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Abstract

Calcitonin gene-related peptide (CGRP) is a bioactive peptide produced by
alternative splicing of the primary transcript of the calcitonin/CGRP gene. CGRP is
largely distributed in the cardiovascular and nervous systems, where it acts as a
regulatory factor. CGRP is also expressed in organs and tissues involved in metabolic
regulation, including white adipose tissue (WAT), where its function is largely
unknown. In this study, we examined the effects of endogenous CGRP on metabolic
function. When we administered a high-fat diet to CGRP knockout (CGRP-/-) and
wild-type (WT) mice for 10 weeks, we observed that food intake did not differ between
the two groups, but body weight and visceral fat weight were significantly lower in
CGRP-/- mice. Fatty liver changes were less severe in CGRP-/- mice, which also
showed lower serum insulin and leptin levels. Glucose tolerance and insulin sensitivity
were better in CGRP-/- than WT mice, and expired gas analysis revealed greater oxygen
consumption by CGRP-/- mice. Adipocyte hypertrophy was suppressed in CGRP-/-
mice, while expression of [3-adrenergic receptor, hormone-sensitive lipase and
adiponectin was enhanced. Isoproterenol-induced glycerol release from WAT was
higher in CGRP-/- than WT mice, and CGRP-/- mice showed elevated sympathetic
nervous activity. B receptor-blockade canceled the beneficial effects of CGRP deletion
on obesity. These results suggest that, in addition to its actions in the cardiovascular
system, endogenous CGRP is a key regulator of metabolism and energy homeostasis in

vivo.
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Abbreviations

CGRP: Calcitonin gene-related peptide
AM: Adrenomedullin

CGRP-/-: CGRP knockout mice

WT: Wild-type mice

WAT: White adipose tissue

VO,: Oxygen consumption

VCO,: Carbon dioxide output

RER: Respiratory exchange ratio
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Introduction

Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide produced by
alternative splicing of the primary transcript of the calcitonin/CGRP gene (1). CGRP is
expressed primarily in motor and sensory neurons in both the central and peripheral
nervous systems and has been shown to exert a variety of effects within the
cardiovascular system (2), including vasodilation and positive inotropic effects on the
heart (3). CGRP is also widely distributed in the digestive tract, lungs, kidney, liver and
adipose tissue (4,5), where it exerts various effects in addition to those affecting
cardiovascular function (6-9). Associations between CGRP and human diseases,
including hypertension (10), Raynaud's disease (11), coronary (12) and cerebral artery
spasm (13) and migraine (14), have also been reported.

To investigate the pathophysiological actions of endogenous CGRP, we generated
CGRP-specific knockout mice (CGRP-/-) using a targeting DNA construct that replaced
exon 5, which encodes a CGRP-specific region of the gene (15). In these mice, only
CGREP is deleted; levels of calcitonin expression remain normal. At a glance, CGRP-/-
mice develop normally, with no obvious growth retardation or body mass change.
However, closer observation reveals that blood pressure, heart rate and sympathetic
nervous system activity are all higher in CGRP-/- than wild-type (WT) mice (15).
CGRP-/- mice also show more severe damage in organ injury models, as CGRP
modulates cytokine expression and prevents endothelial cell apoptosis (16) and fibrosis
(17). More recently, we reported that endogenous CGRP protects against neointimal
hyperplasia in a vascular injury model by suppressing vascular smooth muscle
proliferation (18). These data clearly show that endogenous CGRP is an important
mediator of organ homeostasis within the cardiovascular and nervous systems.

Based on its structural homology and similar vasodilatory effects, CGRP has been
classified as an adrenomedullin (AM) family peptide. We and others recently reported

that, in addition to its cardiovascular effects, AM is an important regulator of
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metabolism (19,20), and CGRP appears to similarly contribute to metabolic regulation.
For example, CGRP is reportedly involved in regulating glucose metabolism (21),
insulin sensitivity (22) and appetite (23). Interestingly, an earlier report showed that
levels of CGRP are elevated in obese humans (24,25) and animals (26), and it was
suggested that CGRP may contribute to metabolic diseases as it does to cardiovascular
diseases. However, the pathophysiological importance of CGRP to metabolic disease
remains unclear. In the present study, therefore, we investigated the function of
endogenous CGRP in the metabolic system by chronically challenging WT and

CGRP-/- mice with a high-fat diet and analyzing the phenotypes that emerge.
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Materials and methods
Animals

CGRP and calcitonin are encoded by the same gene. To avoid the effects of
calcitonin deficiency, we generated CGRP-/- mice using a targeting DNA construct that
replaced exon 5 of the gene, which encodes a CGRP-specific region (15). C57BL/6 pure
background male mice were used. The mice were maintained under specific
pathogen-free conditions in an environmentally controlled (12-h light, 12-h dark cycle;
room temperature, 22 + 2 °C) room. All experiments were performed at the Division of
Laboratory Animal Research, Department of Life Science, Research Center for Human
and Environmental Sciences, Shinshu University. All animal experiments were

conducted in accordance with the ethical guidelines of Shinshu University.

Measurement of food intake

Mice were kept on either on normal diet (4.7% energy as fat) or high-fat diet (32%
energy as fat) fat (Clea Japan, Inc., Tokyo, Japan). To measure food intake, mice were
housed separately in regular cages with a food intake measuring device (Shinfactory,
Fukuoka, Japan). After allowing the mice to acclimate for at least 24 h, food intake was

measured over a period of 24 h.

Expired gas analysis

Expired gas was analyzed using a Columbus Instruments Oxymax system
(Columbus Instruments, Columbus, OH). Mice were housed individually in plastic
chambers with unlimited access to food and water. After allowing the mice to acclimate
to the chambers for 48 h, measurements were begun. O, consumption (VO;), CO;
output (VCQOy), respiratory exchange ratio (RER) and energy expenditure were recorded

every 10 min for 48 h under a 12-h light-dark cycle at a room temperature of 22 + 2 °C.
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RNA extraction and quantitative real-time RT-PCR

Total RNA was extracted from tissues using TRIZOL Reagent (Invitrogen,
Carlsbad, CA), after which the sample was treated with DNA-Free (Ambion, Austin,
TX) to remove contaminating DNA and subjected to reverse transcription using a High
Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA).
Quantitative real-time RT-PCR was carried out using an Applied Biosystems 7300 real
time PCR System (Applied Biosystems) with SYBR green (Toyobo, Osaka, Japan) or
Realtime PCR Master Mix (Toyobo). Values were normalized to mouse GAPDH
(Pre-Developed TagMan assay reagents, Applied Biosystems). Primers are listed in

Table 1.

Glucose and insulin tolerance tests

For the oral glucose tolerance test (OGTT), mice were fasted for 16 h and then fed
1 g/kg glucose (Wako, Tokyo, Japan). Blood glucose was measured 0, 15, 30, 60 and
120 min after the glucose load. Serum insulin concentrations were measured using an
enzyme-linked immunosorbent assay (ELISA) kit (Shibayagei, Gunma, Japan). For the
insulin tolerance test (ITT), mice were fasted for 2 h, after which 1.5 U/kg human
insulin (Humulin R, Eli Lilly Japan, Hyogo, Japan) was injected intraperitoneally.

Blood glucose was then measured 0, 15, 30, 60 and 120 min after the injection.

Histology

White adipose tissue (WAT) and the liver were excised from each mouse, fixed in
4% paraformaldehyde for 24 h and embedded in paraffin. The tissues were then cut into
5-um sections, which were stained with hematoxylin-eosin (HE) and/or Masson
trichrome (MT). For F4/80 immunohistochemical analysis, sections were incubated
with rat anti-mouse F4/80 antibody (Thermo Fisher Scientific, Waltham, MA). The

distribution of adipocyte sizes was evaluated using BIOREVO BZ-9000 BZ-HI
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measurement software (KEYENCE, Osaka, Japan).

Urinary catecholamine levels

To determine the urinary levels of a norepinephrine metabolite, normetanephrine,
mice were housed in individual metabolic cages. After 3 days, a small amount of 6 N
HCI was added to the beaker placed in the cage, and the acidic urine was collected for
the next 24 h. Urinary normetanephrine concentrations were then measured by a

subcontractor (SRL, Tokyo, Japan).

Open field test

The apparatus consisted of an empty bright open-field arena surrounded by walls
(45 x 45 x 40 cm). Twice each day, mice were individually placed in the center of the
apparatus, which initiated a 10-min test session. Mouse behavior was recorded and
analyzed using a SMART (Spontaneous Motor Activity Recording & Tracking) v. 3.0

software system (Panlab, Barcelona, Spain).

Primary adipocyte lipolysis activity

Equal amounts of epididymal WAT from WT and CGRP-/- mice were incubated
in DMEM containing 2% fatty acid-free BSA and 10 uM isoproterenol. The tissue was
incubated for 3 h at 37°C under a 5% CO; atmosphere, during which 10 ul of medium
were extracted at 1-h intervals. The collected samples were incubated for 5 min at 37°C
after adding free glycerol reagent. The absorbance at 540 nm was then measured and

compared to absorbances obtained with glycerol standard solutions.

Western blotting
Mice were fasted overnight and injected 1.25 U/kg insulin or saline via the tail vein.

Five minutes after the injection, WAT was excised, lysed in ice-cold RIPA Lysis Buffer
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System (Santa Cruz Biotechnology, Dallas, TX) supplemented with PosSTOP
phosphatase inhibitor (Roche Applied Science, Penzberg, Germany) and then sonicated.
The resultant lysates were subjected to electrophoresis using TGX gel (Bio-Rad),
transferred to PVDF membranes (Bio-Rad) and probed using antibodies against AMPK,
phospho-AMPK  (p-AMPK, Thr'”®), HSL and phospho-HSL (p-HSL, Ser’®) (Cell
Signaling Technology, Danvers, MA). Anti-B-tubulin antibody (Santa Cruz
Biotechnology) served as a loading control. The bound antibodies were visualized using
chemiluminescent HRP substrate (Merck Millipore, Billerica, MA), and the
chemiluminescence was analyzed using an Image Quant LAS 4000 system (GE

Healthcare, Little Chalfont, UK).

B blocker administration.

Propranolol (AstraZeneca, London, UK), a non-selective f-adrenergic receptor
antagonist was dissolved in 0.5% methylcellulose. CGRP-/- mice on a high-fat diet
were orally administered either propranolol (30 mg/kg/day) or control vehicle in their
drinking water for 8 weeks, beginning when they were 8 weeks old. Body weights were

measured weekly.

Statistical analysis

Values are expressed as means = SEM. Student’s t test, two-way ANOVA or
Chi-squared test was used to determine significant differences. For the analysis of
energy expenditure, we used ANCOVA analysis (27). All analyses were performed

using SPSS software (v.18). Values of P < 0.05 were considered significant.
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Results
CGRP-/- mice show resistance to weight gain without a change of appetite

We initially explored changes in the body weights of WT and CGRP-/- mice on
normal and high-fat diets. The body weights of the mice were measured weekly for 10
weeks. When on a normal diet (4.7% energy as fat), the two groups exhibited similar
weight gains from 8 to 18 weeks of age. CGRP-/- mice tended to have lower body
weights than WT mice, but the difference was not significant (Fig. 1A). On a high-fat
diet (32% energy as fat), both WT and CGRP-/- mice had higher body weights than
mice on a normal diet, but the weight gains were clearly smaller in CGRP-/- than WT
mice (Fig. 1B).

The difference in weight gain did not appear to reflect a difference in appetite or
food intake, which were similar in WT and CGRP-/- mice on a high-fat (Fig. 2B) or
normal diet (Fig. 2A). Furthermore, quantitative real-time PCR analysis of expression
of several key orexigenic (neuropeptide Y (NPY) and agouti-related protein (AgRP))
and anorexigenic (pro-opiomelanocortin (POMC) and cocaine-amphetamine-related
transcript (CART)) neuropeptides in the hypothalami of WT and CGRP-/- mice on a

high-fat diet revealed no significant difference (Fig. 2C).

CGRP-/- mice showed elevated O, consumption

To gain information about general energy metabolism, we analyzed the expired
gas from WT and CGRP-/- mice on normal diet (Fig. 3A-D) and high-fat diet (Fig.
3E-H). When fed a normal diet, CGRP-/- mice showed higher VO, and VCO, than WT
mice (Fig. 3A and B). On a high-fat diet, the difference became even more apparent,
with CGRP-/- mice exhibiting markedly higher VO, and VCO, than WT mice (Fig. 3E
and F). There was no significant difference in the respiratory exchange ratio (RER) (Fig.

3C, G). Energy expenditure showed tendency of higher levels in CGRP-/- mice,

10
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whether on a normal (Fig. 3D) or high-fat diet (Fig. 3H). CGRP-/- showed significantly

higher energy expenditure/lean body mass under high fat diet (Supplementary Figure 1).

Glucose metabolism was enhanced in CGRP-/- mice

Because CGRP-/- mice resisted weight gain and showed changes in the expired
gas, we next evaluated glucose and other metabolic parameters in WT and CGRP-/-
mice after 10 weeks of high-fat diet. CGRP-/- mice showed better tolerance to a glucose
load. This was apparent at nearly all time points tested during oral glucose tolerance
tests (OGTT; Fig. 4A). Combined with the results of insulin tolerance tests (ITT; Fig.
4B), these data show that glucose metabolism was enhanced in CGRP-/- mice. On the
other hand, the OGTT and ITT results were not significantly different between WT and
CGRP-/- on normal diet (Supplementary Fig. 2), suggesting that the enhanced glucose
metabolism in CGRP-/- becomes apparent only under the high-fat diet. Consistent with
their resistance to body weight gains, the serum concentrations of insulin and the
adipocyte-derived hormone leptin were significantly lower in CGRP-/- than WT mice
(Fig. 4C and D). On the other hand, serum concentrations of triglyceride (TG), free fatty
acid (FFA) and total cholesterol (TC) were similar in the two groups (Fig. 4E). These
results demonstrate that glucose tolerance and insulin handling are enhanced in

CGRP-/- mice on a high-fat diet, as compared to WT mice on the same diet.

Adipocyte hypertrophy and fatty liver changes were suppressed in CGRP-/- mice
Consistent with their resistance to weight gain while on a high-fat diet, CGRP-/-
mice had less white adipose tissue (WAT) than WT mice (Fig. 5A). CGRP-/- also
showed lower lean body mass weight after the high-fat diet (Fig. 5B). Analysis of the
size distribution of adipocytes in WAT revealed that they skewed toward smaller sizes
in CGRP-/- mice (upper panel of Fig. 5C and Fig. 5D). In obesity, adipocyte

hypertrophy is accompanied by chronic adipose inflammation. In WT mice, the WAT

11
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was infiltrated by large numbers of macrophages, but this infiltration was suppressed in
CGRP-/- mice (lower panel of Fig. 5C).

The high-fat diet also resulted in development of a fatty liver. However, liver
weights were significantly lower in CGRP-/- than WT mice (Fig. 5E), with fewer
lipid-containing vacuoles (Fig. SF upper panel). In addition, Masson trichrome staining
showed that fibrotic changes at perivascular lesions were also suppressed in CGRP-/-

mice (Fig. SF lower panel).

Upregulated expression of lipolysis-related genes in WAT from CGRP-/- mice on a
high-fat diet

To further examine the mechanism underlying the resistance to adipocyte
hypertrophy and obesity in CGRP-/- mice, we used quantitative real-time PCR to assess
gene expression in WAT from mice fed a high-fat diet for 10 weeks. We found that
expression of genes associated with lipolysis, including hormone-sensitive lipase (HSL),
comparative gene identification-58 (CGI-58), perilipin and p3-adrenergic receptor
(B3AR), were all significantly upregulated in CGRP-/- mice. In particular, levels of
B3AR expression were increased several-fold as compared to WT mice (Fig. 6A). The
expression of adiponectin (Fig. 6B) and peroxisome proliferator-activated receptors
(PPARs) (Fig. 6C) was also significantly elevated in CGRP-/- mice, which may account
for the smaller, well-functioning adipocytes in CGRP-/- WAT, even in mice on the
high-fat diet. Interestingly, expression of mitochondria-related genes, including
mitochondrial transcription factor A (TFAM), estrogen related receptor alpha (ERRa)
and cytochrome C oxidase (COX IV), was significantly higher in CGRP-/- than WT
mice (Fig. 6D). Similarly, expression of several lipolysis and mitochondria-related
genes was also significantly upregulated in WAT from mice fed a normal diet
(Supplementary Fig. 3).

The expressions of brown adipose tissue (BAT) markers in BAT and beige-ing

12



294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

320

associated genes in WAT were not different between WT and CGRP-/-
(Supplementary Fig. 4), suggesting that the metabolic alteration in CGRP-/- mice could
mainly be attributed to WAT, but not to either BAT or beige adipose tissue.

HSL plays the central role in lipolysis in WAT, and activation of AMP-activated
protein kinase (AMPK) can modulate adipocyte metabolism by upregulating pathways
that favor energy dissipation versus lipid storage in WAT. We used Western blotting to
examine phosphorylation of HSL on Ser563 and AMPK on Thr172. Phosphorylation of
HSL and AMPK showed tendency of elevation in WAT from CGRP-/- mice (Fig. 6E,
F).

These results collectively suggest that lipolysis is elevated in CGRP-/- mice, which

may explain the resistance to adipocyte hypertrophy and obesity.

Ability to release glycerol is preserved in CGRP-/- mice on a high-fat diet

We next examined the ability of WAT from WT and CGRP-/- mice to release
glycerol in vitro. Epididymal WAT was collected from mice and incubated in culture
medium containing 10 pM isoproterenol. Glycerol released into the medium was then
measured at 1 h intervals for 3 h. In WT mice, the ability to release glycerol was
significantly reduced by a high-fat diet as compared to a normal diet (Fig. 7 left). On the
other hand, glycerol release was preserved in CGRP-/- mice, even on the high-fat diet.

(Fig. 7 right).

Elevated sympathetic nerve activity and locomotor activity in CGRP-/- mice

CGRP is known to contribute to the regulation of cardiovascular function through
inhibitory modulation of sympathetic nervous activity (15). To assess sympathetic nerve
activity of WT and CGRP-/- mice, we measured urinary levels of normetanephrine, a
catecholamine metabolite, and found that normetanephrine excretion was significantly

higher in CGRP-/- than WT mice (Fig. 8A). This suggests that sympathetic nervous

13
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activity is augmented in CGRP-/- mice.

We assessed locomotor activity by placing mice in the center of an empty bright
open field arena surrounded by walls. Recording their movement for 10 min revealed
that CGRP-/- mice traveled significantly longer distance than WT mice (Fig. 8B).
Apparently, CGRP-/- mice are more active than WT mice.

We tested whether the body weight difference between WT and CGRP-/- mice
could be canceled by suppressing the elevation in sympathetic nervous activity. When
propranolol, a non-selective  blocker, was administered during the high-fat diet, the
body weight difference between WT and CGRP-/- mice disappeared (Fig. 8C). The
significant differences in VO, and VCO; on the high-fat diet were also canceled by the
B blocker (Supplementary Fig. 5). We also analyzed the gene expression in WAT from
mice fed a high-fat diet with oral administration of the  blocker, and found that the
difference between CGRP-/- and WT was canceled by the B blocker (Supplementary
Fig. 6).

14
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Discussion

Our main findings in this study are that CGRP-/- mice are protected from high-fat
diet-induced obesity and display improved glucose handling and insulin sensitivity.
CGRP-/- mice also showed elevated oxygen consumption and carbon dioxide output.
Consistent with the resistance to weight gain, CGRP-/- mice had less fat mass and lower
liver weights than WT mice, with less adipocyte hypertrophy and fatty liver changes
than WT mice. In the WAT from CGRP-/- mice, expression of genes related to lipolysis
and mitochondria was elevated, and glycerol release was preserved, even in mice on a
high-fat diet. In addition, sympathetic nerve activity and locomotor activity were both
elevated in CGRP-/- mice. These findings clearly show that endogenous CGRP plays
pivotal roles in metabolic regulation.

Using a different knockout mouse line, Walker et al. also reported that while on a
high-fat diet, CGRP-/- mice had lower body weights than WT mice (5). Focusing on
metabolic changes in the liver and skeletal muscle, they observed increased hepatic
activity of the P-oxidation marker 3-hydroxyacyl coenzyme A dehydrogenase in
CGRP-/- mice fed a high-fat diet, and lower expression and activation of acetyl
coenzyme A carboxylase, an enzyme involved in lipogenesis. In CGRP-/- skeletal
muscle, activation of AMPK was elevated, as was the activity of the mitochondrial
marker citrate synthase. However, because obesity involves enlargement of visceral fat
and chronic adipose inflammation, in this study, we focused on changes in WAT.
CGRP-/- mice showed suppressed adipocyte hypertrophy and macrophage infiltration.
Thus expression levels of genes associated with lipolysis and adipocyte differentiation
as well as mitochondria-related genes were all significantly elevated in CGRP-/- WAT.
In addition, HSL and AMPK, which promote lipolysis and energy dissipation in WAT
(28), were also more activate in CGRP-/- WAT.

CGRP is expressed in sensory C and Ad-fibers via activation of transient receptor

potential vanilloid 1 (TRPV1) (29). Interestingly, the phenotype of TRPV1 knockout
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mice (TRPV1-/-) resembles that of CGRP-/- mice, in that TRPV1-/- mice are also
protected from diet-induced obesity (30). On an 11% fat diet, TRPV1-/- mice gained
significantly less adiposity than WT mice, despite equivalent energy intake. The precise
mechanism by which TRPV1 influences energy and lipid handling is unclear, but it has
been suggested that TRPV1 contributes to the regulation of adipocyte function. TRPV1
triggers release of neuropeptides from sensory nerve terminals innervating fatty tissues
(30). This suggests the resistance to obesity and adiposity exhibited by TRPV1-/- mice
could be, at least in part, explained by decreased release of CGRP.

Our results differ from those of Danaher et al., who reported that exogenous
administration of CGRP evoked lipolysis through elevation of fatty-acid p-oxidation
and AMPK signaling both in vitro and in vivo (31). It may be that effects of exogenous
CGRP administration do not reflect the physiologically significant effects on metabolic
processes revealed by manipulating endogenous CGRP. Carter et al. reported that
CGRP-expressing neurons in the outer external lateral subdivision of the parabrachial
nucleus, which project to the laterocapsular division of the central nucleus of the
amygdala, form a functionally important circuit for suppressing appetite (23). Lutz et al.
reported that intracerebroventricular injection of CGRP(8-37), a CGRP antagonist,
increased food intake (32). These findings suggest CGRP exerts anorectic effects within
the central nervous system. However, because CGRP is produced by various tissues
other than central nervous system and functions as a circulating hormone as well as a
neurotransmitter, the CGRP-/- mouse is a suitable model for evaluating the total effect
of endogenous CGRP on food-intake. Walker et al. reported that food intake was
increased in CGRP-/- mice on a high-fat diet (5). In the present study, by contrast, we
detected no difference of food-intake between CGRP-/- and WT mice, whether on a
high-fat or normal diet. We also confirmed that there was no difference in hypothalamic
levels of orexigenic or anorexigenic neuropeptides between the two groups. A key

difference between the present study and that of Walker et al. was the high-fat diet
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regimen. Those investigators observed increased food intake only by CGRP-/- mice on
a 60% fat diet, whereas our high-fat diet contained 32% fat. In addition, they analyzed
total food-intake during a study period of 42-224 days, whereas we evaluated daily
food-intake for 10 weeks. Thus both the content and feeding period differed between
the two studies, which could affect the phenotype of CGRP-/- mice. Consistent with that
idea, Walker et al. reported severe fatty liver changes with serum alanine transaminase
(ALT) levels of up to 300 U/L in WT mice and 100 U/L in CGRP-/- mice (5). In our
model, by contrast, ALT was elevated to about 80 U/L in both groups (data not shown).

Although the metabolic functions of CGRP have been reported, its role in insulin
sensitivity remains controversial, and previous studies ascribed both pro- and
anti-diabetic actions to CGRP (33). In streptozotocin-induced diabetic rats, for example,
CGRP-immunoreactive nerves were markedly increased in the epidermis and dermis
from an early stage, implicating altered in CGRP in the initial stages of diabetes (34).
Leighton et al. reported that CGRP is a potent inhibitor of both basal and
insulin-stimulated rates of glycogen synthesis in skeletal muscle in vitro (22), while
Molina et al. reported that intravenous infusion of CGRP caused insulin resistance in
vivo (35). On the other hand, Sun et al. reported that intramuscular transfer of CGRP
gene suppressed pro-inflammatory Thl subsets and promoted anti-inflammatory Th2
subsets, which ameliorated 3 cell destruction in streptozotocin-induced diabetes (36). In
the present study, we found that CGRP deletion reduced hyperinsulinemia and
improved glucose tolerance and insulin sensitivity in mice on a high-fat diet. These
results suggest endogenous CGRP exerts negative metabolic effects in obesity.

The loss of CGRP’s effect on sympathetic nerve activity may also contribute to
the metabolic changes seen in CGRP-/- mice. We previously reported that CGRP-/-
mice showed elevated blood pressures and heart rates, and suggested that CGRP acts to
inhibit sympathetic effects on cardiovascular function (15). In the present study, we

observed that urinary normetanephrine excretion was increased in CGRP-/- mice, which
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also displayed hyperactivity in an open field test. These observations are consistent with
the idea that sympathetic nervous activity is increased in CGRP-/- mice. It is thus
noteworthy that propranolol, a B blocker that inhibits sympathetic nerve activity,
eliminated the difference in weight gain between WT and CGRP-/- mice on high-fat
diet. The significant differences in VO,, VCO, and the gene expression in WAT on the
high-fat diet were also canceled by B blocker. We therefore also suggest that CGRP
contributes to the regulation of metabolism through inhibitory modulation of
sympathetic nervous activity.

At a glance, our results suggest CGRP blockade could be useful in the treatment of
obesity; however, its varied effects in multiple organs and tissues may make its use
complicated. Very recently, Nilsson et al. reported that a long acting (half-life >10 h)
CGRP analogue improved metabolic conditions in ob/ob mice and diet-induced obese
rats (37). In the future, studies using conditional or inducible gene-edited mice may help
further our understanding of the pathophysiological functions of CGRP in metabolic
diseases and provide novel therapeutic approaches targeting this attractive molecule.

In summary, we found that CGRP-/- mice were protected from high-fat
diet-induced obesity and displayed enhanced glucose metabolism. In CGRP-/- mice,
adipocyte hypertrophy was suppressed by elevated lipolysis and sympathetic nervous
activity. Our findings clearly show that endogenous CGRP is a key regulator of
metabolism, and could be a novel therapeutic target in metabolic and cardiovascular

diseases.
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Figure Legends

Figure 1. Comparison of body weights between WT and CGRP-/- mice on a normal
diet (4.7% energy as fat) (A) and high-fat diet (32% energy as fat) (B) from 8 to 18
weeks of age. n = 5 in both groups. Body weights were measured weekly and
expressed as the mean + SEM. Statistical significance was analyzed using two-way
ANOVA. ***¥pP<(0.001. Experiments were repeated 4 times and similar results were

obtained each time.

Figure 2. Food intake and levels of hypothalamic neuropeptides regulating appetite did
not differ between CGRP-/- and WT mice. A, B Comparison of food intake per day
between WT and CGRP-/- mice on either a normal diet (A) or high-fat diet (B). n =35 in
each group. Bars are the mean £ SEM. C, Quantitative real-time PCR analysis showing
expression of the key hypothalamic orexigenic (neuropeptide Y (NPY) and
agoutirelated protein (AgRP)) and anorexigenic (pro-opiomelanocortin (POMC) and
cocaine-amphetamine-related transcript (CART)) neuropeptides in WT and CGRP-/-

mice on a high-fat diet. n = 15 in each group. All values are expressed as mean + SEM.

Figure 3. Expired gas analysis in WT and CGRP-/- mice on normal diet (A-D) or
high-fat diet (E-H). Studies were performed under a 12-h light and 12-h dark cycle at a
room temperature of 22 + 2 °C. Oxygen consumption (VO;) (A, E), CO;, production
(VCO,) (B, F), respiratory exchange ratio (RER) (C, G), and energy expenditure (D, H)
were compared between WT and CGRP-/- mice. Means of these parameters for all day
and the light and dark portions of the day are shown. n =5 in each group. All values are

expressed as the mean £ SEM. *P<(0.05, **P<0.01, ***P<0.001 vs. WT.

Figure 4. Analysis of metabolism in WT and CGRP-/- mice after 10 weeks on a

high-fat diet. A, B, Mice were subjected to oral glucose tolerance tests (OGTT) (A) and
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insulin tolerance tests (ITT) (B) after 10 weeks on a high-fat diet. Area under the curve
(AUC) data of OGTT and ITT were also calculated. For OGTT, 1 g/kg glucose was
administered after fasting 16 h. For ITT, 1.5 U/kg insulin was intraperitoneally injected
after fasting for 2 h. n =5 in each group. All values are expressed as the mean + SEM.
Statistical significance was analyzed using repeated-measures ANOVA. *P<0.05. C, D,
Serum insulin concentration (C) and leptin levels (D) after fasting overnight. n =15 in
each group. Bars depict means + SEM. Statistical significance was analyzed using
unpaired Student’s t test. *P <0.05, **P <0.01. E, Serum level of triglyceride (TG), free
fatty acid (FFA) and total cholesterol (TC) after fasting overnight. n = 5 in each group.

Bars depict means + SEM.

Figure 5. Pathological analysis of WT and CGRP-/- mice after 10 weeks of a high-fat
diet. A, Comparison of weights of epididymal, mesenteric, perirenal and subcutaneous
white adipose tissue (WAT) between WT and CGRP-/- mice. n = 5 in each group.
*P<0.05. B, Comparison of body weight, lean body mass weight and fat mass weight
between WT and CGRP-/- mice. Data are shown as the ratio between WT and CGRP-/-
mice, and WT was assigned a value of 1. n =5 in each group. **P<0.01, **P<0.001 vs.
WT. C, Hematoxylin-eosin (HE) staining and F4/80 immunostaining of WAT sections.
Scale bars = 100 um. D, Adipocyte size distribution in sections of epididymal WAT. n
=5 in each group. All values are expressed as a percentage £ SEM. ***P<(0.001 vs. WT
using Chi-squared test. E, Comparison of liver weights between WT and CGRP-/- mice
after high-fat diet. F, HE (upper panel) and Masson trichrome (MT) (lower panel)

stained liver samples from WT and CGRP-/- mice. Scale bars = 100 um.

Figure 6. Elevation of lipolysis-related factors in WAT from CGRP-/- mice on a

high-fat diet. A-D, Expression of genes associated with lipolysis (A), adiponectin (B),

and adipocyte differentiation (C), and mitochondria-related genes (D) in WAT. WT and
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CGRP-/- mice were fed a high-fat diet for 10 weeks. n = 5 in each group. Expression
levels in CGRP-/- were normalized to WT, which was assigned a value of 1. B3AR:
3-adrenergic receptor, HSL: hormone-sensitive lipase, CGI-58: comparative gene
identification-58, AdPLA2: adipose phospholipase A2, PPAR: peroxisome proliferator
activated receptor, TFAM: mitochondrial transcription factor A, ERRa: estrogen related
receptor alpha, COX IV: cytochrome C oxidase, UCP: uncoupling protein. All values
are expressed as the mean = SEM. Statistical significance was analyzed using unpaired
Student’s t test. *P< 0.05, ** P < 0.01 vs. WT. E, Phosphorylation of AMP kinase
(p-AMPK) (upper panels) and HSL (p-HSL) (lower panel) was analyzed in WAT from
mice on a high-fat diet for 10 weeks. WAT was extracted and processed for Western
blot analysis. B-tubulin was used as a loading control. Blots are representative of 3
experiments. F, Result of the densitometry analysis of the Western blotting. Bars depict

means £ SEM.

Figure 7. Preserved lipolysis in WAT of CGRP-/- mice on a high-fat diet. WAT was
excised from WT (left) and CGRP-/- (right) mice on a high-fat or normal diet for 10
weeks. Glycerol release from the excised WAT was measured in vitro by adding 10 pM

isoproterenol at 1 h intervals for 3 h. n =5 in each group. ** P <0.01 vs. WT.

Figure 8. Sympathetic nervous activity was elevated in CGRP-/- mice. A, Urinary
catecholamine (normetanephrine) excretion in mice on a normal diet was significantly
higher in CGRP-/- than WT mice. n =12 in each group. Bars depict means + SEM.
Statistical significance was analyzed using unpaired Student’s t test. *P <0.05 vs. WT.
B, Open field test comparing the activity levels of CGRP-/- and WT mice after 10
weeks on a high-fat diet. Shown is the total distance traveled in 10 min in during open
field tests. n =12 in each group. Bars depict means = SEM. Statistical significance was

analyzed using unpaired Student’s t test. **P <0.01 vs. WT. C, Comparison of body
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660  weight between WT and CGRP-/- mice on a high-fat diet with oral administration of a §
661  blocker (propranolol). The data of CGRP-/- mice administered control vehicle is also

662 shown.
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Table 1. Primers used for quantitative real-time PCR

Gene Primer

POMC Forward TGCCGAGATTCTGCTACAG
Reverse  TGCTGCTGTTCCTGGGGC

CART Forward CCCGAGCCCTGGACATCTA
Reverse = GCTTCGATCTGCAACATAGCG

NPY Forward ATGCTAGGTAACAAGCGAATG
Reverse = TGTCGCAGAGCGGAGTAGTAT

AgRP Forward TGTGTAAGCTGCACGAGTC
Reverse = GGCAGTAGCAAAAGGCATTG

B3AR Forward CAGTCCCTGCCTATGTTG
Reverse = TTCCTGGATTCCTFCTCT

HSL Forward TCACGCTACATAAAGGCTCGT
Reverse = CCACCCGTAAAGAGGGAACT

CGIS8 Forward CTACCTGGTGTCCCACGTCT

Reverse CAAGACCTCCTCCAAAACCA
Perilipin Forward CATCTCTACCCGCCTTCGAA

Reverse = TGCTTGCAATGGGCACACT
AdPLA2 Forward ATAACAGTCTTTCCTGGCTGGCCT

Reverse = TCCATTTCTGTGTACCCAGGCTGT
Adiponectin Forward AGGTTGGATGGCAGGC

Reverse GTCTCACCCTTAGGACCAAGAA

PPARa Forward GGGATTGTGCACGTGCTTAA
Reverse ~ TTTGGGAAGAGGAAGGTGTCA
PPARy Forward CCCAATGGTTGCTGATTACAAA
Reverse  AATAATAAGGTGGAGATGCAGGTTCT
PPARS Forward CCACAACGCACCCTTTGTC
Reverse ~ CCACACCAGGCCCTTCTCT
TFAM Forward GCTTGCTAAGATGATAGGATTCGT
Reverse  TCGTCCAACTTCAGCCATCTG
ERRa Forward GTACTGCAGAGTGTGTGGATGGA

Reverse TCTAGGACCAGGTCCTCAGCAA
COX 1V Forward GGTGGCCATCGAGACCAA
Reverse GGCGGAGAAGCCCTGAAT

UCP2 Forward GCGCCAGATGAGCTTTGC
Reverse  CCTTGGTGTAGAACTGTTTGACAGA
UCP3 Forward AACGCTCCCCTAGGCAGGTA
Reverse = CCCTCCTGAGCCACCATCT
UCP1 Forward CCCTGGCAAAAACAGAAGGA

Reverse = CCACACCAGGCCCCTTCTCT
PGC-1a Forward GGCACGCAGCCCTATTCA

Reverse = CGACACGGAGAGTTAAAGGAAGA
CIDEA Forward AAACCATGACCGAAGTAGCC

Reverse AGGCCAGTTGTGATGACTAAGAC
PKDM16 Forward CAGCACGGTGAAGCCATTC

Reverse  GCGTGCATCGCTTGTG

Cox7al Forward AAAGTGCTGCACGTCCTTG
Reverse TTCTCTGCCACACGGTTTTC
D2 Forward GATGCTCCCAATTCCAGTGT

Reverse TGAACCAAAGTTGACCACCA
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Supplementary Figure Legends
Supplementary Figure 1. Corrected energy expenditure (data of Figure 3H) by grams

of lean mass. All values are expressed as the mean + SEM.**P<0.01 vs. WT.

Supplementary Figure 2. Analysis of glucose metabolism in WT and CGRP-/- mice
after 10 weeks on a normal diet. A, B, Mice were subjected to oral glucose tolerance
tests (OGTT) (A) and insulin tolerance tests (ITT) (B). For OGTT, 1 g/kg glucose was
administered after fasting 16 h. For ITT, 1.5 U/kg insulin was intraperitoneally injected

after fasting for 2 h. n =5 in each group. All values are expressed as the mean + SEM.

Supplementary Figure 3. Expression of genes associated with lipolysis (A),
adiponectin (B) and adipocyte differentiation (C), as well as mitochondria-related genes
(D) in WAT from mice on a normal diet. Expression levels in CGRP-/- mice were
normalized to WT, which was assigned a value of 1. B3AR: B3-adrenergic receptor,
HSL: hormone-sensitive lipase, CGI-58: comparative gene identification-58, AAPLA2:
adipose phospholipase A2, PPAR: peroxisome proliferator activated receptor, TFAM:
mitochondrial transcription factor A, ERRa: estrogen related receptor alpha, COX IV:
cytochrome C oxidase, UCP: uncoupling protein. Bars depict means + SEM. Statistical
significance was analyzed using unpaired Student’s t test. n = 5 in each group. *P<0.05

vs. WT.

Supplementary Figure 4. A, Expression of brown adipose tissue (BAT) markers. WT



and CGRP-/- mice were fed a high-fat diet for 10 weeks and BAT was sampled for the
gene expression study. n = 5 in each group. Expression levels in CGRP-/- were
normalized to WT, which was assigned a value of 1. UCP1: uncoupling protein 1,
PGC-1a : peroxisome proliferator-activated receptor gamma coactivator 1-alpha,
CIDEA: Cell Death Inducing DFFA Like Effector A, PRDM16: PRD1-BF1-RIZ1
homologous domain containing 16, Cox7al: cytochrome c oxidase subunit 7al, D2:
type 2 iodothyronine deiodinase. All values are expressed as the mean + SEM.

B, Expression of beige-ing-related genes in white adipose tissue (WAT). WT and
CGRP-/- mice were fed a high-fat diet for 10 weeks and WAT was sampled for the gene
expression study. n = 5 in each group. Expression levels in CGRP-/- were normalized to

WT, which was assigned a value of 1.

Supplementary Figure 5. Expired gas analysis in WT and CGRP-/- mice on high-fat
diet with oral administration of a  blocker (propranolol) at 14 weeks-old. Oxygen
consumption (VO,) (A) and CO; production (VCO,) (B) were compared between WT
and CGRP-/- mice. Means of these parameters for all day and the light and dark
portions of the day are shown. n = 4 in each group. All values are expressed as the mean

+ SEM.

Supplementary Figure 6. Comparison of the gene expression in WAT from CGRP-/-
and WT mice on the high-fat diet with oral administration of the 3 blocker for 10 weeks.

A-D, Expression of genes associated with lipolysis (A), adiponectin (B), and adipocyte



differentiation (C), and mitochondria-related genes (D) in WAT. n = 5 in each group.
Expression levels in CGRP-/- were normalized to WT, which was assigned a value of 1.

All values are expressed as the mean + SEM.
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