Aberrant methylation of protocadherin 17 and its prognostic value in pediatric acute lymphoblastic leukemia

Le Thanh Nha Uyen MD¹, Kazuo Sakashita MD, PhD^{1,2}, Lika'a Fasih Y. Al-Kzayer MD, PhD¹,

Yozo Nakazawa MD, PhD¹, Takashi Kurata MD¹, Kenichi Koike MD, PhD¹

¹ Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan.

² Department of Pediatric Hematology and Oncology, Nagano Children's Hospital, Azumino, Japan.

CORRESPONDING AUTHOR:

Kazuo Sakashita MD, PhD

Department of Pediatric Hematology and Oncology, Nagano Children's Hospital

3100 Toyoshina, Azumino city, Nagano, Japan.

Fax: +81-263-73-5432

Tel: +81-263-73-6700

E-mail: sakasita@shinshu-u.ac.jp

Word count for abstract: 221 words

Word count for main text: 2314 words

Number of tables: 2

Number of figures: 2

Supplemental files: 8

SHORT RUNNING TITLE: PCDH17 methylation in acute lymphoblastic leukemia

Keywords: DNA methylation, PCDH17, BCP ALL, relapse, prognostic factors.

ABBREVIATION

ALL	Acute lymphoblastic leukemia
BCP	B-cell precursor
BM	Bone marrow
COBRA	Combined bisulfite restriction analysis
CR	Complete remission
DAVID	Database for Annotation, Visualization, and Integrated Discovery
EFS	Event-free survival
HR	Hazard ratio
MNCs	Mononuclear cells
OS	Overall survival
PB	Peripheral blood
RT-PCR	Reverse transcriptase PCR
WBC	White blood cell

ABSTRACT

Background: The outcome of approximately 20% of acute lymphoblastic leukemia (ALL) patients remains poor because of disease recurrence. We examined whether the DNA methylation of cadherin superfamily genes is a useful biomarker for ALL relapse.

Procedure: We used Infinium Methylation 450K Array to assess the genome-wide DNA methylation status. The methylation status of each individual gene was then determined by combine bisulfite restriction analysis and genome bisulfite sequencing. mRNA expression was evaluated by reverse transcriptase PCR (RT-PCR) and quantitative real-time PCR.

Results: Cadherin superfamily genes including *cadherin (CDH)1, protocadherin (PCDH)8*, and *PCDH17* were selected for analyzing the methylation status. In 40 B-cell precursor (BCP) ALL samples at onset, the methylation frequencies of *CDH1, PCDH8*, and *PCDH17* were 62.5%, 55%, and 30%, respectively. *CDH1* and *PCDH8* methylation was also detected in 80% and 20% of control BM samples, respectively. On the contrary, *PCDH17* was unmethylated in all control BM samples. There was a significant correlation between the methylation status of *PCDH17* (but not *CDH1* and *PCDH8*) and event-free survival or overall survival. By univariate and multivariate analyses, only *PCDH17* methylation was associated with the increased risk for relapse and mortality in patients with BCP ALL.

Conclusion: *PCDH17* methylation at onset was closely related to poor prognosis, and thus it could be used as a new biomarker to predict relapse in BCP ALL.

1 **INTRODUCTION**

2 The cure rate of childhood acute lymphoblastic leukemia (ALL) has improved over the past four decades. However, the prognosis of approximately 20% of patients with ALL remains poor 3 because of disease recurrence. A main cause of refractory ALL is the development of 4 chemotherapeutic drug-resistant clone(s).[1-3] The acquisition of chemoresistance is considered 5 to be associated with either genetic or epigenetic alterations.[4-6] Moreover, recent studies 6 demonstrated that relapse clones already present as a small subset of leukemic cells at diagnosis 7 and eventually reemerge as the major clone at relapse.[7] In recent years, many studies have 8 9 attempted to identify new clinical biomarkers that can predict high-risk patients and serve as targets for novel therapeutic interventions using gene-expression microarrays, DNA-methylation 10 arrays, and next-generation sequencing.[8-11] 11

DNA methylation and histone modifications are the two major epigenetic mechanisms regulating gene expression. Hypermethylation of CpG islands in the promoter region of tumor suppressor genes, that results in transcriptional silencing, plays an important role in lymphoidlineage leukemogenesis and may be an important contributor toward relapse.[4, 5] Moreover, DNA methylation profiling is useful for the subtype classification of newly diagnosed ALL patients and prediction of outcome and relapse risk.[12]

Here we present our data demonstrating that the methylation of *protocadherin (PCDH)17*, a
member of non-clustered protocadherins, is related to poor prognosis, and thus proposing *PCDH17* methylation as a novel biomarker to predict relapse in B-cell precursor (BCP) ALL.

21 MATERIALS AND METHODS

22 Clinical samples and leukemic cell lines

This study was approved by the institutional review board of the Shinshu University School of Medicine. Bone marrow (BM) cells were aspirated from 40 children with BCP ALL diagnosed between 1995 and 2008 at Shinshu University Hospital after obtaining informed consent from each of them and/or their parents. The patients were treated according to TCCSG ALL protocol 27 (L95-14) between 1995 and 2001, and according to TCCSG ALL protocol (L99-15 and L04-16) between 2002 and 2008. BM mononuclear cells (MNCs) were separated and stored in liquid 28 nitrogen until the time of experiments. In this study, only the samples with 80% or more leukemic 29 blasts were analyzed. Immunophenotypic diagnosis of BCP ALL was based on either CD10⁺, 30 CD19⁺, and cytoplasmic μ^- or CD10^{+/-}, CD19⁺, and cytoplasmic μ^+ . The following leukemic cell 31 lines were used: Kasumi 2, Kasumi 7, and Kasumi 8 (purchased from the Japanese Collection of 32 Research Bioresources Cell Bank, Ibaraki, Japan); MV4-11, REH, and RCH-ACV (purchased 33 from the German Culture Collection, DSMZ, Braunschweig, Germany). Peripheral blood (PB) 34 35 MNCs obtained from healthy adult volunteers and BM MNCs obtained from ALL patients in complete remission (CR) were used as controls. 36

37 Infinium Methylation 450K Array

38 To examine the methylation status of BM samples at diagnosis, CR, and relapse in a relapsed patient with BCP ALL, a global DNA methylation analysis was performed by Takara Bio Inc. 39 (Kusatsu, Japan) using Infinium Methylation 450K Array (Illumina Inc., Tokyo, Japan). The 40 41 quantitative scores of DNA methylation levels were obtained as beta values determined by Illumina analysis, ranging from 0 for completely unmethylated to 1 for completely methylated. 42 Data were then analyzed using the Database for Annotation, Visualization, and Integrated 43 Discovery (DAVID) bioinformatics software (https://david.ncifcrf.gov) to identify the candidate 44 genes with CpG sites in which their beta values obtained at relapse were higher than those 45 46 obtained at diagnosis and CR.

47 Combined bisulfite restriction analysis (COBRA) and bisulfite sequencing

Genomic DNA was extracted using the QIAamp DNA Blood Mini Kit (Qiagen, Chuo-ku,
Tokyo, Japan), followed by sodium bisulfite treatment using the EZ DNA Methylation Kit (Zymo
Research, Irvine, CA, USA) as reported previously.[13, 14] PCR reaction was performed as
described previously.[15]

52 For combined bisulfite restriction analysis (COBRA), PCR products were digested with *BstU*I 53 enzyme (New England BioLabs Japan Inc., Tokyo, Japan), electrophoresed on agarose gels 54 stained with ethidium bromide. The minimal amount of methylated DNA detectable in an 55 unmethylated DNA pool was 20%.

For bisulfite sequencing of the *PCDH17* CpG island, 10μl of each PCR product was electrophoresed onto a 3% agarose gel. The bands were then excised and purified using the Geneclean 2 Kit (Bio 101 Inc., La Jolla, CA, USA). Purified PCR products were cloned into the pGEM-T Easy vector (Promega Corp., Madison, WI, USA). The plasmids were extracted using the Wizard Plus Minipreps DNA Purification System (Promega). Individual clones were sequenced on an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems) using a DYEnamic ET Terminator Cycle Sequencing Kit (Amersham Biosciences, Piscataway, NJ, USA).

63 Reverse transcriptase PCR (RT-PCR) and quantitative real-time PCR

Total RNA was isolated using the RNeasy Mini Kit (Qiagen), and cDNA was prepared using PrimeScript II first strand cDNA Synthesis Kit (Takara Bio Inc.). The cDNA was used as a template for RT-PCR, and quantitative real-time PCR with primers and probes listed in Supplemental Table S2. RT-PCR was performed as reported previously.[15] Real-time PCR was carried out in an ABI sequence detection system using the Master Mix (Applied Biosystems). Each assay was performed in triplicates for each sample.

70 Multiplex ligation-dependent probe amplification (MLPA)

IKZF1 deletion was identified by MLPA. The MLPA assays, using SALSA MLPA P202 *IKZF1*kit (MRC-Holland, Amsterdam, The Netherlands), were performed according to the
manufacturer's protocol. The data were analyzed by Coffalyser.Net software (free download at
<u>https://www.mlpa.com</u>, MRC-Holland).

75 *Statistical analyses*

The chi-square or Fisher's exact tests was used to determine the association of the methylation of *PCDH17* with that of other cadherin superfamily genes, and to compare their methylation status at diagnosis with that at relapse. Spearman's rank correlation test was performed todetermine the relationship between two variables.

Actuarial estimates of event-free survival (EFS) and overall survival (OS) were calculated 80 81 using the Kaplan-Meier method. Patients were censored for EFS if they were alive and in remission at last follow-up, and were censored for OS if they were alive at last follow-up. 82 Follow-up data were available through December 31, 2014. Risk factors for relapse or mortality 83 84 were applied to the univariate and multivariate Cox proportional hazards regression analysis. All P values were two-sided and P values 0.05 or less were considered statistically significant. All 85 86 statistical analyses were performed with EZR (Saitama Medical Center, Jichi Medical University; http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmedEN.html;Kanda, 2012). 87

88

89 **RESULTS**

90 The methylation status of cadherin superfamily genes in BCP ALL

The genome-wide DNA methylation status of BM samples (at diagnosis, CR, and relapse) of a 91 92 2-year-old male diagnosed with BCP ALL was examined, followed by functional analysis of large gene lists using bioinformatics DAVID program which identified cadherin superfamily 93 genes as the top candidate genes with aberrant methylation at relapse (Supplemental Appendix 94 S1). Among these cadherin superfamily genes, Cadherin (CDH)1, PCDH8, and PCDH17 were 95 previously demonstrated as tumor suppressor genes and frequently detected as hypermethylated 96 97 in various cancers such as gastric, esophageal squamous cell, hepatocellular, and breast cancers. [16-19] Therefore, we selected these 3 genes for further analysis. First, we examined the 98 methylation status of CDH1, PCDH8, and PCDH17 in 6 ALL cell lines, in 40 newly diagnosed 99 Ph1-negative BCP ALL samples obtained at diagnosis, and in control PB and BM cells using 100 101 COBRA method. The results are shown in Fig 1. CDH1 and PCDH8 methylation was observed in all cell lines, whereas PCDH17 methylation was detected in 4 of them. CDH1, PCDH8, and 102 PCDH17 were methylated in 62.5%, 55%, and 30% of ALL cases, respectively. However, 103

104 methylation of *PCDH8* and *CDH1* was also detected in 80% and 20% of control BM samples, 105 respectively. These findings were partly due to the methylation of CD71-positive BM cells. In 106 contrast, *PCDH17* was unmethylated in control BM cells. There was a significant association 107 between *CDH1* methylation and *PCDH8* methylation (P < 0.001). Furthermore, *PCDH17* 108 methylation was associated with both *CDH1* and *PCDH8* methylation (P = 0.018 and P = 0.013, 109 respectively).

110 Thereafter, we compared the methylation status of 31 *PCDH17* CpG sites at diagnosis and at 111 relapse in 3 patients using bisulfite sequencing. As presented in Supplemental Figure S2, total 112 methylated *PCDH17* sites obtained from 8 clones increased significantly at relapse, as compared 113 with those obtained from clones at diagnosis in 2 of 3 patients (P < 0.0001).

We examined the relationship between the methylation status and the mRNA expression of *PCDH17* in various cell types. *PCDH17* methylation was almost negligible in control PB cells, whereas a total number of methylated sites varied among ALL samples and ALL cell lines, as determined by bisulfite sequencing (Supplemental Figure S3). Control PB cells expressed *PCDH17* mRNA due to the present of PB CD33+ cells, whereas the mRNA was variable in ALL samples and cell lines (Supplemental Figure S4). There was no correlation between *PCDH17* methylation and mRNA expression levels (Supplemental Figure S5).

121 The relationship between methylation status of cadherin superfamily genes at diagnosis and 122 clinical characteristics of patients with BCP ALL

We then determined whether the methylation status of *CDH1*, *PCDH8*, and *PCDH17* at diagnosis examined by COBRA was associated with the clinical characteristics of BCP ALL. As shown in Table 1, *PCDH17* methylation was significantly correlated with high white blood cell (WBC) counts (P = 0.047), however, no correlation was found with age, gender, genetic abnormalities including *IKZF1* deletion, t(4;11) and t(12;21), or steroid response. There were substantial relationships between *CDH1* methylation and male sex, as well as between *PCDH8* methylation and both male sex and high WBC. The EFS and OS of 14 patients treated between 130 1995 and 2001 were similar to those of 26 patients treated between 2002 and 2008 [10-year EFS, 64.3% (95% CI: 34.3-83.3) vs. 61.5% (95% CI: 40.3-77.1)]; 10-year OS, 70.7% (95% CI: 39.4-131 87.9) vs. 72.5% (95% CI: 59.5-91.4), although ALL protocols were different between the two 132 133 groups. Thus, we analyzed the impact of the methylation of cadherin superfamily genes on the outcomes of all 40 patients. EFS of PCDH17 methylation-positive group was profoundly inferior 134 to that of *PCDH17* methylation-negative group: 33% (95% CI, 10–59) vs. 75% (95% CI, 55–87); 135 P = 0.005 (Fig 2). A significant difference in OS was also found between the two groups: 50% 136 (95% CI, 21–73) vs. 82% (95% CI, 62–92); P = 0.016. Conversely, there were no substantial 137 correlations between the methylation status of CDH1 and EFS or OS, and between the 138 methylation status of PCDH8 and EFS or OS. 139

As shown in Table 2, univariate analysis revealed that *PCDH17* methylation was associated with increased risk for relapse and mortality in patients with BCP ALL [hazards ratio (HR), 3.85; P = 0.001 and HR, 5.05; P = 0.017, respectively]. According to multivariate analysis, only *PCDH17* methylation was related to poor outcome [HR, 5.23; P = 0.016 for relapse and HR, 8.22; P = 0.016 for mortality]. However, *CDH1* and *PCDH8* methylation did not influence ALL prognosis.

146 **DISSCUSSION**

DNA hypermethylation plays a significant role in the leukemogenesis and hematologic relapse 147 in ALL.[4, 5] For a comprehensive evaluation of the DNA methylation in a pediatric patient with 148 149 ALL, we performed a genome-wide DNA methylation analysis. The patient already harbored the relapse clone as a minor population at diagnosis. Therefore, to identify the candidate genes 150 associated with relapse, we selected genes that were methylated at higher levels at relapse than at 151 onset. As a result, cadherin superfamily genes, including CDH1, PCDH8, and PCDH17, were the 152 top gene-family in this patient. Among 40 ALL samples at onset, the methylation frequencies of 153 CDH1, PCDH8, and PCDH17 were 62.5%, 55%, and 30%, respectively. The methylation of 154 CDH1 and PCDH8 was also detected in 80% and 20% of control BM samples, respectively. On 155

the contrary, *PCDH17* was unmethylated in all 10 control BM samples. These results suggest that *PCDH17* methylation is a specific phenomenon for ALL blasts at onset.

In our study, methylation of *PCDH8* and *CDH1* in BM cells was detected in CD33+/CD71+ cells. CD71 was expressed on proliferating cells. Myeloid BM precursors from dividing blast cells to myelocytes were variably CD71 positive, whereas non-dividing late precursors were CD71 negative.[20-22] Therefore, the methylation of *PCDH8* and *CDH1* in CD33+/CD71+ cells may be related to the proliferative status of myeloid precursors.

Interestingly, the Kaplan-Meier estimates showed that EFS and OS of the PCDH17 163 164 methylation-positive group were significantly lower than those of the PCDH17 methylationnegative group. Conversely, there were no significant correlations between the methylation status 165 166 of either CDH1 or PCDH8 and EFS or OS. According to univariate and multivariate analysis, 167 PCDH17 methylation, but not CDH1 or PCDH8 methylation, was associated with an increased risk for relapse or mortality in BCP ALL patients. These results suggest that PCDH17 168 169 methylation at onset is related to poor prognosis and thus it could be considered as a new 170 biomarker to predict relapse in such subset of patient. However, a larger study is necessary to clarify this issue. PCDH17 is a member of non-clustered protocadherin, a subfamily of cadherin 171 superfamily genes.[23] PCDH17 is frequently downregulated through the promoter 172 hypermethylation in a number of cancers.[24-26] The restoration of PCDH17 expression reduces 173 cell proliferation and migration in esophageal squamous cell carcinoma, [17] and induces tumor 174 175 cell apoptosis and autophagy in gastric and colorectal cancers.[18] However, there was no correlation between the methylation status and the mRNA expression level of PCDH17 in 176 patients with BCP ALL in this study, implying the involvement of alternative mechanisms in 177 regulation of PCDH17 gene expression. Accordingly, the association of PCDH17 methylation 178 with poor prognosis may occur through a mechanism that are independent of methylation-179 mediated transcriptional silencing. 180

181 In our genome-wide DNA methylation analysis of one relapsed case with BCP ALL, the relapse-mediated increases in beta values of PCDH10, CDH11, and CDH13 methylation were 182 less than 0.3. Therefore, we excluded these 3 genes from the subsequent candidate gene analyses 183 184 in this study. However, Narayan et al. identified PCDH10 hypermethylation in approximately 80% of patients with B-ALL.[27] Hogan et al. found that CDH1, CDH11, and CDH13 were 185 hypermethylated and downregulated in relapsed pediatric ALL cases.[5] Considering one single 186 sample with a clonal expansion of a minor clone at relapse, we cannot completely rule out the 187 impact of methylation of cadherin superfamily genes other than PCDH17 and the other family 188 189 genes on ALL relapse.

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research (No. 26461575 and No. 15H04874) from the Ministry of Education of Japan and Friends of Leukemia Research Fund.

Author contributions

L.T.N.U performed the research, analyzed the data and wrote the paper. K.S. contributed to data management and statistical analysis and wrote the paper. K.K. revised the manuscript and contributed to paper writing. Y.N., T.K., and A.L.F.Y assisted in doing experiments.

Conflict of interest

The authors declare no potential conflicts of interest

REFERENCES

- Pui C-H, Relling MV, Downing JR. Acute lymphoblastic leukemia. New England Journal of Medicine 2004;350:1535-48.
- 2. Ross D. Novel mechanisms of drug resistance in leukemia. Leukemia 2000;14:467-73.

- Swerts K, De Moerloose B, Dhooge C, Laureys G, Benoit Y, Philippé J. Prognostic significance of multidrug resistance-related proteins in childhood acute lymphoblastic leukaemia. European Journal of Cancer 2006;42:295-309.
- Bhatla T, Wang J, Morrison DJ, Raetz EA, Burke MJ, Brown P, Carroll WL. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood 2012;119:5201-10.
- Hogan LE, Meyer JA, Yang J, Wang J, Wong N, Yang W, Condos G, Hunger SP, Raetz E, Saffery R. Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood 2011;118:5218-26.
- 6. Pui C-H, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 2012;120:1165-74.
- Henderson MJ, Choi S, Beesley AH, Sutton R, Venn NC, Marshall GM, Kee UR, Haber M, Norris MD. Mechanism of relapse in pediatric acute lymphoblastic leukemia. Cell Cycle 2008;7:1315-20.
- Figueroa ME, Chen S-C, Andersson AK, Phillips LA, Li Y, Sotzen J, Kundu M, Downing JR, Melnick A, Mullighan CG. Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. The Journal of clinical investigation 2013;123:3099-11.
- Leshchenko VV, Kuo P-Y, Shaknovich R, Yang DT, Gellen T, Petrich A, Yu Y, Remache Y, Weniger MA, Rafiq S. Genomewide DNA methylation analysis reveals novel targets for drug development in mantle cell lymphoma. Blood 2010;116:1025-34.
- Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang Y-L, Pei D, McCastlain K, Ding L, Lu C, Song G. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. New England Journal of Medicine 2014;371:1005-15.
- 11.Tayrac Md, Etcheverry A, Aubry M, Saïkali S, Hamlat A, Quillien V, Treut AL, Galibert MD, Mosser J. Integrative genome-wide analysis reveals a robust genomic glioblastoma signature

associated with copy number driving changes in gene expression. Genes, Chromosomes and Cancer 2009;48:55-68.

- 12. Milani L, Lundmark A, Kiialainen A, Nordlund J, Flaegstad T, Forestier E, Heyman M, Jonmundsson G, Kanerva J, Schmiegelow K. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood 2010;115:1214-25.
- 13. Sakashita K, Koike K, Kinoshita T, Shiohara M, Kamijo T, Taniguchi Si, Kubota T. Dynamic DNA methylation change in the CpG island region of p15 during human myeloid development. Journal of Clinical Investigation 2001;108:1195-204.
- 14. Zhao XY, Sakashita K, Kamijo T, Hidaka E, Sugane K, Kubota T, Koike K. Granulocyte– macrophage colony-stimulating factor induces de novo methylation of the p15 CpG island in hematopoietic cells. Cytokine 2005;31:203-12.
- 15. Al-Kzayer LaFY, Sakashita K, Matsuda K, Al-Hadad SA, Al-Jadiry MF, Abed WM, Abdulkadhim JM, Al-Shujairi TA, Hasan JG, Al-Abdullah HMS. Genetic evaluation of childhood acute lymphoblastic leukemia in Iraq using FTA cards. Pediatric blood & cancer 2012;59:461-7.
- Miyamoto K, Fukutomi T, Akashi-Tanaka S, Hasegawa T, Asahara T, Sugimura T, Ushijima T. Identification of 20 genes aberrantly methylated in human breast cancers. International journal of cancer 2005;116:407-14.
- 17. Haruki S, Imoto I, Kozaki K-i, Matsui T, Kawachi H, Komatsu S, Muramatsu T, Shimada Y, Kawano T, Inazawa J. Frequent silencing of protocadherin 17, a candidate tumour suppressor for esophageal squamous-cell carcinoma. Carcinogenesis 2010:1027-36.
- 18. Hu X, Sui X, Li L, Huang X, Rong R, Su X, Shi Q, Mo L, Shu X, Kuang Y. Protocadherin 17 acts as a tumour suppressor inducing tumour cell apoptosis and autophagy, and is frequently methylated in gastric and colorectal cancers. The Journal of pathology 2013;229:62-73.

- Jiang L, Chan JY-W, Fung K-P. Epigenetic loss of CDH1 correlates with multidrug resistance in human hepatocellular carcinoma cells. Biochemical and biophysical research communications 2012; 422: 739-44.
- Blair A, Hogge D, Sutherland H. Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34+/CD71-/HLA-DR-. Blood 1998;92:4325-35.
- 21. Sieff C, Bicknell D, Caine G, Robinson J, Lam G, Greaves M. Changes in cell surface antigen expression during hemopoietic differentiation. Blood 1982;60:703-13.
- 22. Liu Q, Wang M, Hu Y, Xing H, Chen X, Zhang Y, Zhu P. Significance of CD71 expression by flow cytometry in diagnosis of acute leukemia. Leukemia & lymphoma 2014;55:892-8.
- 23. Kim S-Y, Yasuda S, Tanaka H, Yamagata K, Kim H. Non-clustered protocadherin. Cell adhesion & migration 2011;5:97-105.
- 24. Costa VL, Henrique R, Danielsen SA, Eknaes M, Patrício P, Morais A, Oliveira J, Lothe RA, Teixeira MR, Lind GE. TCF21 and PCDH17 methylation: An innovative panel of biomarkers for a simultaneous detection of urological cancers. Epigenetics 2011;6:1120-30.
- 25. Lin Y-L, Xie P-G, Wang L, Ma J-G. Aberrant methylation of protocadherin 17 and its clinical significance in patients with prostate cancer after radical prostatectomy. Med Sci Monit 2014;20:1376-82.
- 26. Sui X, Wang D, Geng S, Zhou G, He C, Hu X. Methylated promoters of genes encoding protocadherins as a new cancer biomarker family. Molecular biology reports 2012;39:1105-11.
- 27. Narayan G, Freddy AJ, Xie D, Liyanage H, Clark L, Kisselev S, Un Kang J, Nandula SV, McGuinn C, Subramaniyam S. Promoter methylation-mediated inactivation of PCDH10 in acute lymphoblastic leukemia contributes to chemotherapy resistance. Genes, Chromosomes and Cancer 2011;50:1043-53.

Figure legends

(A) Representative results of COBRA analysis: PCR products of promoter *CDH1*, *PCDH8*, and *PCDH17* of control BM cells and ALL samples were digested with *BstU*I enzyme, subjected to 2 % agarose gel stained with ethidium bromide. The black triangle symbols indicate methylated samples with "CGCG" *BstU*I enzyme cut site (digested in smaller fragments). The "minus" symbols represent no *BstU*I treatment, and the "plus" symbols represent *BstU*I treatment. The letter "M" represents DNA size marker. (B) The summary of the methylation profile of control BM, PB samples, ALL cell lines and 40 newly diagnosed ALL samples. Gray squares: cases with methylated genes. *: relapsed case.

Figure 2. Kaplan–Meier survival analysis of ALL children with or without methylation of the three cadherin superfamily genes

Kaplan–Meier estimates of EFS and OS were compared between methylated and unmethylated *CDH1* (A), *PCDH8* (B), and *PCDH17* (C) determined by COBRA.

Supplemental Figure legends

(A) Electrophoresis of IgH (CDR-III region) gene rearrangements. (B) Real-time PCR-based

detection of two leukemic clones with different IgH gene rearrangements at diagnosis, CR, and

relapse.

Supplemental Figure S2. Allelic methylation status of the *PCDH17* CpG islands by bisulfite sequencing

(A) A schematic map of the CpG island region around exon 1 of *PCDH17*. Vertical black bars indicate the location of individual CpG sites. The horizontal arrows indicate the position of two examined fragments (region 1 and region 2). The vertical arrow indicates a restriction site for the *BstUI* enzyme. The binding sites of the primers used in this experiment are also shown (F1 and R1, F2 and R2). (B) The allelic methylation status of the *PCDH17* CpG island at diagnosis and at relapse among 3 ALL cases. Each horizontal row represents an individual cloned and sequenced allele following bisulfite treatment. Methylated CpG sites are marked as closed circles and unmethylated sites as open circles. Numbers above horizontal rows correspond to those of the CpG sites of *PCDH17* shown in (A).

Supplemental Figure S3.

Allelic methylation status of PCDH17 individual CpG site by bisulfite sequencing in ALL cases,

ALL cell lines and normal blood cells.

Supplemental Figure S4.

PCDH17 mRNA expression examined by RT-PCR (A) and realtime PCR (B) in normal blood cells, ALL cell lines and ALL samples. The expression levels are displayed as ratios of *PCDH17* and *GAPDH*. N.D., not detectable.

Supplemental Figure S5.

Relationship between *PCDH17* methylation and expression levels. Closed triangles: ALL patient samples; open triangles: ALL cell line samples

Tables

		CDH1 m	ethylation		PCDH8 methylation			PCDH17 methylation		
		positive	negative	р -	positive	negative	р	positive	negative	. p
Methylation status		25	15		22	18		12	28	
Age (year)	10< >10	21 4	14 1	0.369	18 4	17 1	0.24	10 2	25 3	0.851
Gender	male female	17 8	4 11	0.011	15 7	6 12	0.028	7 5	14 14	0.628
WBC (x10 ⁹ /L)	>50 <50	9 16	2 13	0.116	9 13	2 16	0.038	6 6	5 23	0.047
t(4;11)	yes no	3 22	0 15	0.233	3 19	0 18	0.156	2 10	1 27	0.209
t(12;21)	yes no	3 22	1 14	0.516	2 20	2 16	0.617	2 10	2 26	0.346
Steroid response	good poor	21 4	14 1	0.369	18 4	17 1	0.24	9 3	26 2	0.149
IKZF1 mutation	yes no	3 22	0 15	0.232	3 19	0 18	0.156	1 11	2 26	0.668
Relapse	no yes	14 11	11 4	0.273	12 10	13 5	0.25	4 8	21 7	0.017
Outcome	alive death	18 7	11 4	0.613	15 7	14 4	0.377	6 6	23 5	0.047

TABLE 1. Relationship between methylation status of cadherin superfamily genes at diagnosis and clinical characteristics of patients with BCP ALL

TABLE 2. Univariate and multivariate ana									
	Relapse				Overall survival				
	Univariate analysis		Multivariate analysis		Univariate analysis		Multivariate analysis		
	HR (95% CI)	р	HR (95% CI)	р	HR (95% CI)	р	HR (95% CI)	р	
WBC ($<50 \times 10^9$ /L / $\ge 50 \times 10^9$ /L)	1.09 (0.346-3.43)	0.885	—	> 0.1	1.75 (0.511-5.974)	0.373	—	> 0.1	
Age (<10 years / \geq 10 years)	1.04 (0.917-1.17)	0.57	—	> 0.1	2.01 (0.434-9.329)	0.372	-	> 0.1	
Steroid response (good / poor)	1.36 (0.306-6.016)	0.69	—	> 0.1	1.69 (0.364-7.81)	0.505	-	> 0.1	
t(4;11) (negative / positive)	1.04 (0.136-7.902)	0.971	_	> 0.1	1.57 (0.20-12.27)	0.669	-	> 0.1	
t(12;21) (negative / positive)	0.51 (0.067-3.908	0.52	_	> 0.1	_*	-	_*	-	
IKZF1 mutation (negative /posotive)	2.14 (0.482-9.511)	0.317	-	> 0.1	1.03 (0.132-8.082)	0.975	-	> 0.1	
PCDH17 methylation (negative / positive)	3.85 (1.39-10.64)	0.001	5.23 (1.355-20.19)	0.016	5.05 (1.334-19.090)	0.017	8.22 (1.484-45.53)	0.016	
PCDH8 methylation (negative / positive)	1.74 (0.593-5.085)	0.313	—	> 0.1	1.53 (0.447-5.213)	0.5	-	> 0.1	
CDH1 methylation (negative / positive)	1.75 (0.558-5.507)	0.337	—	> 0.1	1.07 (0.314-3.67)	0.901	-	> 0.1	
*: This analysis was excluded because all p									