρi (i = 1, · · · , 6) under the Z6 symmetry, and
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of P1 takes +1 or −1 under the Z2 symmetry. Here, ϕ is a generic field and it is
applied to scalar field φ, fermion field ψ or gauge field AM . The Fourier expansion
of ϕ(P0,P1)(x, z, z̄) is given by

ϕ(+1,+1)(x, z, z̄) =
31/4

π
√
2R1R2

ϕ(0,0)(x)

+
1

π
√
12R1R2

∞∑
n,m=0

(n+m �=0)

ϕ(n,m)(x)F (0)
n,m(z, z̄) (B.148)

ϕ(+1,−1)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

ϕ(n,m)(x)F (0)
n+1/2,m+1/2(z, z̄) (B.149)

ϕ(ρ,+1)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

(n+m �=0)

ϕ(n,m)(x)F (1)
n,m(z, z̄) (B.150)

ϕ(ρ,−1)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

ϕ(n,m)(x)F (1)
n+1/2,m+1/2(z, z̄) (B.151)

ϕ(ρ2,+1)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

(n+m �=0)

ϕ(n,m)(x)F (2)
n,m(z, z̄) (B.152)

ϕ(ρ2,−1)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

ϕ(n,m)(x)F (2)
n+1/2,m+1/2(z, z̄) (B.153)

ϕ(ρ3,+1)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

(n+m �=0)

ϕ(n,m)(x)F (3)
n,m(z, z̄) (B.154)

ϕ(ρ3,−1)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

ϕ(n,m)(x)F (3)
n+1/2,m+1/2(z, z̄) (B.155)

ϕ(ρ4,+1)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

(n+m �=0)

ϕ(n,m)(x)F (4)
n,m(z, z̄) (B.156)

ϕ(ρ4,−1)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

ϕ(n,m)(x)F (4)
n+1/2,m+1/2(z, z̄) (B.157)

ϕ(ρ5,+1)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

(n+m �=0)

ϕ(n,m)(x)F (5)
n,m(z, z̄) (B.158)

ϕ(ρ5,−1)(x, z, z̄) =
1

π
√
12R1R2

∞∑
n,m=0

ϕ(n,m)(x)F (5)
n+1/2,m+1/2(z, z̄) (B.159)

where

F (0)
n+α,m+β(z, z̄) = Fn+α,m+β(z, z̄) + Fn+α,m+β(ρz, ρ

5z̄)

+ Fn+α,m+β(ρ
2z, ρ4z̄) + Fn+α,m+β(ρ

3z, ρ3z̄)

+ Fn+α,m+β(ρ
4z, ρ2z̄) + Fn+α,m+β(ρ

5z, ρz̄)
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F (1)
n+α,m+β(z, z̄) = Fn+α,m+β(z, z̄) + ρFn+α,m+β(ρz, ρ

5z̄)

+ ρ2Fn+α,m+β(ρ
2z, ρ4z̄) + ρ3Fn+α,m+β(ρ

3z, ρ3z̄)

+ ρ4Fn+α,m+β(ρ
4z, ρ2z̄) + ρ5Fn+α,m+β(ρ

5z, ρz̄)

F (2)
n+α,m+β(z, z̄) = Fn+α,m+β(z, z̄) + ρ2Fn+α,m+β(ρz, ρ

5z̄)

+ ρ4Fn+α,m+β(ρ
2z, ρ4z̄) + Fn+α,m+β(ρ

3z, ρ3z̄)

+ ρ2Fn+α,m+β(ρ
4z, ρ2z̄) + ρ4Fn+α,m+β(ρ

5z, ρz̄)

F (3)
n+α,m+β(z, z̄) = Fn+α,m+β(z, z̄) + ρ3Fn+α,m+β(ρz, ρ

5z̄)

+ Fn+α,m+β(ρ
2z, ρ4z̄) + ρ3Fn+α,m+β(ρ

3z, ρ3z̄)

+ Fn+α,m+β(ρ
4z, ρ2z̄) + ρ3Fn+α,m+β(ρ

5z, ρz̄)

F (4)
n+α,m+β(z, z̄) = Fn+α,m+β(z, z̄) + ρ4Fn+α,m+β(ρz, ρ

5z̄)

+ ρ2Fn+α,m+β(ρ
2z, ρ4z̄) + ρ4Fn+α,m+β(ρ

3z, ρ3z̄)

+ ρ2Fn+α,m+β(ρ
4z, ρ2z̄) + Fn+α,m+β(ρ

5z, ρz̄)

F (5)
n+α,m+β(z, z̄) = Fn+α,m+β(z, z̄) + ρ5Fn+α,m+β(ρz, ρ

5z̄)

+ ρ4Fn+α,m+β(ρ
2z, ρ4z̄) + ρ3Fn+α,m+β(ρ

3z, ρ3z̄)

+ ρ2Fn+α,m+β(ρ
4z, ρ2z̄) + ρFn+α,m+β(ρ

5z, ρz̄)

Fn+α,m+β(z, z̄) = exp

[
− i

2

{
n+ α

R1

− i

√
3(n+ α)

R1

− i
2(n+ α)√

3R1

z

+
n+ α

R1

+ i

√
3(n+ α)

R1

+ i
2(n+ α)√

3R1

z̄

}]
.

(B.160)

Upon compactification, massless mode ϕ(0,0)(x) appears on 4D when Z3 elements
are (P0,P1) = (+1,+1). The massive KK modes ϕ(n,m)(x) do not appear in our
low energy world because they have heavy masses.

If the representation matrices Ξ0 and P1 are given by

Ξ0 = diag([+1]p1 , [+1]p2 , [ρ]p3 , [ρ]p4 , [ρ
2]p5 , [ρ

2]p6 ,

× [ρ3]p7 , [ρ
3]p8 , [ρ

4]p9 , [ρ
4]p10 , [ρ

5]p11 , [ρ
5]p12) ,

P1 = diag([+1]p1 , [−1]p2 , [+1]p3 , [−1]p4 , [+1]p5 , [−1]p6 ,

× [+1]p7 , [−1]p8 , [+1]p9 , [−1]p10 , [+1]p11 , [−1]p12) , (B.161)

where [±1]pi and [ρa]pi represent ±1 and ρa(= eiπa/3) for all elements and N =∑12
i=1 pi, the SU(N) gauge group is broken down into its subgroup such as

SU(N) → SU(p1)× SU(p2)× · · · × SU(p12)× U(1)11−κ , (B.162)

by orbifold breaking mechanism. In this case, the gauge fields A
α(P0,P1)
M are divided

as

Aα(+1,+1)
μ , Aβ(+1,−1)

μ , Aβ(ρ,+1)
μ , Aβ(ρ,−1)

μ , Aβ(ρ2,+1)
μ , Aβ(ρ2,+1)

μ ,

Aβ(ρ3,+1)
μ , Aβ(ρ3,−1)

μ , Aβ(ρ4,+1)
μ , Aβ(ρ4,−1)

μ , Aβ(ρ5,+1)
μ , Aβ(ρ5,−1)

μ ,
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Aβ(+1,+1)
z , Aβ(+1,−1)

z , Aβ(ρ,+1)
z , Aα(ρ,−1)

z , Aβ(ρ2,+1)
z , Aβ(ρ2,+1)

z ,

Aβ(ρ3,+1)
z , Aβ(ρ3,−1)

z , Aβ(ρ4,+1)
z , Aβ(ρ4,−1)

z , Aβ(ρ5,+1)
z , Aβ(ρ5,−1)

z ,

A
β(+1,+1)
z̄ , A

β(+1,−1)
z̄ , A

β(ρ,+1)
z̄ , A

β(ρ,−1)
z̄ , A

β(ρ2,+1)
z̄ , A

β(ρ2,+1)
z̄ ,

A
β(ρ3,+1)
z̄ , A

β(ρ3,−1)
z̄ , A

β(ρ4,+1)
z̄ , A

β(ρ4,−1)
z̄ , A

β(ρ5,+1)
z̄ , A

α(ρ5,−1)
z̄ , (B.163)

where the index α indicates the gauge generators of unbroken gauge symmetry and
the index β indicates the gauge generators of broken gauge symmetry.

C Formulas based on equivalence relations

We present several formulas concerning the combination nCl, derived from the
dynamical rearrangement and the feature that fermion numbers are independent of
the Wilson line phases.

On S1/Z2, we consider the representation matrices given by

P0 = diag([+1]p1 , [+1]p2 , [−1]p3 , [−1]p4) , (C.1)

P1 = diag([+1]p1 , [−1]p2 , [+1]p3 , [−1]p4) , (C.2)

where [±1]pi represents ±1 for all pi elements. Then, the following breakdown of
SU(N) gauge symmetry occurs:

SU(N) → SU(p1)× SU(p2)× SU(p3)× SU(p4)× U(1)3−m . (C.3)

The Z2 parities or BCs specified by integers {pi} are also denoted [p1; p2, p3; p4].
After the breakdown of SU(N), [N, k] is decomposed as

[N, k] =
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

(p1Cl1 , p2Cl2 , p3Cl3 , p4Cl4) , (C.4)

where p4 = N − p1 − p2 − p3, l4 = k − l1 − l2 − l3, and we use pCl instead of [p, l].
Our notation is that pCl = 0 for l > p and l < 0.

The Z2 parities of (p1Cl1 , p2Cl2 , p3Cl3 , p4Cl4) for 4D left-handed fermions are given
by

P0 = (−1)l3+l4η0k = (−1)l1+l2(−1)kη0k = (−1)l1+l2+α , (C.5)

P1 = (−1)l2+l4η1k = (−1)l1+l3(−1)kη1k = (−1)l1+l3+β , (C.6)

where the intrinsic Z2 parities (η0k, η
1
k) take a value +1 or −1 by definition and are

parameterized as (−1)kη0k = (−1)α and (−1)kη1k = (−1)β.
Zero modes for the left-handed fermions and the right-handed ones are picked

out by operating the projection operators,

P (1,1) =
1 + P0

2

1 + P1

2
and P (−1,−1) =

1− P0

2

1− P1

2
, (C.7)

respectively. Note that the intrinsic Z2 parities for the right-handed fermions are
opposite to those for the left-handed ones.
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Then, the fermion number is given by

n = n0
L − n0

R

=
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

(
P (1,1) − P (−1,−1)

)
p1Cl1 p2Cl2 p3Cl3 p4Cl4 . (C.8)

From the dynamical rearrangement, the following equivalence relations hold,

[p1; p2, p3; p4] ∼ [p1 − 1; p2 + 1, p3 + 1; p4 − 1] (for p1, p4 ≥ 1) ,

∼ [p1 + 1; p2 − 1, p3 − 1; p4 + 1] (for p2, p3 ≥ 1) . (C.9)

Using (C.9) and the feature that fermion numbers are independent of the Wilson
line phases, the following formula is derived,

k∑
l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

[
(−1)l1+l2+α + (−1)l1+l3+β

]
p1Cl1 p2Cl2 p3Cl3 p4Cl4

=
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

[
(−1)l1+l2+α + (−1)l1+l3+β

]
× p1∓1Cl1 p2±1Cl2 p3±1Cl3 p4∓1Cl4 , (C.10)

where p4 = N − p1 − p2 − p3, l4 = k − l1 − l2 − l3, and we use the relation,

P (1,1) − P (−1,−1) =
1

2
(P0 + P1) =

1

2

[
(−1)l1+l2+α + (−1)l1+l3+β

]
. (C.11)

Here and hereafter, we deal with the case that the inequality pi − 1 ≥ 0 is fulfilled
in pi−1Cli .

In the same way, the following formulas are derived from the feature of the
fermion number on T 2/Z2,

k∑
l1=0

k−l1∑
l2=0

· · ·
k−l1−···−l6∑

l7=0

(
P (1,1,1) − P (−1,−1,−1)

)
× p1Cl1 p2Cl2 p3Cl3 p4Cl4 p5Cl5 p6Cl6 p7Cl7 p8Cl8

=
k∑

l1=0

k−l1∑
l2=0

· · ·
k−l1−···−l6∑

l7=0

(
P (1,1,1) − P (−1,−1,−1)

)
× p1∓1Cl1 p2±1Cl2 p3Cl3 p4Cl4 p5Cl5 p6Cl6 p7±1Cl7 p8∓1Cl8

=
k∑

l1=0

k−l1∑
l2=0

· · ·
k−l1−···−l6∑

l7=0

(
P (1,1,1) − P (−1,−1,−1)

)
× p1Cl1 p2∓1Cl2 p3±1Cl3 p4Cl4 p5Cl5 p6±1Cl6 p7∓1Cl7 p8Cl8

=
k∑

l1=0

k−l1∑
l2=0

· · ·
k−l1−···−l6∑

l7=0

(
P (1,1,1) − P (−1,−1,−1)

)
× p1Cl1 p2∓1Cl2 p3Cl3 p4±1Cl4 p5±1Cl5 p6Cl6 p7∓1Cl7 p8Cl8
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=
k∑

l1=0

k−l1∑
l2=0

· · ·
k−l1−···−l6∑

l7=0

(
P (1,1,1) − P (−1,−1,−1)

)
× p1Cl1 p2Cl2 p3±1Cl3 p4∓1Cl4 p5∓1Cl5 p6±1Cl6 p7Cl7 p8Cl8 ,

(C.12)

where p8 = N − p1 − p2 − · · · − p7 and l8 = k − l1 − l2 − · · · − l7. P (a,b,c) are the
projection operators that pick out the Z2 parities (P0,P1,P2) = (a, b, c), defined by

P (a,b,c) ≡ 1 + aP0

2

1 + bP1

2

1 + cP2

2
. (C.13)

Here, a, b and c take 1 or −1. P0, P1 and P2 are given by

P0 = (−1)l5+l6+l7+l8η0k = (−1)l1+l2+l3+l4(−1)kη0k = (−1)l1+l2+l3+l4+α , (C.14)

P1 = (−1)l3+l4+l7+l8η1k = (−1)l1+l2+l5+l6(−1)kη1k = (−1)l1+l2+l5+l6+β , (C.15)

P2 = (−1)l2+l4+l6+l8η2k = (−1)l1+l3+l5+l7(−1)kη2k = (−1)l1+l3+l5+l7+γ , (C.16)

where α, β and γ take 0 or 1. Using (C.14), (C.15) and (C.16), P (1,1,1) −P (−1,−1,−1)

is calculated as

P (1,1,1) − P (−1,−1,−1)

=
1

4

[
(−1)l1+l2+l3+l4+α + (−1)l1+l2+l5+l6+β

+ (−1)l1+l3+l5+l7+γ + (−1)l1+l4+l6+l7+α+β+γ
]
. (C.17)

The following formulas are derived from the feature of the fermion numbers
relating representations p1Cl1 and (p1Cl1 , p2Cl2),

k−l1∑
l2=0

k−l1−l2∑
l3=0

· · ·
k−l1−···−l6∑

l7=0

(
P (1,1,1) − P (−1,−1,−1)

)
× p2Cl2 p3Cl3 p4Cl4 p5Cl5 p6Cl6 p7Cl7 p8Cl8

=

k−l1∑
l2=0

k−l1−l2∑
l3=0

· · ·
k−l1−···−l6∑

l7=0

(
P (1,1,1) − P (−1,−1,−1)

)
× p2∓1Cl2 p3±1Cl3 p4Cl4 p5Cl5 p6±1Cl6 p7∓1Cl7 p8Cl8

=

k−l1∑
l2=0

k−l1−l2∑
l3=0

· · ·
k−l1−···−l6∑

l7=0

(
P (1,1,1) − P (−1,−1,−1)

)
× p2∓1Cl2 p3Cl3 p4±1Cl4 p5±1Cl5 p6Cl6 p7∓1Cl7 p8Cl8

=

k−l1∑
l2=0

k−l1−l2∑
l3=0

· · ·
k−l1−···−l6∑

l7=0

(
P (1,1,1) − P (−1,−1,−1)

)
× p2Cl2 p3±1Cl3 p4∓1Cl4 p5∓1Cl5 p6±1Cl6 p7Cl7 p8Cl8

(C.18)
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and

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

· · ·
k−l1−···−l6∑

l7=0

(
P (1,1,1) − P (−1,−1,−1)

)
× p3Cl3 p4Cl4 p5Cl5 p6Cl6 p7Cl7 p8Cl8

=

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

· · ·
k−l1−···−l6∑

l7=0

(
P (1,1,1) − P (−1,−1,−1)

)
× p3±1Cl3 p4∓1Cl4 p5∓1Cl5 p6±1Cl6 p7Cl7 p8Cl8 . (C.19)

Furthermore, by changing (p3, p4, p5, p6, p7, p8) into (p7, p8, p3, p4, p5, p6) in the or-
dering of the summation and relabeling (p7, p8, p3, p4, p5, p6) as (p3, p4, p5, p6, p7, p8),
the following formulas are derived from the feature of the fermion numbers relating
representations (p1Cl1 , p2Cl2 , p3Cl3) and (p1Cl1 , p2Cl2 , p3Cl3 , p4Cl4),

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P ′(1,1,1) − P ′(−1,−1,−1)

)
× p4Cl4 p5Cl5 p6Cl6 p7Cl7 p8Cl8

=

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P ′(1,1,1) − P ′(−1,−1,−1)

)
× p4Cl4 p5∓1Cl5 p6±1Cl6 p7±1Cl7 p8∓1Cl8 (C.20)

and

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P ′(1,1,1) − P ′(−1,−1,−1)

)
p5Cl5 p6Cl6 p7Cl7 p8Cl8

=

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P ′(1,1,1) − P ′(−1,−1,−1)

)
× p5∓1Cl5 p6±1Cl6 p7±1Cl7 p8∓1Cl8 , (C.21)

where P ′(1,1,1) − P ′(−1,−1,−1) is given by

P ′(1,1,1) − P ′(−1,−1,−1)

=
1

4

[
(−1)l1+l2+l5+l6+α + (−1)l1+l2+l7+l8+β

+ (−1)l1+l3+l5+l7+γ + (−1)l1+l3+l6+l8+α+β+γ
]
. (C.22)

In the same way, the following formulas are derived from the feature of the
fermion number on T 2/Z3,

k∑
l1=0

k−l1∑
l2=0

· · ·
k−l1−···−l7∑

l8=0

(
P (1,1) − P (ω,ω)

)
× p1Cl1 p2Cl2 p3Cl3 p4Cl4 p5Cl5 p6Cl6 p7Cl7 p8Cl8 p9Cl9
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=
k∑

l1=0

k−l1∑
l2=0

· · ·
k−l1−···−l7∑

l8=0

(
P (1,1) − P (ω,ω)

)
× p1±1Cl1 p2Cl2 p3∓1Cl3 p4∓1Cl4 p5±1Cl5 p6Cl6 p7Cl7 p8∓1Cl8 p9±1Cl9

=
k∑

l1=0

k−l1∑
l2=0

· · ·
k−l1−···−l7∑

l8=0

(
P (1,1) − P (ω,ω)

)
× p1±1Cl1 p2∓1Cl2 p3Cl3 p4Cl4 p5±1Cl5 p6∓1Cl6 p7∓1Cl7 p8Cl8 p9±1Cl9

=
k∑

l1=0

k−l1∑
l2=0

· · ·
k−l1−···−l7∑

l8=0

(
P (1,1) − P (ω,ω)

)
× p1Cl1 p2±1Cl2 p3∓1Cl3 p4∓1Cl4 p5Cl5 p6±1Cl6 p7±1Cl7 p8∓1Cl8 p9Cl9 ,

(C.23)

where p9 = N − p1 − p2 − · · · − p8 and l9 = k − l1 − l2 − · · · − l8. P (ξ,η) are the
projection operators that pick out the Z3 elements (Θ0,Θ1) = (ξ, η), defined by

P (ξ,η) ≡ 1 + ξΘ0 + ξ
2
Θ2

0

3

1 + ηΘ1 + η2Θ2
1

3
. (C.24)

Here, ξ and η take 1, ω(= e2πi/3) or ω(= e4πi/3), and ξ and η are the complex
conjugates of ξ and η, respectively. Θ0 and Θ1 are given by

Θ0 = ωl4+l5+l6ωl7+l8+l9η0k

= ωl1+l2+l3+2(l4+l5+l6)ωkη0k = ωl1+l2+l3+2(l4+l5+l6)+α , (C.25)

Θ1 = ωl2+l5+l8ωl3+l6+l9η1k

= ωl1+l4+l7+2(l2+l5+l8)ωkη1k = ωl1+l4+l7+2(l2+l5+l8)+β , (C.26)

where α and β take 0, 1 or 2.
In the same way, we can derive similar formulas from the feature of the fermion

numbers relating representations p1Cl1 , (p1Cl1 , p2Cl2) and (p1Cl1 , p2Cl2 , p3Cl3) on T 2/Z3.

D Formulas based on independence from Wilson

line phases

We derive other formulas concerning the combination nCl, counting the num-
bers of fermions irrelevant to the Wilson line phases and using the independence of
fermion numbers from the Wilson line phases.

On S1/Z2, we consider the representation matrices given by

P0 = diag([+1]p, [−1]N−p) , P1 = diag([+1]p, [−1]N−p) . (D.1)

Then, the following breakdown of SU(N) gauge symmetry occurs:

SU(N) → SU(p)× SU(N − p)× U(1)1−m , (D.2)
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and [N, k] is decomposed as

[N, k] =
k∑
l=0

(pCl,N−pCk−l) . (D.3)

The Z2 parities of (pCl, sCk−l) for 4D left-handed fermions are given and param-
eterized by

P0 = (−1)k−lη0k = (−1)l+α , P1 = (−1)k−lη1k = (−1)l+β , (D.4)

where α and β take 0 or 1. Then, the fermion number is given by

n = nL − nR =
k∑
l=0

1

2

[
(−1)l+α + (−1)l+β

]
pCl N−pCk−l . (D.5)

The number of the Wilson line phases is m ≡ Min(p,N −p) and, after a suitable
SU(p)× SU(N − p) gauge transformation, 〈Ay〉 is parameterized as

〈Ay〉 = −i

gR

(
0 Θ

−ΘT 0

)
, (D.6)

where Θ is the p× (N − p) matrix such that

Θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
a2

0
0 0
...

...
0 0

0
. . .

am
· · · 0
. . .

...
· · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(for p ≥ N − p) , (D.7)

Θ =

⎛
⎜⎜⎜⎝
a1

a2

0

0
. . .

am

0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎠ (for p ≤ N − p) . (D.8)

Here, 2πak (k = 1, · · · ,m;m ≡ Min(p,N − p)) are the Wilson line phases.
For the fermion with [N, 1], the number of components irrelevant to ak is p−m

for p ≥ N − p and N − p−m for p ≤ N − p, and it is expressed as

1∑
l′=0

p−mCl′ N−p−mC1−l′

∣∣∣∣∣
m=Min(p,N−p)

. (D.9)

For the fermion with [N, 2], the number of components irrelevant to ak is p−mC2+m
for p ≥ N − p and N−p−mC2 +m for p ≤ N − p, and it is expressed as

2∑
l′=0

p−mCl′ N−p−mC2−l′ + mC1

∣∣∣∣∣
m=Min(p,N−p)

, (D.10)
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where mC1 comes from the components constructed from the tensor products be-
tween components in [N, 1] with opposite values for the Wilson line phases, and the
components corresponding mC1 have odd Z2 parities. In the iterative fashion, we
find that the number of components irrelevant to ak is given by

[k/2]∑
n=0

k−2n∑
l′=0

mCn p−mCl′ N−p−mCk−2n−l′

∣∣∣∣∣∣
m=Min(p,N−p)

(D.11)

for the fermion with [N, k].
Using the independence of fermion numbers from the Wilson line phases, the

number of fermions is also calculated by counting the fermions irrelevant to ak and
the following formula is derived,

k∑
l=0

(−1)lpCl N−pCk−l =
[k/2]∑
n=0

k−2n∑
l′=0

(−1)n+l
′
mCn p−mCl′ N−p−mCk−2n−l′ , (D.12)

where we use the assignment of Z2 parities,

P0 = (−1)n+k−2n−l′η0k = (−1)n+l
′+α ,

P1 = (−1)n+k−2n−l′η1k = (−1)n+l
′+β (D.13)

for the component corresponding mCn p−mCl′ N−p−mCk−2n−l′ , and we take α = β.
The above formula (D.12) holds for the integer m satisfying 0 ≤ m ≤ Min(p,N−p),
because the above argument is valid for m as the number of non-vanishing ak even
if some of ak vanish.

Particularly, in case with m = p and m = N − p, (D.12) reduces to

k∑
l=0

(−1)lpCl N−pCk−l =
[k/2]∑
n=0

k−2n∑
l′=0

(−1)n+l
′
pCn N−2pCk−2n−l′ , (D.14)

and
k∑
l=0

(−1)lpCl N−pCk−l =
[k/2]∑
n=0

k−2n∑
l′=0

(−1)n+l
′
N−pCn 2p−NCk−2n−l′ , (D.15)

respectively.
Based on the representation matrices (C.1) and (C.2), the following formula is

derived,

k∑
l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

[
(−1)l1+l2+α + (−1)l1+l3+β

]
p1Cl1 p2Cl2 p3Cl3 p4Cl4

=

[k/2]∑
n=0

n∑
n1=0

k−2n∑
l′1=0

k−2n−l′1∑
l′2=0

k−2n−l′1−l′2∑
l′3=0

[
(−1)n+l

′
1+l

′
2+α + (−1)n+l

′
1+l

′
3+β

]
× m1Cn1 m2Cn−n1 p1−m1Cl′1 p2−m2Cl′2 p3−m2Cl′3 p4−m1Cl′4 , (D.16)

where p4 = N − p1 − p2 − p3 and l′4 = k − 2n − l′1 − l′2 − l′3. The above formula
(D.16) holds for the integers m1 and m2 satisfying 0 ≤ m1 ≤ Min(p1, p4) and
0 ≤ m2 ≤ Min(p2, p3).

In the same way, we can derive similar formulas using models on T 2/ZM .
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