On Weyl modules of cyclotomic ¢g-Schur algebras

Kentaro Wada

ABSTRACT. We study Weyl modules of cyclotomic g-Schur algebras. In par-
ticular, we give a character formula of the Weyl modules by using the Kostka
numbers and some numbers obtained from a generalization of Littlewood-
Richardson rule. We also study corresponding symmetric functions. Finally,
we give some simple applications to modular representations of the cyclotomic
g-Schur algebras.

0. Introduction

Let p.7, , be the Ariki-Koike algebra over a commutative ring R with param-
eters ¢, @1, - ,Qr € R associated to the complex reflection group &,, x (Z/rZ)",
and let .7, , be the cyclotomic ¢-Schur algebra associated to r.7%;, , introduced
by Dipper, James and Mathas in [DJM]. Put A = Z[q,¢"*,Q1, -+ ,Q,], where
q,Q1, - ,Q, are indeterminate, and K = Q(¢,Q1, -+ ,Q,) is the quotient field of
A.

In the case where r = 1, r97}, 1 is the Iwahori-Hecke algebra associated to the
symmetric group &,,, and r.#;,1 is the g-Schur algebra associated to g7, ;. In this
case, the g-Schur algebra r.7, 1 comes from the Schur-Weyl duality as follows. Let
gl,,, be the general linear Lie algebra, and U,(gl,,) be the corresponding quantum
group over KC. We consider the vector representation V' of U,(gl,,), then U,(gl,,)
acts on the tensor space V®" via the coproduct. x.7, 1 also acts on the tensor space
V@ by a g-analogue of the permutations of factors of the tensor product. Then the
Schur-Weyl duality between Uy (gl,,) and x.7, 1 holds via this tensor space V®"
as shown in [J]. Moreover, the Schur-Weyl duality between 4U,(gl,,) and 4.9, 1
also holds via the tensor space V®", where 4U,(gl,,) is the Lusztig’s integral form
of Uy(gl,,) (see [Du]). Hence, we can specialize this Shur-Weyl duality to any ring
R with a parameter ¢ € R*. Then the g-Schur algebra r.#, 1 coincides with the
image of rUy(gl,,) — End(V®") which comes from the action of pUy(gl,,) on V&

On the other hand, in the case where r > 2, the Schur-Weyl duality is also
known in [SakS]. Let g = gl,,, ®--- ® gl,, be a Levi subalgebra of gl,,, and
U,(g) be the corresponding quantum group over K. U,(g) acts on V®™ by the
restriction of the action of U,(gl,,). We can also define an action of x.7, , on V&
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which is a generalization of the action of x4, 1. Then U,(g) and k.74, , satisfy the
Schur-Weyl duality via the tensor space V®" as shown in [SakS]. Unfortunately,
this Schur-Weyl duality does not hold over A since the action of x.7%, , on V®" is
not defined over .A. However, we can replace x4, , with the modified Ariki-Koike
algebra R%OJ over R with parameters ¢,Q1,--- ,Q, such that Q; — Q; (i # j) is
invertible in R which was introduced in [Sho]. Then, the Schur-Weyl duality be-
tween rU,(g) and g%, holds via the tensor space V" (see [SawS]). Let .7},
be the image of rU,(g) — End(V®") which comes from the action of rU,(g) on
V®"_ Then some relations between RY,?J and g%, are studied in [Saw$S] and
[Saw]. In particular, RJ”,?J. is realized as a subquotient algebra of g.#, ,. Then,
some decomposition numbers of r.7, , coincide with the decomposition numbers
of g, (which are also decomposition numbers for rUq,(g)) when R is a field.
In [SW], we obtained a certain generalization of these results (see also Remark
5.7). Motivated by this generalization together with the Schur-Weyl duality be-
tween rU,(g) and Rf%’j?’m the author gave two presentations of .7, , (also 4%.r)
by generators and fundamental relations in [W]. By using this presentation, we
can define a (not surjective) homomorphism ®4 : Uy(g) = x%n,r. We also have
gl v, @) ¢ AU(@) = A4S by restriction. Thus we can specialize it to any
commutative ring R and parameters ¢, Q1. - ,Q, € R. In this paper, we study
RS n r-modules by restricting the action to rU,(g) when R is a field.

First, we consider the problem over K. In this case, x.7}, is semi-simple,
and finite dimensional U,(g)-modules are also semi-simple. Put A} = {\ =
(AW XY AR partition, S, [A®)| = n}, the set of r-partitions of size
n. Let W(A) be the Weyl module of x.%,, corresponding to A € A,J{’T. It is
well known that {W(X)|X € A} gives a complete set of non-isomorphic simple
k-Zn-modules. On the other hand, let W (A*)) be the Weyl module of U,(g!
with the highest weight A(*). By investigating the appearing weights, we see that
WAO)R-- BW(AM) | X € Al .} gives a complete set of non-isomorphic simple
Uq(g)-modules which appear as U,(g)-submodules of x.7, ,-modules through the
homomorphism ®,. Then we can consider the irreducible decomposition of the
Weyl module W () of .7}, as U,(g)-modules through the homomorphism @4 as
follows:

mp )

(0.1) W) = @ (W(u(l)) XX W(u(r))) F as U, (g)-modules.

pEAL

In order to compute the multiplicity By, in this decomposition, we describe the
U,(g)-crystal structure on W (A) by using a generalization of admissible reading for
U,(gl,,)-crystal given in [KN] (Theorem 2.15). As a consequence, we can com-
pute the multiplicity 5, by the combinatorial way which can be regarded as a
generalization of the Littlewood-Richardson rule (Corollary 3.8. See also Remark
3.9).

Thanks to the decomposition (0.1), we obtain the character formula of W (A)
by using Kostka numbers and multiplicities By, (A, u € A} ,) (Note that the weight
space as the .7, ,-module coincides with the weight space as the Uj,(g)-module
from the homomorphism ®4). We also describe the character of W(\) as a linear
combination of products of the Schur polynomials with coefficients 8y, (A, u €
Afw,). Moreover, we see that the set of characters of the Weyl modules for all
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r-partitions gives a new basis of the ring of symmetric polynomials (Theorem 4.3).
Then we also study on some properties for such symmetric functions.

Second, as an application of the decomposition (0.1), we have a certain fac-
torization of decomposition matrix of g.#;, , when R is a field (Theorem 5.5), and
we give an alternative proof of the product formula for decomposition numbers of
RS n,r given in [Saw] (Corollary 5.6, See also Remark 5.7.) For the special parame-
ters (@1 =--=Q,=00rgq=1,Q1 =--- = Q,), we determine the decomposition
matrix of p.%, , from the factorization of decomposition matrix (Corollary 5.8).

Finally, we realize the Ariki-Koike algebra pJ%, , as a subalgebra of .7, , by
using the generators of r.%, , (Proposition 6.3). As a corollary of Corollary 5.8,
we give an alternative proof for the classification of simple g.7%, ,-modules for the
special parameters (Q; =---=Q, =0o0rqg=1, Q1 = --- = Q,) which was already
obtained by Ariki and Mathas in [AM] and [M1] (Corollary 6.5).

Acknowledgments : The author is grateful to Professors S. Ariki, H. Miyachi
and T. Shoji for many valuable discussions and comments.

1. Review on cyclotomic ¢g-Schur algebras

In this section, we recall the definition of the cyclotomic ¢g-Schur algebra .7,
introduced in [DJM], and we review presentations of .#, , by generators and fun-
damental relations given in [W].

1.1. Let R be a commutative ring, and we take parameters ¢, Q1,--- ,Q, € R such
that ¢ is invertible in R. The Ariki-Koike algebra rJ%;, , associated to the complex
reflection group &,, x (Z/rZ)" is the associative algebra with 1 over R generated
by Ty, 11, - ,T,—1 with the following defining relations:

(To = Q1)(To = Q2) - (To — Q) = 0,

(Ti =) (T +q7 1) =0 (I<i<n-1),
TyTh'ToTh = ThTvTh T,

TTiq T = T, 1 TiTi (1<i<n-2),
T,T; = T;T; (Ji =34l >2).

The subalgebra of 77, - generated by T, - - - , T}, is isomorphic to the Iwahori-
Hecke algebra g%, of the symmetric group &,, of degree n. For w € &,,, we denote
by ¢(w) the length of w, and denote by T, the standard basis of .7, corresponding
to w.

1.2. Let m = (my,--- ,m,) € ZL, be an r-tuple of positive integers. Put
k k m
M(k) = (Mg )7' o a/J'Em)c) € Z2(’)C
T m k .
Dkt Qi1 Nz(' =n
We denote by [pu¥)| = Y% w®) (vesp. |p| = S iy |®]) the size of u®) (resp.

i

the size of 1), and call an element of A,, ,(m) an r-composition of size n. We define

An,r(m) = {Iu = (/1'(1)7' .. ,‘u(r))

the map ¢ : An(m) = Z%, by (1) = (|nM], [p®], -+, |u™)]) for p € Ay, (m).
We also define the partial order “<” on ZY, by (ai,---,a;) = (a},---,a;) if
Z?Zl a; > le aj forany k=1,---,r. Put

A:,T(m) ={ied,,(m)| )\gk) > )\gk) > > ,\§,’§g forany k=1,--- ,r}.
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We also denote by A, . the set of r-partitions of size n. Then we have A} . (m) = A}

n,r n,r
when my >n forany k=1,---,r.

1.3. For i = 17 ---,n, put L1 = TO and Li = Ti—lLi—lTi—L For n e An,r(m), put

= (Y ) (ITTI0 - Q). M =, ntar
1i=1

weS, k=1i=

where &, is the Young subgroup of &,, with respect to p, and ap = Zf;ll \,u(j)\
with a1 = 0. The cyclotomic g-Schur algebra r.#, , associated to p.77, . is defined
by
7T = 1 (Anp(m) = Endor,, (€@ M").
NeAn,r(m)

Put I'm) = {(4,k)|1 < i < mg,1 < k < r}. For p € A,,(m) and
(i,k) € I'(m), we define aé g € R nr by
Jéjji,k) (muh) = 5p,u (mp(LN+1+LN+2+' : ‘+LN+HEk)))'h (V € An,r(m)7 h e R%L,r)v
where N = ;:11 || + Z;;ll ,u;-k), and we set JZ‘ p = 0if ugk) = 0. For
(i,k) € I'(m), put o(; ) = ZueAnr(m) Jé‘i k) then o(; 1) is a Jucys-Murphy ele-
ment of g%, , (See [M2] for properties of Jucys-Murphy elements).

1.4. Let A = Z[q,q¢ %, Q1, -+ ,Q.], where ¢,Q1,---,Q, are indeterminate over
Z, and K = Q(q,Q1, -+ ,Q,) be the quotient field of A. In order to describe
presentations of .7, , (resp. 4.7, ), We prepare some notation.

Put m = >, _,my. Let P = @, Ze; be the weight lattice of gl,,, and
PV = @;" | Zh; be the dual weight lattice with the natural pairing (, ) : PxP¥ — Z
such that (e;,h;) = 6&;;. Set oy = & — 41 for ¢ = 1,---,m — 1, then
IT = {a;|1 <4 < m — 1} is the set of simple roots, and @ = @ZZIZ% is
the root lattice of gl,,,. Put Q* = @?;1 Z>o ;. We define a partial order “> 7
on P, so called dominance order, by A > pif A\—u e QT.

We identify the set I'(m) with the set {1,--- ,m} by the bijection v : I'(m) —
{1,-+-,m} given by y((i,k)) = 337 m; +i. Put I"(m) = I'(m) \ {(m,,7)}.
Under this identification, we have P = @, Ze; = ®(i,k)ef(m) Ze (i) and
Q=08""%a = Diiyer(m) Z k). Then we regard A, (m) as a subset
of P by the injective map \ — Z(i)k)ep(m) /\Ek)s(i,k). For convenience, we consider
(mg 4+ 1,k) = (1,k + 1) for (mg, k) € I'"(m) (resp. (1 —1,k) = (mp_1,k—1) for
(1,k) € P(m) \ {(1, 1)}).

Now we have the following two presentations of cyclotomic g-Schur algebras.

THEOREM 1.5 ([W, Theorem 7.16]). Assume that my > nforanyk=1,---,r,
we have the following presentations of .7, , and 4% r.
(i) k-Zn,r is isomorphic to the algebra over K defined by the generators e(; 1), f(i,x)

((i,k) € I'"(m)) and Kik) ((i,k) € I'(m)) with the following defining relations :
(1.5.1) KKy = KGnKar, KooKy = Kq Koy =1

(1.5.2) Kiyeqn K = a0 e e,

(1.5.3) Ky [ K gy = g~ ham) £

(1.5.4) e k) .0 — FGneer) = 0i,k),(G.) M k)
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Ky K10 — Ko Karm
q—q!

where 71 1y = K(mk’k)K(_l’kJrl) - K(_mk,k)K(l,k+1)
—Qr+1 q—q1

HE (e 1) K (1 gy 1) (07 Gomi iy (fr€) = a9 k1) (fre))  if i = my,

if i # my,

(1.5.5) e1.0)€0n) — (4 + 6 e r)eiiz,m)ein) T € et = 0,
e meuy = egneak (V@G E) —v((7,D)] = 2),

(1.5.6) Fasr fTw — @+ 0D famy fazie far + fmfazim =0,
famfon = fanfar (VG E) —v((G,D)] = 2),

(1.5.7) H Kir =4q",
(i,k) € (m)

(1.5.8) (K — D(Kr — ) Ky —a*) - (Kap —¢") =0,

The elements g(,, k) (f;€), 9a,k+1)(fre) in (1.5.4) coincide with the Jucys-
Murphy elements o (,,, &), (1,k+1) respectively, which are described by generators
e(ik)s J(i k) ((z,k) € F’(m)) and Kik) ((z,k) € F(m)) (see [W, 7.11]).

Moreover, 4.7, is isomorphic to the .A-subalgebra of x.7, , generated by

K; —s+1_pe—1 sl ) -
M., 2ot —Ben® (k) € I(m),t > 1), where ] = %=% and

[t =i =1]---[1.
O

(ii) £, is isomorphic to the algebra over K defined by the generators E; 1),
Fir ((i,k) € I'"(m)), 15 (X € Ay ,(m)) with the following defining relations:

(1.5.9) 1xl, =6y ,ly, doooL=1,
AeA, . (m)
(1.5.10) B oly = 4 recnBar AT a6y € dnp(m),
(i.k) 0 otherwise,
(1.5.11) Fuply = 4 oanfen iEA=aay € An,r(m),
(0) 0 otherwise,
(1.5.12) B g = 4 Do ta-a iEA=a6r € An,r(m),
(i) 0 otherwise,
(1.5.13) N Fimitay A+ @k € Anr(m),
(i) 0 otherwise,
A
(1.5.14) EiFG0 = FunEar = 0amGo D Mk

A€EAL



6 KENTARO WADA
[}\Ek) o Afi)l]]')\ lf’L 7é mg,

A
where 1 ) = (_ Qk+1[/\7(72 _ )\gkﬂ)]
(k) (k+1) op -
gt M (qilgf\mk,k)(F’ E) - qg(>\1,k+1)(F’ E)))lA if ¢ = my,
(15.15)  Epx1)(Euwn)® — @+ DEGrEax0Eir + (Eirn)*Eusr =0,
EanEgGny =EgnEar (v E) (G0 =>2),
(1.5.16)  Fliwr ) (Fim)* = (0 + 47 ) Fay Fasrm Fary + (Fap)  Flazp =0,
FawyFun = FioFir ([v((3, k) = (4, 1) > 2),

The elements g(m »EE), g5 k+1)(F E) in (1.5.14) coincide with O'(m Ky a’\1 K1)

respectively, which are described by generators E; 1), Fs 1) (( )y eI’ m)) (see
[W, 7.1-7.4]).

Moreover, 4.7, is isomorphic to the A-subalgebra of x.7, , generated by
E%M)/[l]!, F(liyk)/[l]! ((z, k) e I''(m), l > 1), 1n (A € Ay (m)).

REMARK 1.6. In [W], we treated only the case where mj = n for any
k=1,---,r. We can obtain Theorem 1.5 for the general case in the same way
under the condition my; > n for any £k = 1,--- ,r. However, in the case where

my, < n for some k, we do not have the presentation of .#}, (4, (m)) as in the
above theorem. In such a case, we have the following realization of .%}, (A4, (m)).
First, we take m = (my,---,m,) € ZL, such that m; > n and my > my, for
any k = 1,---,r. Then, we can regard A, ,(m) as a subset of A, ,(m) in the
natural way. We have the presentation of .#), (4, ,(m)) by the theorem, and
we have .7, (A (M) = 10 (Ay (M) 1y, where 1, = ZAeAn,T(m) 1\ €
S (Ap - (m)).

1.7. Weyl modules (see [W] and [DIM] for more details). Let 4.7,f. (resp.
A, ) be the subalgebra of 4.7, , generated by Eéi)k)/[l]! (resp. F(llk)/[l}') for
(i,k) € I"(m) and | > 1. Let 4.2, be the subalgebra of 4.7, generated by
1y for A € A, (m). Then 4.4, , has the triangular decomposition 4.7, , =
AL ALY AY* by [W, Proposition 3.2, Theorem 4.12, Theorem 5.6, Proposi-
tion 6.4, Proposition 7.7 and Theorem 7.16] . We denote by AY@? the subalgebra
of 4.7 generated by 4., and 4.7 .

Note that p.%, , is obtained from Aynﬁ, by the specialization. Then r.7, ,
also has the triangular decomposition p.%, = rS,, rR-Lr, R, Which comes
from the triangular decomposition of 4., ;.

For X € A}, (m), we define the one-dimensional z.%Z -module 65 = Ruvy by
E(igy-va=0 ((i,k) € I"(m)) and 1, - vy = 6 4o (1 € Apr(m)). Then the Weyl

module gW(X) of r.7,  is defined as the induced module g.%, » ®  p20 0, of 0

for X € A}, (m). Note that this Weyl module gW(A) coincides with the ordinal
Weyl module of p.7, , defined in [DJM] thanks to [DR, Theorem 5.16].

When R is a field, it is known that gV (A) has the unique simple top rL(A),
and that { RL(A\) | A € A} (m)} gives a complete set of non-isomorphic (left) sim-
ple g%, -modules. Moreover, it is known that x.7},, is semi-simple, and that
{xkW(A) | X € Af .(m)} gives a complete set of non-isomorphic (left) simple k.7, ;-
modules.
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1.8. By (1.5.9), the identity element 1 of g%}, , decomposes to a sum of pairwise
orthogonal idempotents indexed by A, ,(m), namely we have 1 = Z/\eAn,T(m) 1.
Thanks to this decomposition, for g.#, -module M, we have the decomposition
M = GBAGAH,T(m) 1AM as R-modules. By the isomorphism between the first pre-
sentation and the second presentation of .#, , in Theorem 1.5 (see [W, Proposition
7.12] for this isomorphism), we see that K(; 5y acts on 1y M by multiplying the scalar
qAEk), namely we have 1\M = {m € M | Ky -m = qAEk)m for (i,k) € I'(m)}. We
call 1yM the weight space of weight A (or A-weight space simply), and denote it by
M.

2. U,(g)-crystal structure on Weyl module W(\) of .7, .

Throughout the rest of paper except the section 4, we assume the following
condition for m = (myq, -+ ,m,):

(2.0.1) my >nforany k=1,---r.

In the section 2 - section 4, we consider only the cyclotomic g-Schur algebra .7,
over K, and we omit the subscript K.

2.1. Let g = gl,, ® - ® gl, be the Levi subalgebra of gl,, and
Uq(g) =2 Uq(gl,,,)®---®Ugy(gl,,, ) be the quantum group over K corresponding to g.
Put I(m) = I'(m) \ {(mg, k) |1 <k <r}. Let ey, fix) (k) € [y(m)), K(jfk)
((4,k) € I'(m)) be the generators of U,(g), where e(; &y, f(i,x), Kék) (1<i<mgp—1,
1 < j < my) are the usual Chevalley generators of U, (gl,,, )-

By the presentation of .7, , (Theorem 1.5), we can define the algebra homo-
morphism @4 : Uy(g) — 7, sending generators of U,(g) to the corresponding
generators of .}, , denoted by the same symbol. Note that ®, is not surjective
without the case where r = 1. We have the following lemma which describes the
image of ®;.

LEMMA 2.2.

(i) q)g(Uq(g)) = @ yy?l,l(/lm,l(ml)) ®---® yrz,,l(/lnr,l(mr))7

n=(ny, - ,nr)

nit-tner=n
where .7 | (A, 1(my)) is the g-Schur algebra associated to the symmet-
ric group 6, of degree ng.
(ii) Let 4U,4(g) be the A-form of U,(g) by taking the divided powers. Then

we have

e(aly(a) = P a1 a(m) @@ 477 ((An, 1 (my)),

n=(ny, - ,nyp)
ni4-Hne=n

PROOF. Put .75 = Po=tny, - e y,?hl(/lnl,l(ml)) Q- ® yy?ml(/lnr,l(mr))'

ni4-Anp=n

Let e?’k, fi"’k (1 <i < mg—1), Ki"’lCﬂE (1 < i < myg) be the generators of



8 KENTARO WADA

0 (A, 1(my)) in Theorem 1.5 (i). Then, we define the homomorphism of alge-

nk,l
bras ¢ : Uy(g) — 74 by
n,k
W(e(i,k)): Z 1@...®1®eih R1® -1,
n=(ny, - ,nr) kil —
ni+tnp=n
k
efum)= > lo-slefffele ol
n=(nq1, - np) T’
ni+-tner=n
= = n,k+
pEE )= Y 1o -elekele el
n=(ny, - ,nyp) b1

ni4-Hnp=n

for generators e k), fur ((i,k) € I'y(m)), K(j;k) ((i,k) € I'(m)) of Uy(g). (We
can easily check that ¢ is well-defined by Theorem 1.5 (i).)

We also define the homomorphism of algebras ¢ : S5 — %, » by

Ple- @l ele-ol)=( Y. 1) (>, L,

k—1 HEAp r(m) HEAn, r(m)
C(p)=n C(u)=n
YA elefffele-ol)=( > L) fon-( D 1,
Eo1 WE Ay, r(m) HEAp - (m)
¢(p)=n S(u)=n
Jkt
V1o 0lekM ele--0l)=( Y L) Ki,-( > 1)
k-1 i i

for each generators of .. (We can check the well-definedness by direct calcula-
tions.) From the definitions, we see that o = ®4. Thus, 9 induces the surjective
homomorphism ¢ : %y — ®4(Uy(g)). We prove ¢’ is an isomorphism.

We easily see that simple .#g-modules are indexed by A;f . (m), and the simple
Sg-module corresponding A (A € A}, (m)) is regarded as the simple highest weight
U,(g)-module Wy () of highest weight A through .

On the other hand, by investigating the appearing weights in .7, , as a U,(g)-
module through ®,, we see that the simple ®4(U,(g))-modules are indexed by a
subset of Af (m). Moreover, for X\ € A} (m), we see that the Weyl module
W(A) of .7, , contains the simple highest weight U,(g)-module Wy(X) of highest
weight A through ®4. As a consequence, the simple ®4(U,(g))-modules are indexed
by A}, (m), and the simple ®4(U,(g))-module corresponding A (A € A (m)) is
regarded as the simple highest weight U,(g)-module Wy(A) of highest weight A
through @,.

Note that both .#; and ®4(U,(g)) are semi-simple, by Wedderburn’s theorem,
we have

dim 7y = dim @ (Uy(g)) = D (dimWy(\))%.
)\GAI’T(m)
Thus, we have that ¢’ is an isomorphism. (ii) follows from (i) by restricting ®; to
AUq(9)- O

2.3. For an ., ,-module M, we regard M as a U,(g)-module through the homo-
morphism ®,. Then, by Lemma 2.2 (or by investigating weights directly), we see
that a simple U, (g)-module appearing in M as a composition factor is of the form
WA .. "W (A") for some A € A . (m), where W(A®) is the simple highest
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weight U, (gl,,, )-module of highest weight M%) Hence, the Weyl module W (\) of
Zn.r decomposes as follows:

231) Wy @ (W(u(l))X---&W(M”))MW as U, (g)-modules.

nEAL - (m)

2.4. In order to compute the multiplicity By, in (2.3.1), we will describe the
U,(g)-crystal structure of W (A). For such a purpose, we prepare some notation of
combinatorics.

For pn € A, -(m), the diagram [u] of p is the set

] ={Gg k) eZ* 1 <i<m, 1<j<p™ 1<k <r)
For A € A} (m) and p € A, ,(m), a tableau of shape A with weight y is a map
T:[\N—{(a,¢c) €ZxZ]la>1,1<c<r}

such that ugk) = t{z € [N]|T(z) = (i,k)}. We define the order on Z x Z by
(a,c) > (a,) if either ¢ > ¢/, or ¢ = ¢/ and a > a’. For a tableau T of shape A
with weight u, we say that T is semi-standard if T satisfies the following conditions:
(i) If T((4,4,k)) = (a,c), then k < ¢,
(i) T((i,5,k)) < T((3,§ + 1,k)) if (i,5 + 1, k) € [A],
(iit) T((i,5,k)) < T((i +1,4,k)) if (i + 1,5,k) € [A].
For A € A} (m), p € Ay, -(m), we denote by To(X, u) the set of semi-standard
tableaux of shape A with weight . Put To(\) = UueAw(m) To(A, 1). We identify
a semi-standard tableau with a Young tableau as the following example.

For A = ((33 2)’ (37 1)7 (17 1))7 H= ((27 1)? (27 2)7 (37 1))
(O[] (G @) [w3] [
r=(Hemtan ] = e ) €T,
where T((1,1,1)) = (1,1), T((1,2,1)) = (1,1), ---, T((2,1,3)) = (2,3).

By [DJM], it is known that there exists a bijection between To(A, ) and a
basis of W(\),. Hence, we will describe a Ug,(g)-crystal structure on 7o(A) which
is isomorphic to the U, (g)-crystal basis of W(\).

2.5. By (2.3.1), for A € A} (m), p € A, »(m), we have

(2.5.1) {50\, 1) = dim W(A),
= Y Bu-dim (W(u“)) K. X W(W)))
uE/l,tr(m) "
= Z Bav H dim W(V(k))#(k)
vEAY - (m) k=1
= Y B [[#Te™, ut®))
vEAY - (m) k=1
= Y B[ Kwuw,
veAL . (m) k=1

where Ku(k)u(k) is the Kostka number. We have the following properties of 5.
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LEMMA 2.6.
(i) For A € A .(m), Bxx = 1.
(ii) For A\, € A} .(m), if Bx, # 0, we have A > p.
(iii) For A\, € Af (m), if X # p and ¢(X) = ¢(u), we have By, = 0.
(iv) For A\,u € A}, (m) such that ¢(A) # ((u), if To(A,v) = @ for any
v € At (m) such that {(v) = ((p) and v > p, then we have 8, = §To(X, ).

PRrOOF. (i) From the definition of W (\), we have W(A) = .7,

o Ux, where we
denote 1 ® vy € S ® 40 Oy by vy simply. Thus, we have that W (A)x = Kuy,

and that v is a highest wLéight vector of highest weight A in U,(g)-module W ().
This implies that 8y = 1.

(i) Bap #0=>WA), #0= A > p.

(iii) Assume that A # p and ¢(A) = ¢(p). By (2.5.1), we have

(2.6.1) #1700 1) =Bax [ 470%™, ™) + By T 870, u®)
k=1 k=1
veAL (m) k=1
vEN L
This implies that By, = 0 since $70(p®, u)) = 1, and #To(\,pu) =

[Tzt $T0(A®), u®)) if C(A) = ().

(iv) Note that [[_, #7o(v™, u®) = 0 if ¢(v) # ¢(u) or v # u, and that
[Teey £70(v®), u®)) = To(v, p) if ((v) = ¢(p). Then (2.5.1) combining with the as-
sumption of (iv) implies §79(A, i) = BrpiTo (1, i) = By since Br, = 0if To(A, v) = 0.

(I

2.7. For A € A, (m), we define the total order “>” on the diagram [A] by
(4,5,k) = (/.4 K)iftk>kK,k=FK and j > j orift k=k',j =4 and i <. For
an example, we have

(5,4,2) = (2,3,2) = (5,3,2) = (6,4,1).
2.8. We define the equivalence relation “~” on To(A) by T~ T if
{x € [N|T(z) = (i, k) for some i =1,--- ,my}
={y e [N|T'(y) = (j,k) for some j =1,--- ;my}
for any k = 1,--- ,r. By the definition, for T € To(\, ) and T € To(A, v), we have
(2.8.1) C(p)=C)ifT ~T".

ExaMPLE 2.1. Put

(D[] [ [@D (D [eD] [y @D
ﬂ‘(um 2.2 (3.2 D’B‘(uw G2 |4y D’
(D[] (@[ @D (D[] (L [wD)
E‘(@m 3.2 ' [(42) 0’ﬂ‘<@m 3.2 [@2) 0

Then, we have T1 ~ TQ, T2 7(‘ T3 and T3 ~ T4.

2.9. Let Vj,, be the vector representation of Ug,(gl,,, ) with a natural basis
{v1,v2, - ,vm, }. Let A be the localization of Q(Q1,---,Qr)[q] at ¢ = 0. Put
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Lo, @J * Ao vs, 4= v+ qLm, € L, /qLm, and By, = {| 1<5< mk}.
Then (Emk,Bmk) gives the crystal basis of mG Then the U,(g)-crystal
BEM K- .- KBS is the crystal basis of V57" & K V&,

Let 76( )/~ e the set of equivalence classes Wlth respect to the relation ~. To
avoid confusion, we also use a notation 7o (A)[¢] for the equivalence class t € To(\)/~.
Hence we have the disjoint union To(A) = U7 (n)/. To(M)]H]-

For each equivalence class To(A)[t], put (n1,--+,n,) = ¢(p) for some p such
that To(A, ) N To(A)[E] # @ (note (2.8.1)), and we define the map

D TNl — B R BB

mi

as

(1) = (iP)e-el)®8--v (iV]e- fi))

satisfying the following three conditions.

(i) {z € [\]|T(x) = (i, k) for some i = 1,--- ,;my} = {xg CC(Qk), - 733553}

fork=1,---r.

(ii) x(lk) >£L’§k) o alt) for k=1, 7

(iii) T(z) = (@ k) for 1 <j<mp, 1<k <.
Namely, ([i{”|®--- ®[it)]) in ¥} (T) is obtained by reading the first coordinate of
T(z) for z € [A] such that T'(x) = (i, k) for some ¢ = 1,--- ,my, in the order > on
Al

ExAMPLE 2.2. For

(DT H A2 ] [(1L2) [ 22 ]0,3)] [(1,3)
T( (2, 1) (1,3) " (2,2) | ‘ 2,3) >€To(A)[t],

we have w(7) = (Do o) 8 @eDe@sD) 8 [MeBe@a ().

REMARK 2.10. In the case where r = 1, 7o(\) has only one equivalence class
(itself) with respect to ~, and ¥U* coincides with the Far-Eastern reading given in
[KN, §3] (see also [HK, Ch. 7]).

2.11. Let e p), ]?(i’k) ((i,k) € I'y(m)) be the Kashiwara operators on U, (g)-crystal
BE™M K- - - W BE". Then we have the following proposition.

PROPOSITION 2.12. For each equivalence class 7o(A)[t] of To(N), we have the
followings.

i) The map ¥} : To(N)[t] = BE™ K- .. X B is injective.

( ) t mi my J

(i) U (To(A)[t]) U {0} is stable under the Kashiwara operators €(; ), fv(i7k)
((i,k) € I}(m)) .

PROOF. (i) is clear from the definitions. We prove (ii). Forb € B3™" K- - KB,

my

we can obtain the tableau T (b) of shape A by taking the reverse process of the
definition of ¥}. Note that 7*(b) may not be semi-standard. If T} (b) is semi-
standard, we have that T} (b) € To(\)[t], and that W) (T} (b)) = b from the defini-
tions. Hence, in order to prove (ii), it is enough to show that, T{(€; ) - U2 (T))
(resp. T (fiiky - ¥ (T))) is semi-standard for T' € To(N)[t] and (i, k) € I'j(m) such
that € ) - Y2 (T) # 0 (resp. fv(i,k) -WNT) # 0). This can be proven in a similar
way as in the case of type A (r = 1) (see [KN] or [HK, Theorem 7.3.6]), and we
obtain (ii). O
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2.13. By Proposition 2.12, we define the U, (g)-crystal structure on 7o(A)[¢] through
¥, and also define the U, (g)-crystal structure on To()). Note that the U, (g)-crystal
graphs of To(A)[t] and of To(N\)[t'] are disconnected in the U,(g)-crystal graph of
To(A) if To(A)[t] is a different equivalence class from To(A)[t']. For T € To(X), we
say that T is U, (g)-singular if €(; x) - T' = 0 for any (i, k) € I';(m). Put

7—sing()‘a /J/) = {T € 76()\7 /J/) | T Uq (g)-singular}.
REMARK 2.14. We should define the map ¥} for each equivalence class To(A)[t]

of To()) since it may happen that U (T) = W) (T") for different equivalence classes
To(A)[t] and To(A)[¢']. For an example, put

(OO OD [@2)] [(1L2)[22[13)] [(13)
! ((zn<La 2.2 7@3))6%MWL

r_ (L,1) | (1,1) | (1,3) (1,2) | (2,2) | (1,3) (1,3) ,
= (lEnea e e gy ) € B

Then we have

wH(T) = v(T") = (e [Je2) B (2o 2]e1) 8 (2o [1).

Now, we have the following theorem.

THEOREM 2.15.

(i) The Ug(g)-crystal structure on Tp(A) is isomorphic to the U,(g)-crystal
basis of W(\) as crystals.
(ii) For A, € A} (m), we have Bx, = §Tzing(A, ).

PrROOF. From the definition, the U,(g)-crystal structure on 7o(A)[t] is isomor-
phic to the crystal basis of a U,(g)-submodule of V,¥™ X ... X V,”r. Thus the
Uq(g)-crystal To(A) is isomorphic to the crystal basis of a certain finite dimensional
U,(g)-module and the crystal basis of a finite dimensional U, (g)-module is uniquely
determined by its character up to isomorphism. We see that the weight of W} (7)) is
wif T € To(A, p). We also see that the dimension of the p-weight space of W(\) (as
U,(g)-module) is the cardinality of 7o(), ). Thus, the character of 7o(\) coincides
with the character of W (A). This implies (i). (ii) follows from (i) immediately. O

3. Some properties of the number j,,

In this section, we collect some properties of the number 3y,,.

3.1. For r-partitions A and p, we denote by A D p if [A] D [u]. For r-partitions A
and g such that A D p, we define the skew Young diagram by \/p = [A]\ [y]-
One can naturally identify A/p with (A /p® ... X0 /) where A®) /(%)
(1 < k < r) is the usual skew Young diagram for MBS ) For a skew
Young diagram A/p, we define a semi-standard tableau of shape A/p in a sim-
ilar manner as in the case where the shape is an r-partition. We denote by
To(A/p,v) the set of semi-standard tableaux of shape A/p with weight v. Put
To(A/ 1) = Uyen,, () To(AMp,v), where n' = [A/p[. Then, we can describe the

U,(g)-crystal structure on To(A/p) in a similar way as in the paragraphs 2.7 - 2.13.
Namely, we define the equivalence relation “~” on To(A/p) in a similar way as in

2.8, and define the map W}/ : To(A/p)[t] — BEm K. .- WBE" for each equivalence
class To(A/p)[t] of To(A/p) as in 2.9. Then we can show that \I!i‘/” is injective, and
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that \I!i‘/”(%()\/u)[t]) U {0} is stable under the Kashiwara operators €(; 1), f(i,k) for
(i,k) € I'y(m) (cf. Proposition 2.12). Put

Tsing(A 1, v) = {T € To(M p, v) | T : Uy(g)-singular}.
From the tensor product rule for U,(g)-crystals, we have the following criterion
on whether T' € To(A/p) is Uy(g)-singular or not (note that To(A/p) = To(A) if
pw=70).

LEMMA 3.2. For T € To(A/p)[t], let

(3.2.1) W?/“<T>:(®~~®)wﬂ(@w@)-

Then, T is Uy(g)-singular if and only if the weight of (i{”]® - ® i ) B&!
is a partition (i.e. dominant integral weight of gl,, ) for any 1 < j < n; and any
1<k<nr.

PROOF. Itis clear that, for T' € To(\/p)[t] satistying (3.2.1), T is U, (g)-singular

if and only if ( X ) € BSm is Uy(gl,,, )-singular for any k=1,--- 7.
Hence, the lemma follows from [N, Lemma 6.1.1] (see also [HK, Corollary 4.4.4]).
O

REMARK 3.3. By Lemma 3.2, if T' € To()) is U,(g)-singular, the weight of T
must be an r-partition. Moreover, we see that the number 3, is independent of a

choice of m satisfying the condition (2.0.1) from Lemma 3.2.

For some special partitions, we have the following lemma.

LEMMA 3.4.
) IEX=((n),0
_{1 1fu— ) (na), -+, (n,)) for some (nq,---,n,) € Z,
~]o otherw1se -
) IE A= ((1™),0
)1 1fu = ((1"1) (1"2),---,(1™)) for some (ni,--- ,n,) € ZL,
" 10 otherwise -
111 :(wa 7(2)’ (n))v
)1 if A= ((m), (n2), -, (n,)) for some (ny,---,n,) € Z%,
10 otherwise -
=@,---,0,(1m),
if A= ((1™),(1™2),---,(1™)) for some (nq,--- ,n,) € Z%,
= { .
0 otherwise

PROOF. One can easily check them by using Theorem 2.15 and Lemma 3.2. [

3.5. For aninteger g (1 < g <7), fixp = (r1,...,74) € Z%ysuch that Y 7_, rp = 7.
For A = ()\(1) S AMY e Af (m), put AFle = (AP o XEEETO) where
= ! rj with py = 0. We define the map ¢P : A} (m) — Z<, by
Cp()\) = (]Ale|, ... [ |Algle]). Then, we have the following lemma. -
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LEMMA 3.6. For A, u € A (m) such that (P(A) = ¢P(u), we have

g
Bau = ] Bristo utvis -
k=1

PROOF. It is enough to show the case where p = (r1,72) since we can obtain
the claim for general cases by the induction on g. If (P (\) = (P(u) for p = (r1,72),
then we have the bijection

(3.6.1)  To(\, w) = ToAHe, ule) se To(ARle i2le) such that T — (T1e TElR),

where TMe ((i, 5, k)) = T((i, 4, k)) for (i, j, k) € A\, and Te ((i, 5, k) = (a,c—r1)
if T((i,4,m1 +k)) = (a,c) for (i,5,k) € [A?e]. In this case, by the definition
of ¥} and Lemma 3.2, it is clear that T € To(A, u) is U,(g)-singular if and only
if Tle (resp. TPk) is U,(gM))-singular (vesp. U,(g!?)-singular), where gt} =
gly, ® - @ gl (resp. gl = gl ., @ @ gl ). Then, by Theorem 2.15 (i)
together with (3.6.1), we have ﬁ,\u = BA[”PH[l]Pﬁ)\[Z]PM21P' U

3.7. For A\, € A .(m), we define the following set of sequences of r-partitions:
O ) == {>\ =) D Ap—1y D DAy D Aoy = (0, ,0)
| Q)™ =0, gy A = 1P for k=1, 7).

It is clear that, for Ay D --- D Ay € O(A, p), (A<k>)(l) =0 ifl > k, and
that [\ | = Z?Zl |1®)|. Then, we can rewrite Theorem 2.15 (i) as the following
corollary.

COROLLARY 3.8. For A, € A}, (m), we have

(3.8.1) B = > 11 £ Ting iy /Ay, (0, -+, 0, 2850,0, -, 0)).

Ay DDA 0y €O\, pn) k=1

In particular, if X\ = (0,--- ,0,A\®), 0, --- ) for some ¢, then we have

>\(t)

(3.8.2) ﬁ/\u = Z H LR)\E;? MO

)\(T)D"'D/\«))E@()\,p,) k=1 (k=1)

)\(t)
where LR {}
k-1

Al with LRy = 1.

e is the Littlewood-Richardson coefficient for )\EZ)_D, 1) and

PRrROOF. Note that we can identify the set ©(A, 1) with the set of equivalence
classes of To(A, ) with respect to the relation ~ by corresponding
Ay D0 D Aoy € O(A, p) to the equivalence class of To(A, p) containing 7' € To(A, p)
such that

Ayl = 1{(,4,1) € [\|T((4,5,1)) = (a,c) for some 1 < a <m,1 <c<k}

for any k = 1,--- ,r. Then Lemma 3.2 and Theorem 2.15 (i) imply the equation
(3.8.1).
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Assume that A\(*) = () if k # ¢ for some ¢. Then, for Airy D D Aoy € O(A, ),

we have

ﬁ’Tsing (>\<k)/)\(k—1)7 ((Z), T >®7 M(k)a Q)a T 7®)) = ﬁ’]-szng (Agt)>/)\22) 1) ,U(k))
LR

()
Alk—1)

e’

where the last equation follows from the original Littlewood-Richardson rule ([Mac,
Ch. 1(9.2)]). (Note that, for partitions A, u (not multi-partitions) such that A O u,
the U,(gl,,)-crystal structure on To(A/p) does not depend on the choice of admis-
sible reading (see [HK, Theorem 7.3.6]). Then a similar statement as in Lemma
3.2 for To(A/p) under the Middle-Eastern reading coincides with the Littlewood-

Richardson rule.) Then (3.8.1) implies (3.8.2). O

REMARK 3.9. In the case where 7 = 2 and A = (\(), §)), by (3.8.2), we have
B = SLRYD L LRMY
Ap = o AL 0,u(
)\ 1

AL
- LR'“(Z) ’u(l) ’

A
where the last equation follows from LR®<1(2) =4, L) Thus, the Littlewood-
(1

Richardson coefficient LRf;?V for partitions A, u, v is obtained as the number 3y g)(;.,.)-

Moreover, thanks to Lemma 3.2 together with the reading \II? /n , we can regard
(3.8.1) as a generalization of the Littlewood-Richardson rule.

We also remark the following classical fact. Let GL, be the general linear
group of rank n, and V) be the simple GL,-module corresponding to a partition
A. For m < n, we can regard GL,, x GL,,_,, as a subgroup of GL, in the
natural way. Let [RQSSEZ «GL,_, VA1V, BV, vlaL,, xar, be the multiplicity of the
simple GL,,, X GLn,m—module V XV, in the simple GL,-module V) through the
restriction. Then we have

(391) [RGSSE;XGLnfm V/\ : Vu, X Vvl/]C}LmXC}L71 = LR;),U

Comparing (2.3.1) with (3.9.1), we may regard the number §5, as a generalization
of Littlewood-Richardson coefficients.

4. Characters of the Weyl modules and symmetric functions

In this section, for the completeness about symmetric polynomials, we do not
assume the condition (2.0.1) for m. We remark that, in the case where m does not
satisfy (2.0.1), we can not define the number Sy, by (2.3.1) since we can not define
the map @4 in this case. Hence, for A\, u € A} (m), we redefine the number fy,
without any conditions for m as follows. When m satisfies the condition (2.0.1), we
denote by Sy, (m) the multiplicity 5, in (2.3.1). Then, for X\, u € A} .(m) (without
any conditions for m), we redefine the number $), as the number Au( m’) for some
m’ satisfying the condition (2.0.1). Note that this definition does not depend on a
choice of m’ satisfying the condition (2.0.1) (see Remark 3.3).

4.1. Form = (myq,--- ,m,) € Z%, we denote by Em = Q) _, Z[x® . 2k Sm

the ring of symmetric polynomials (with respect to &,,, x - -+ x &,,,,.) with variables
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xgk) (1<i<mg 1<Ek<r). We denote by z(mk) = (x(lk),xék),~-~ ,ng,)c) the set
of my, independent variables for k = 1,--- ,r, and denote by x,, = (:1:5,11), e ,x&))

the whole variables. Let =7 be the subset of =, which consists of homogeneous

symmetric polynomials of degree n. We also consider the inverse limit =" = lim =7,
m
with respect to m. Put Z = €,,.,E". Then Z becomes the ring of symmetric

functions £ = @, _, Z[X(k)]e(x(k)), where X ) = (ka),Xék), -++) is the set of
(infinite) variables, and &(X*)) is the permutation group of the set X*). We
denote by X = (XM ..., X)) the whole variables of Z.

For A = (AW, M) € Af (m), put Sx(xm) = [[f_, Saw (@tn)) (resp.
SA(X) = [Tiey Sam (X®)), where Sy (ng)) (resp. Sy (X)) is the Schur
polynomial (resp. Schur function) associated to A*) (1 < k < r) in the variables
P (resp. X)), Then {S\(Xm)| A € A} .(m)} (vesp. {Sx(X) |\ € A} ,}) gives a
Z-basis of EZ, (resp. Z-basis of Z"). ’ 7

4.2. For an .7, (A, r(m))-module M, we define the character of M by

chM= > dimM, 2" € Zxm),
HEAp, »(m)

where 2 = T[r_, (@) (@{P)es” . @8yl Put Sy (xm) = ch W(A) for
A € At (m). Then the character Sx(xm) of the Weyl module W () for .7, (A, (m))
has the following properties.

THEOREM 4.3.
(i) For X € A} (m), we have

Sa(xm) =ch W) = Y S Bw [ Kowpuw | -2t
k=1

MEAn,r(m) VEAI,T(m)

where K, k), is the Kostka number corresponding to partitions v®) and
pk),
(ii) For A € A} (m), we have

gh(xm) = Z BMLS#(Xm)'

HEAT - (m)
(i) {Sx(xm)|) € At (m)} gives a Z-basis of Z,.

PROOF. Assume that m = (mq,--- ,m,) € ZL, does not satisfy the condition
(2.0.1). In this case, we can take m = (mq,---,m,) € ZL, satisfying (2.0.1)
and my > my, for any k. Then we have .7, (A, ,(m)) = 1.7 (Ay (M) 1y,
where 1m = > 3ca,  (m) 1n € Fnr(4dnr(m)) (see Remark 1.6). Thus, for an
yn,r(/ln,,,(ﬁl))—modde M, 1M turns out to be an ., (4, (m))-module. In
particular, for the Weyl module W(A) of .7, (A, (m)), 1y W () is isomorphic to
the Weyl module corresponding to A of .7}, (A, -(m)) if A € A}, (m).

Let ¢ : Z[xm] — Z[Xm] be the ring homomorphism such that ¢(f(xz)) is the
polynomial obtained by setting xgk) =0 for xl@ & Xm. Then, by the definition of
characters, we have that ¢(ch M) = ch1,M for .7, (A, (m))-module M. Note
that ¢(Sx(xm)) = 0 if A ¢ A}, (m), the statements in the theorem for m are
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deduced from the statements for m through ¢. Thus, it is enough to show the case
where m satisfies the condition (2.0.1), and we assume the condition (2.0.1) for m.
Since there exists a bijection between a basis of W (), and To(A, 1), (i) follows
from (2.5.1).
It is known that
(4.3.1) S\(xm)= > dim (W(A(l)) K. X W(MT))) -zt
HEAp »(m) g

Note that the p-weight space of an .77, ,-module coincides with the y-weight space
as the Uy(g)-module via the homomorphism ®4 : Uy (g) — #5,-. Thus, the decom-
position (2.3.1) together with (4.3.1) implies (ii).

(iii) follows from (ii) since the number By, (A, € A}, .(m)) has the uni-
triangular property by Lemma 2.6. (]

4.4. For X\ € A} (m), let S5(X) € E" be the image of S\(x) in the inverse
limit. We denote by A>0 .= Un>0/1 the set of r-partitions. Then, Theorem

4.3 (iii) implies that {Sx(X) |\ € A>0 -} gives a Z-basis of Z. For a certain special
r-partition A, S A(X) coincides with a Schur function as follows.

PROPOSITION 4.5. Let A = (A1), --- |A() € A} . Assume that there exists
an index t = 1,--- ,7 such that A(¥) = () unless [ = ¢t. Then we have

S\ (X) = Sy (XOUXED ...y x™),

where Sy (X®O U - UXM) € Z[X® ... U XxO]SEDU-UXT) g the Schur
function corresponding to the partition A®*).

PROOF. Assume that A() = () unless | = ¢, then we see that the variable XZ-(I)
(t>1,1<1<t—1) does not appear in Sx\(X) since A > p if dim W (\), # 0.
Note that we can regard Z[X® U ... U X(M]SEXU-UX") ag g subring of

2 =Q_ Z[X(k)]G(X(M) in the natural way. By Theorem 4.3 (ii) with (3.8.2),
we have

gA(X) = Z Z HLRXEf)) >7“(k) SIL(X)

PEAL . \A(r) DDA (0) €O(A,p) k=1

Z Z (H LR)\M e H(k)(X( )))

;LE/I,L » (x1)

=D > (H LRA“) yoi®) Sy (X ))>

(*2) lIAEAI,T

—ZH ZLRAE,Z‘f Lo St (XP)
—1)°

(x2) k=t \ (x3)

= Z H S o o (XR) (because of [Mac, Ch. 1. (5.3)])
(+2) k=t A/ Aoy

=S (XD UuXxtHD y...ux™) (because of [Mac, Ch. 1. (5.11)]),
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where the summations (x1)-(x3) run the following sets respectively:

(#1) : {A® = Ag’”) S DA DAL =0 [ AL/ = 1P for k=1, 1),
(t) () ®
(x2) : {2 = X DAy DALy =0},
(x3) : {u : partltlon}.
)
In the above equations, note that LR’\§{;—1> o = = 0 unless |/\<k)| = |/\(k 1>\ + ).
(|

4.6. Thanks to the above lemma, the symmetric function gA(X) seems to be a
generalization of the Schur functions.
For A\, u,v € AIO)T, we define the integer ¢, € Z by

S\X)S(X) = D K,5.(X).

+
V€A>0 -

Then we determine the number cf 4 as follows.

ProrosiTION 4.7. For A\, pu, v € A;O » we have the following.

(i) X, =0 unless [v| = |A] + [p].
-1
(ii) Put ( TV)TueAt, (ﬁT”)ﬂVGALv (n = |v|). Then we have

()
u = Z BreBunBr H LRZ(Mn(k)

EnTEAS, -

(iii) If {(v) = C(A + ), we have
v TTrre®
o = H LR ) -

(iv) If XD =@ and p» = ) unless I = t for some t, we have

® .
oo LRK(;MM if v = unless [ = t,
Aw 0 otherwise.
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PROOF. (i) is clear from the definitions. We prove (ii). By Theorem 4.3 (ii),
we have

(4.7.1) S\(X) (Zﬂ)«gsg )(Zﬂun )
:Zﬁkéﬂunsi ) n(X)

&n

=S (3 ([T s
&m T

= Zﬂ)@ﬂm] (Z ( H LRE(’WJ(’“) ) (Zﬂ;”g”(X))>
&m v

T

= Z Z BxeBunBr., H LRg(k),,m S, (X).

v &Em,T
This implies (ii).
By Lemma 2.6 and the fact that LR, (">n<") = 0 unless [v®)| = [¢®)| + )|,
the equations (4.7.1) imply that
g)\(x)g;t(x)
v (R Lk
= > ( H LR ) k) ) (X)) (Z BreBun H LR x) 0 ) »(X)
C=Cotm P Cor=Cotmy &M
v (F) v Q v
= Z ( H LR ) ) ) »(X) + Z a%,Su(X) (aX, € Z).
cr=Comy  F=L )= Gtn)

This implies (iii).
Finally, we prove (iv). By Proposition 4.5, we have
HX)Gu(X) = S (XD U UX) S, 0 (XD U uxD)

= Z LRK(t)Mm S, (X®u-ux™)

v(t)
= ZLR)\(Q#U) S0, 0,00 0, 0)(X).
p(t)

This implies (iv). O

4.8. We have some conjectures for the number c§ . as follows.
Conjecture 1: For A\, u,v € AEO,T’ the number 5, Is a non-negative integer.
More strongly, we conjecture the following.
Conjecture 2: c§, = [Tiey LR/\EZ; () -
Note that LRKE?)M(M = 0if [v®)| # [A®)|+|u®)|, then Conjecture 2 is equivalent
to ¢, = 0 unless ((v) = ((A + p) by Proposition 4.7 (iii).
We remark that Conjecture 2 is true for A\, u € A>0 . such that A = () and
p® = @ unless [ = t for some ¢ by Proposition 4.7 (iv).
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5. Decomposition matrices of cyclotomic ¢-Schur algebras

In this section, we consider the specialized cyclotomic g-Schur algebra g.7;, ,
over a field F' with parameters q,Q1,--- ,Q, € F such that ¢ # 0. We also de-
note F @4 aU,(g) by rU,(g) simply. As declared in the beginning of section 2,
throughout this and next section, we assume the condition (2.0.1) for m.

5.1. For an g7, -module M, we regard M as a pU;(g)-module through the
homomorphism ®,. Then, by Lemma 2.2 (ii), we see that a simple pU,(g)-module
appearing in the composition series of M is of the form L(AM) X ... & L(A(M)
(A € A} (m)), where L(A®) is the simple pU,(gl,,, )-module with highest weight
A,

For a simple ., ,-module L(X) (X € A}, (m)), let

Ty = [L(N) : LpM)R - K L(N(T))]FUq(g)

be the multiplicity of L(p®M)X---RKL(u") (u € A}, (m)) in the composition series
of L(X\) as pUy(g)-modules through ®,;. Then we have the following lemma.

LEMMA 5.2.
(1) For A € Aj;r(m), Tan = 1.
(ii) For A\, € A (m), if zx, # 0, we have X\ > p.
(iii) For A, € Af (m), if X # p and ¢(A) = ¢(u), we have zy, = 0.

PrOOF. By the definition of Weyl modules (see 1.7), we have W(\) = p.7, v,
and L()) is the unique simple top W(\)/ rad W () of W(X). Thus, by investigating
the weights in L(\), we have (i) and (ii).

We prove (iii). We denote by Ty the image of vy under the natural surjection
W(A) — L(A). Then, we have L(A) = r., . - Ux. One sees that

M) = @ L(/\)u

MEAn r(m)

CONECG)
is a pUy(g)-submodule of L(A) since ((u £ a(r)) = () for any (i,k) € I'y(m).
It is clear that M()) is also an p.#, .-submodule of L()), and L(\)/M(\) =
Fynjr - (Ox + M(N\)). For F(i1,k1)F(i2,k2) "'F(iz,kz) S Fynjrv if i; = my; for
some j, one sees that Fi;, i,y Fli, k) - x € M (). This implies that L(A)/M (X
is generated by Ty + M(XA) as a pU,(g)-module, namely we have L(X)/M(X) =
rU(g) - (T + M(N)). Hence, we have the surjective homomorphism of rU,(g)-
modules

¢ LA)/M) = LOWYR ... R L(A™M)

such that Ty + M(A) — Tyaq) K- - KTy, where Tyx) is a highest weight vector of
L(A®) with the highest weight A*). We claim that v is an isomorphism.

If ¢ is not an isomorphism, there exists an element x € L(\), such that
A4 pe AL (m), () = C(\) and Eg - € M()) for any (i,k) € [(m),
namely  + M(X) € L(\)/M()) is a highest weight vector of highest weight 4 as a
rUq(g)-module. On the other hand, we have E,, 1) -2 =0for k =1,--- ,r—1
since (0 + (k) = C() = ¢(A). Thus, we have that E; ;) -z € M(A) for any
(i,k) € I'"(m). This implies that p.%,, -z is a proper gp.#, ,-submodule of L(\)
which contradict to the irreducibility of L()) as an p.#, ,-module. Hence, v is an
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isomorphism. Then, the isomorphism L(\)/M()\) =2 LIAM)R- - - K L(A(M) together
with the definition of M (\) implies (iii). O

5.3. For an algebra <7, let &/ -mod be the category of finitely generated «7-modules,
and Ko(«/ -mod) be the Grothendieck group of & -mod. For M € «-mod, we
denote by [M] the image of M in Ky(</ -mod).

5.4. For A, € Af (m), let
d)\u = [W()‘) : L(/’L)]Fyn,r

be the multiplicity of L(p) in the composition series of W(A) as p.7, r-modules,
and

E/\u — [W()\(l)) X..- gw()\(r)) : L(#(l)) X... XL(#(T))]FUq(g)

be the multiplicity of L(p™®) X --- X L(u™) in the composition series of
WO K- KW (A" as pU,(g)-modules. Put

D= (d/\u),\,ﬂeA;T(m)’ D= (aku))\,ue/};y,‘(m)’
X = (@an) s peat ) B = (Bxu) s et (m)°

Then the decomposition matrix D of p.7, . is factorized as follows.
THEOREM 5.5. We have that B- D =D - X.

PROOF. By the definitions, for A € A}, (m), we have

W= > dalL(u)]

MeAz,r(m)
= Y du( Y awleM)®--mLe)
REAL - (m) veAL ,(m)

Z ( Z dew) LYK - & L™

VG/W,T MGAi,r(m)

in Ko( pU4(g) -mod). On the other hand, by taking a suitable modular system for
Fn,r, We have

W= > W) R "W ()]
pEAL . (m)
= Y (Y duizeMmE-mLeD))
HEAL . (m) vEAS - (m)

S (X Sl eV B L)

vEAL (m) peAL . (m)

in Ko( rU,(g)-mod). By comparing the coefficients of [L(v(V) K- .- & L(v(")], we
obtain the claim of the theorem. O

As a corollary of Theorem 5.5, we have the following formula. This formula has
already known as the product formula for decomposition numbers of r.7, , studied
in [Saw| by another method.
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COROLLARY 5.6. For A\, u € AT (m) such that ((\) = (i), we have

n,r
s
dyy =dx, = H dxtk) )
k=1

where dyw 0 = [W(AF) : L(u®)] is the decomposition number of rU, (gl
modules.

mk)_

PROOF. By Lemma 2.6 (i), for A, pi, v € A}, (m), if B, dy, # 0, then we have
A > v > p. Thus, if ((A\) = ((u), we have

Z B)\uguu = Z 5)\1/Euu = E)\/L?

UGAI,T(m) VEAi,r(m)
CN)=¢()=¢(n)

where the last equation follows from Lemma 2.6 (i) and (iii). Similarly, by using
Lemma 5.2, we see that ZueAi (m) dx,xy, = dy,. Hence, Theorem 5.5 implies the
claim of the corollary. Y O

REMARK 5.7. In [SW], we also obtained the product formulae for decomposi-
tion numbers of g.#, , which are natural generalization of one in [Saw] as follows.
Take p = (r1, -+ ,ry) € Z%, such that ry +--- + 7, = r as in 3.5. Then, for
A € A (m) such that ¢P(\) = (P(u), we have

g
(5.7.1) day = H dyikip ,Fp
k=1

by [SW, Theorem 4.17], where d)\[k]p#[kh, is the decomposition number of .7, r,
(ng = |AFlp|) with parameters ¢, Qp, 11, » Qpy1r.- However, the formula (5.7.1)
for general p (# (1,---,1)) is not obtained in a similar way as in Corollary 5.6 since
p?iyr does not realize as a subalgebra of p.#,, , in a similar way as in Lemma 2.2,
where g} | is a subquotient algebra of rnr defined in [SW, 2.12]. (Note that

F?Zm =D omg P Q- Q pFn,r, by [SW, Theorem 4.15]. Thus,

T
nit+-t+ng=n g9
ifp=(1,---,1), F&”i’r coincides with the right-hand side of the isomorphism
in Lemma 2.2.) Hence, in order to obtain the formula (5.7.1) for general p, it is

essential to take the subquotient algebra F?Z,r as in [SW].

For special parameters, we see that the matrix X becomes the identity matrix
as the following corollary.

COROLLARY 5.8.

(i) Q1 = Q2 =~ = Qr = 0, the matrix X is the identity matrix. In
particular, we have D = B - D.

(i) fg=1, Q1 = Q2 = --- = Q, (not necessary to be 0), the matrix X is
the identity matrix. Moreover, we have D = B if char F' = 0.

PROOF. Assume that @1 = @2 = --- = @, = 0. We denote by
By = 10 Ef /[ (resp. Fy =10 F /) € F U a4y = pFnsr.
By the triangular decomposition of p.7}, », we have

A _ (ill1kllvcl1)7"'7(7‘.2’7162/’62/) ((’/1) (C;,) (01) (Cl)
k) = D T krreny o ke Foiky Far ke By Bk T
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(i/lvk/hcll)w"' 7("‘2/ 7kl/l )C;l)
(i1,k1,¢1),0 (41, k,c1)

Claim A : If

(7;/17kI17C/1) (i k) (c)) (e}r) (c1) (e1)
T(i1,k1761)7 (ZfJﬂlcl)l # 0 and F( llk/) ' F( zlu l/)E(Zl k) E(ilvkl)1>‘ 7& 0,

then we have (A + croi, ky) + - + cag, 1)) = C(A).

Note that Q1 = Q2 = --- = Q, = 0, we see easily that pJ7, , is a Z/rZ-graded alge-
bra with deg(7) = 1 and deg(7}) = 0, where we put k = k +rZ € Z/rZ for k € Z.
We can also check that my (A € A4, ,(m)) is a homogeneous element of o

Since of; ) (ma) =mx- (Ly4r+--- + Ly am) (N = Y MO+ ;k)) we

have o} ;. (m») is homogeneous and deg(o7; ;) (mn)) = deg(m,\) +1. On the other
c (C//) c

hand, by [W, Lemma 6.10], we see that F((l 12,) e F(i;i,kl’,)E((ill,)kl) E((”l)kl)lh(m,\)

is a homogeneous element of p.J7, , with degree deg(my) if i; # my, for any

j=1,---,1. (Note that i; # my, for any j = 1,--- [ if and only if i;-, # myy,

for some 7 € F. First, we prove the following claim.

for any j/ = 1,---,l' since U(/\i By = 1)\0'(>\ 1 1A from the definitions.) Thus, if
(i’l,ki,c/l);u NOIR AR (c1) (e1r) (c1) (c1)
Tlivkver)o (ko) 7 0 and Faluny o Fl s By B kyIa # 0, then

there exists j such that i; = my,, and this implies that
C()\ + C1O(4y ky) + -4 cla(ihkl)) b C()\)

Now, we proved Claim A.
We have already shown that zyy = 1, and xy, = 0 for A # pu such that
¢(A\) = ¢(p) in Lemma 5.2. Thus, it is enough to show that x5, = 0 for A\, u € A (m)

such that ((A) # C(u).
Suppose that xy, # 0 for some A, u € A (m) such that {(X) # ¢(u). We

recall that L()\) = .7, - Uy, where Ty = vy +rad W()\) € W(\)/rad W(X) = L(A).
Then, it is clear that L()), # 0. This implies the existence of a non-zero element
v’ = ZT(ihkl),“',(’ic,kg)F(mk/,k’)F(i1,k:1) o Fl k) x € LON) (TG ky) e (i ko) € F)
such that E(; ) - v = 0 for any (i, k) € I';(m), where the summation runs

{((ih k1), (ic, ke)) € (F;/;(m))c | iy hy) T+ Qi k) = a}
for some a € Ga(z’,k)eﬂg(m) Zag iy Namely ' is a pUg(g)-highest weight vec-
tor of highest weight p/ = A\ — a — a(p,, &). It is clear that ((\) = ((A — ).
Since E(m, k) (k # k') commute with Fi,,, , xy and Fi; 1y ((4,1) € I'y(m)), we have
that E,, k) -v" = 0 for any k € {1,---,7 — 1} \ {¥'}. On the other hand, for
((i1,k1), -+, (ic  ke)) € (1"9’!(m))C such that o, ) + -+ a(, k) = a, we have

(5.8.1)
Em k) Emg k) Flir ) = Flic,ke) - OA

_ A=) (=)D g Ao
= {F(mk/,k:’)E(mk/,k:’) + ( k (¢ T my k') — qa(l,k,ﬂ))l,\_a)}

Ix—aFliy k) - Flic,ke) - O
Note that ((A — a) = (()N), (5.8.1) together with Claim A implies that
Emy k) Em k) Fliy k) = Flicke) - 0a = 0.
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Thus, we have
E(mk/,k’) . U’ = Z’/‘(il’kl))... ,(ic,kc)E(mkr,k’)F(mk/,k’)F(il,kl) A F(ic,kc) = 0.

As a consequence, we have that E(; ;)-v" = 0 for any (4, k) € I''(m), and this implies
that %, , - v is a proper p.%}, -submodule of L()\). However, this contradicts
to the irreducibility of L(\) as g7, -module. Thus, we have that x), = 0 for
A\, € A, (m) such that ¢(A\) # ¢(u). Now we proved (i).

Next we prove (ii). Let p.%, . (resp. rt,) ) be the Ariki-Koike algebra over F°
with parameters ¢ =1,Q; =---=Q, =0 (resp. ¢ =1,Q] =---=Q. = Q" #0),
and p.7, , (resp. FY/W) be the cyclotomic ¢-Schur algebra associated to pJ%;,
(resp. pJ%, ). We denote by Ty, Ty, -+, Ty (vesp. Ty, T7,---,T;_;) the gen-
erators of g7, . (resp. p%;,,) as in 1.1. Then we can check that there exists
an isomorphism ¢ : g, . — gt . such that ¢(Tp) = Ty — Q" and ¢(T;) = T
(1 <i<n-—1). We can also check that M* = M'" for ;1 € A, (m) under the
isomorphism ¢, where M*" (resp. M'") is the right p.J#, ,-module (resp. p.J7, -
module) defined in 1.3. Thus, we have p.%,, = p., . as algebras. Then (i)

implies (ii) since D is the identity matrix when ¢ = 1 if char F' = 0. O

REMARK 5.9. (i) In Theorem 5.5, the matrix B - D does not depend on the
choice of parameters @1, -- ,Q,.

(ii) If p.#, , is semi-simple, both of D and D are identity matrices. Thus, we
have B = X.

(iii) By Theorem 5.5, for A\, u € A} ., we have

n,r
d)\u + Ty = E /6/\l/d1/;1, - E d)\l/xl/;t'
vead . vead,,
' A>v>p

Thus, we see that the matrix B - D gives an upper bound of both dy, and xy,.

6. The Ariki-Koike algebra as a subalgebra of .7, ,

In this section, we consider the algebras over an commutative ring R with

parameters ¢, @1, -+ ,Q, € R such that ¢ is invertible in R.

6.1. For yu € A, ,(m), put
Xirapn = {1,841, 5N 115N G2, - SNF1SNG2 - “SN+METI—1}’
Xl = 1L SN—1,SN—18N—2," ", SN_18N—2 " SN*MEk)*Fl}’

where s; = (j,j + 1) € &, is the adjacent transposition, and

N =S5 u®O + X0 p{®. Then, by [W, Lemma 6.10, Proposition 7.7 and
Theorem 7.16 (i)], we have

(6.1.1) 1,(my) =6u,,my,
O
(6'1'2> €(i,k) (mu) =4q ui+1+1mﬂ+a(i,k)( Z qZ(y)Ty)7
yexﬁ+a(i,k)
O v
(6.1.3) fap(mu) =g “mu—au.mhf(i,k)( >, " )TI)’
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1 (i # my,)
where R* ., = ) ’
Y {LN ~ Qi =) (N = [uD] + -+ [uB)).

6.2. Put w = (0,---,0,(1")) € A}, (m). Then, it is clear that M* = g%, . as
right g7, ,-modules, and that 1, r S, 1, = End, e, (MY M®) = g5, as
R'algebra& Put Cp = 1wf(mT_1,r—1)e(mT_1,r—1)1w7 C; = 1wf(i,r)e(i,r)1w € Ryn,r
for ¢ =1,--- ,n — 1. Then, we can realize rJ%, , as a subalgebra of .7, , as the
following proposition.

PROPOSITION 6.3.

(i) The subalgebra of r.%, , generated by Co,Cq,---,C,_1 is isomorphic
to the Ariki-Koike algebra r.7, .. Moreover, the subalgebra of .7,
generated by C1,---,C,—_1 is isomorphic to the Iwahori-Hecke algebra
RrI;, of the symmetric group &,,.

(ii) Under the isomorphism 1, p.% r1y = g, we have Ty = Co + Q- 1,,
T, =C; — q_llw.

Proor. It is clear that Cy,Cy, - ,Cpr_1 are elements of 1, p7p r1,. We
remark that the isomorphism End, s,  (M%, M*) = rJ2, . is given by ¢ — p(my,)
(note that m,, = 1). Moreover, by (6.1.1) - (6.1.3), we have

CO(mw) = ]-wf(mr_l,r—l)e(mr_l,r—l)1w(mw)
= mw(Ll - Qr)
Since m,, = 1 and L; = Ty, we have Cy(my,) = Tp — @,. Similarly, we have
Ci(my) = Ty+q 1 fori=1,--- ,n—1. Thus, .5, , is generated by Cy,C1, -+ ,Cp_1
under the isomorphism 1, g%, 7 1u = rIG, r, and rI4, is generated by Cy, -+, Cp_1.
Now, (ii) is clear. O

6.4. Let F = Hom, s, (rZnrlu, =) rnr-mod = g4, . -mod be the Schur
functor. Then, for M € g%, ,-mod, we have that F(M) = 1,M under the
isomorphism 1, g% rly = g, . It is known that {1,L(\) # 0|\ € A}, (m)}
gives a complete set of non-isomorphic simple .7, ,-modules when R is a field.

Let e be the smallest positive integer such that 1+(¢?)+(¢*)*+--- (¢*)¢~* = 0.
We say that a partition (not multi-partition) A = (A1, Aa,---) is e-restricted if
Ai — Ait1 < e forany i > 1.

As a corollary of Corollary 5.8, we have the following classification of simple
rC,, ~~-modules for some special parameters. We remark that this classification
has already proved by [AM, Theorem 1.6] and [M1, Theorem 3.7] by the other
methods.

COROLLARY 6.5. Assume that R is a field. If @1 = Q2 = --- =@, = 0 or
¢=1,Q1=Qy=---=Q,, then 1,L()\) # 0 if and only if \(*¥) = () for k& < r and
A7) is an e-restricted partition.

Proor. By Corollary 5.8, we have that 1,L(\) # 0 only if ((x) = ¢(A). In
particular, we have that A(*) = 0 for any k < r if 1,L()\) # 0. On the other hand,
L) =2 LAW)R - K L(A") as grU,(g)-modules by Corollary 5.8. In particular,
when A®) = () for any k < r, we have that L(\) = L(A(") as gU,(gl,,, )-modules.
Moreover, it is well known that 1,L(A(")) # 0 if and only if A(") is an e-restricted
partition ([DJ, Theorem 6.3, 6.8]). These results imply the corollary. O
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