

Doctoral Dissertation (Shinshu University)

On the development of a web-based toolkit for supporting reviews of the
quality and contents of iStar requirements models

September 2017

MEJRI HAJER

Abstract
 Choosing a paradigm or methodology to teach when incorporating the requirements engineering (RE)

subject in engineering curriculum is delicate and challenging as a fundamental question may arise: Which

of the existent methodologies is the best and the most suitable for this “holy” mission i.e. educational

situation?

 In this context, the i* framework and its modeling language (the i* language), a widespread and popular

goal- and agent- oriented approach, has witnessed efforts on its introduction in engineering levels

worldwide.

 Despite its simplicity, as the i* language is constituted basically by a simple set of graphical constructs

which can be used in exactly two types of diagrams: the Strategic Dependency (SD) and Strategic

Rationale (SR), as well as the existence of the i* wiki portal that provides a collection of modeling

guidelines, rules and best practices; there is still misconception, misinterpretation and misrepresentation

depicted in novice learners’ built diagrams which suggest their lack of the i* modeling language syntax

and semantics grasping.

 Like any other existent modeling technique, it is consolidated by free computer-assisted tools that offer

a number of functionalities to help users, in our case students particularly the novice learners, sketch their

requirements models as well as check their quality. However, the freely accessible tools that we

investigated so far do not cover neither implement the complete list of i* rule checks and this may hinder

the production of good quality models. To put it more simply, we gathered evidences of these tools’

limitations which indicate that there is no complete and solid support for the i* framework’s novice

learners on the model quality checking side.

 Accordingly, we reviewed a decent portion of the existing literature and we discovered that only little

work was devoted to enhance the syntactical quality of the i* models and unfortunately, to our knowledge,

the model content validation was left totally neglected. Obviously, more effort on model checking and

validation is needed to allow better support and experience of the i* goal modeling’s novice learners.

 The contribution of this thesis is twofold. It addresses the aforementioned issues as it adds the necessary

support facilities by developing a web-based toolkit which is model quality checking- and content

validation- oriented tools. Thus, it aims at guiding new users to review and revise the quality and contents

of their diagrams without the help of a human assistant nearby.

 The development process was performed individually in series of steps, addressing first the construction

of model quality checker called i*Check in which we tried to cover the wiki-based and derived list of

checks for both types of i* models by returning clear feedback consolidated with suggestions consisting in

correction-oriented GIF animations and in a like manner, the building of i* model content validation

system aka GENERATi*ON which returns to its users the model’s structural and informational (textual

annotations) content in a table of contents (TOC) format.

 The effectiveness of our toolkit was investigated through several experimental tests in which we asked

new learners to debug a series of i* diagrams to evaluate how each tool can guide them to locate and

correct defects in given models. Results were positive and promising indicating the benefits that novices

can get when having such tools around since it is unlikely that an instructor or assistant will always be

nearby to offer advice on diagram construction and content validation.

Acknowledgments

It is a great pleasure to thank the many people who supported me along my Ph.D. studies route.

Words will never be enough to express my gratitude to my advisor Pauline Naomi Kawamoto for her

constant and precious guidance throughout my doctoral program, for the time spent on discussing and

accurately reviewing all the research work of this thesis. Besides her scientific competence, I enjoyed a lot

her expertise, her patience, her understanding, her comprehension in my darkest hours and her positive

attitude to make a friendly work atmosphere. I learned much more than scientific concepts from her, and

her enthusiasm has been fundamental to overcome all the difficulties which arose in these three years.

Thank you so much for having your office always Open for me! Also, you helped me in many things

outside my studies which are related to my everyday life in Nagano. Thank you very much!

I would like to thank the internal and external reviewers of this thesis, for their careful reading and for

their valuable comments, suggestions and detailed feedback which served as a very useful inspiration for

refining the final version of the thesis.

I really appreciate the opportunity to collaborate with Kawamoto laboratory past and present members. I

found very valuable colleagues with whom I shared work and entertainment. I would like to thank all the

students participating in the experimental studies conducted in the context of my research without whom,

the evaluation of the research results would not be possible.

Unreserved thanks to all who made bearable the challenging moments through their friendship, care and

support.

Finally, I am eternally grateful to my parents and siblings for their unflagging love and support throughout

my life. Many Thanks to all of you, this thesis would have no sense without you all!

i

OOn the development of a web-based toolkit for supporting reviews
of the quality and contents of iStar requirements models

Contents

Chapter 1. Introduction………………………………………….………………………………1
 1.1 Research context………...……….…………………………………………………….……………………………………...1
 1.2 Problems Statements...……..……….………………………………………………….……………………………………...2
 1.2.1 Checking limitations of the existent i* modeling tools ………..………………….…………………………………….2
 1.2.2 The lack of i* model validation …………………………………...…………...3
 1.3 Research goals………………………………………………………………….…………………….……………………….4
 1.4 Proposed solutions…………………………………………………………………….………………………………….…..4
 1.4.1 i*Check: an online free tool to detect and suggest correction to i* models defects………………………………….….5
 1.4.2 GENERATi*ON: an approach for model content review and validation…..….5
 1.5 Thesis structure……………………………………………………………………………………..…………………………5
Chapter 2. Background baselines…...….……………………………………………………......7
 2.1 Requirements Engineering……..…………………………………………………………………………………...................7
 2.2 Early Requirements Engineering………………………………………………...8
 2.3 Goal Modeling……………………………………………………………………………………………………..……...…..9
 2.4 The i* Framework in detail………………………………………………………………..13
 2.4.1 Overview of the i* Models…………...………………………………………………………………………………...15
 2.4.1.1 The Strategic Dependency (SD) Model…..…………………………………...……………………….………15
 2.4.1.2 The Strategic Rational (SR) Model…………...………………………………………………………………..17
 2.4.1.3 Concepts not covered (out of this thesis scope)....……...………………………………………………………20
 2.5 Summary……………………………………………………………………………………………..……………..…………20

Chapter 3. Supporting the iStar Model Quality Review ……….……..….…………………..21
 3.1 Overview of a selected set from the freely existing i* modeling tools.........…………………….…………………………..21
 3.1.1 HiME (Hierarchical i* Model Editor)…………………………………………………….………..……………...…...22
 3.1.2 OpenOME: an Open-source Goal and Agent-Oriented Model Drawing and Analysis Tool………………...………...23
 3.1.3 iStarTool………......24
 3.2 Why another model checker is needed?.. ...25
 3.2.1 Examples of checking and feedback weaknesses of the surveyed tools……………………………………………….26
 3.2.1.1 The HiME case…………………………………………………………………………………………………26
 3.2.1.2 The OpenOME case…………………………………………………………………………………………….26
 3.2.1.3 The iStarTool case………………………………………………………………………………………...........27
 3.3 i*Check: Description and Evaluation…….…………………………………………………………………………………..29
 3.3.1 Approach Overview……………………………………………………………………………………………….........29
 3.3.1.1 Feedback improvement………………………………………………………………………………………....31
 3.3.2 iStarML: Definition and Basic Structure………………………………………………………………………….........32
 3.3.3 Specification of System Requirements using i*…………………………………………………………………..........33
 3.3.3.1 Model quality checking for Strategic Dependency diagrams…………………………………………………..34
 3.3.3.2 Model quality checking for Strategic Rationale Diagrams………………………………………………..........35
 3.4 Evaluation of the i*Check prototype………………………………………….………………………………………...........36
 3.4.1 Detection and correction of errors in i* SD diagrams by novice learners using i*Check……………………………...36
 3.4.2 Detection and correction of errors in i* SR diagrams by novice learners using i*Check……………………………...39
 3.4.2.1 SR rule violation detection/correction tasks………………………………………………………………........39
 3.4.2.2 Experimental Results…………………………………………………………………………………………...40
 3.5 Observations………………………………………………………………….………………………………………............41
 3.5.1Discrepancies in interpretation of iStarML constructs………………………………………………………….............42
 3.6 Summary………………….…………………………………………………………………………………………………..44

Chapter 4. Supporting the iStar Model Content Review and Validation…………………...45

 4.1The lack of i* model review for validation……………………………..…………………………………………………....45
 4.1.1 Examples of observed model content deviations………………………………..……..……………………………...46

 4.1.1.1 Misrepresentation of intended requirements………………………………………...………………………...46

ii

 4.1.1.2 Misinterpretation of design constructs…………………………………………………………………………49
 4.2 GENERATi*ON: a tool to assist beginners in reviewing and validating iStar diagrams’ contents…………………………50
 4.2.1 Development description……………………………………………………………………………………………….51
 4.2.1.1 Suggested and developed generation templates………………………………………………………………...53
 4.3 Summary……………….……………………………………………………………………………………………………..56

Chapter 5. Conclusion and Future Work…………....………..…………………………….…57

 5.1 Synthesis…………………………………...……………………………………………………………….………………..57
 5.2 Contributions……………………………………………...………………………………………………………………....58
 5.2.1 i*Check: an online free tool to detect i* models defects……………...……………………………………………….58
 5.2.2 GENERATi*ON: an approach for model content review and validation……………...……………………………...59
 5.3 Future work…………………………………………………………………………………………………...……………...60

References....……………………………………………………………………………………………...61

Appendix A. Source code and screenshot of the toolkit homepage…………………………………...64

Appendix B. Source code and screenshots of the i*Check tool...……….......…………………............69

Appendix C. Source code and screenshots of the GENERATi*ON tool………………………….....133

List of Figures……………………………….…………………………………………………….............iii

List of tables………………………………………….………………………………………………….....v

iii

List of Figures

Figure 1.1: Excerpt from an i* model including some examples of defects proving the bad practice………...............3
Figure 2.1: the elevator example of KAOS goal modeling………………………………...11
Figure 2.2: GBRAM modeling activities………………………………………………………..................................12
Figure 2.3: An example of the NFR framework………………………..13
Figure 2.4: The i* Metamodel…………………………………………...14
Figure 2.5: The meeting scheduler example (SD model)………………………………………………......................15
Figure 2.6: Graphical Notations of Actor, Agent, Role, Position and Association…………………….......................16
Figure 2.7: Graphical Notations of Dependencies Types……………………………………………………..............17
Figure 2.8: Example of SR Model “from the Trusted Computed Case Study”……………………………………….18
Figure 2.9: Graphical symbol of different Intentional Elements………………………………………………...........18
Figure 2.10: Graphical Notation of ME links………………………………………..………………………..............19
Figure 2.11: Graphical Notation of Task-Decomposition links……………………………………………………….19
Figure 2.12: Graphical Notation of Contribution links………………………………..………………………………20
Figure 3.1: General view (main window) of the HiME tool (source: Fig.1, p.4 from [36])…………………………..22
Figure 3.2: An example showing the iconic filling difference between SR internal elements (a) and external elements
aka dependencies nodes (b)…………………………………………………………………………………………...23
Figure 3.3: A screenshot of the OpenOME tool………………………………………………………………………24
Figure 3.4: Screenshot of the iStarTool interface…….……………………………………………………………….25
Figure 3.5: An example showing a goal depicted as a Means “Merge Available Dates” in order to achieve a high-
level goal which is an End “Find Agreeable Slot” (screenshot was taken from [5])………………………………….26
3.6 Screenshot of the returned checking feedback offered by OpenOME checker…………………………...............27
Figure 3.7: A screenshot of the returned checking feedback offered by iStarTool syntax checker…………..............28
Figure 3.8: i*Check tool, whether used in a classroom setting or elsewhere, it evaluates the Strategic Dependency
(SD) and Strategic Rationale (SR) models and indicates the syntax problems to be fixed and the animated steps for a
particular defect correction……………………………………………………………………………………………30
Figure 3.9: In addition to a textual description of each error detected, the i*Check tool offers suggestions on how to
fix the error in short animations……………………………………………………………………………………….31
Figure 3.10: the <iStarML> syntax………………………………………………………………………....................33
Figure 3.11: Sample test item with four defects given to participants to debug……………………………...............37
Figure 3.12: i*Check web tool checks for rule violations in an SD diagram and provides correction hints with text
and GIF animation……………………………………………………………………………………….....................38
Figure 3.13: SR construct error debugging experiment with users receiving: 1) no feedback from existing tools, 2)
some tool feedback, and 3) some tool feedback with i*Check rule violation summary information………………...39
Figure 3.14: (a) Part of SR diagram showing the internal elements of an actor, specifically a task (Plan the route)
decomposed to a subtask (Prepare list of customers) and a resource (Map). (b) iStarML output from Tool A (HiME)
showing ielementLinks as children of the Plan the route task. (c) iStarML output of Tool B (OpenOME) where
ielementLinks are given as children of decomposing ielements, i.e., Map resource and Prepare list of customers
task…….43
Figure 4.1: Example of wrong direction of the dependency relationship. There is no syntactical error in the
application of the design rule, but the intended meaning (“The system depends on the student to submit an
assignment answer.”) is depicted in the reverse direction…………………………………………………………….46
Figure 4.2: Checking the meaning of each piece of information in a requirements model can become tedious for a
human when (a) the number of components in a model grows and (b) tracing the human-readable istarML data of the
model requires jumping to different areas of the file to compile one piece of information. (c) An automatic summary
generator extracting the i* model backbone elements from the XML data and listing the basic requirements
information in short natural language sentences could help novices more easily find errors in the model
contents……..48
Figure 4.3: Example of goal refinement showing that a single means is the only (sufficient) way to achieve the goal.
Beginners forcing multiple alternatives to be listed for each goal will see no syntax errors in their diagrams, but may
be introducing irrelevant components without realizing it……………………………………………………………49
Figure 4.4 An overview of the model validation activity using the GENERATi*ON tool…………………...............52
Figure A.1: Toolkit homepage interface [39]…………………………………………………………………………64
Figure A.2 Overview of the i* model quality and content reviews toolkit architecture………………………………65

iv

Figure B.1: Description of i*Check tool’s components for SD and SR checking respectively………………………69
Figure B.2: An example of selecting an SD model “sd3” to submit to the i*Check prototype……………………….70
Figure B.3: Example of feedback returned from i*Check showing an error in a SD model………………………….70
Figure B.4: The GIF animation corrective steps to solve the error detected in sd3.istarml file………………………71
Figure B.5: An example of selecting an SR model called “SROME09” to submit to the i*Check prototype………..85
Figure B.6: The feedback returned from i*Check showing a list of errors in SR model……………………..............86
Figure B.7: Example of GIF animation offering steps to correct a specific SR error…………..…………………….87
Figure C.1: Description of GENERATi*ON tool files and the interrelation (interaction) between them…………..133
Figure C.2: An example of selecting an i* model “BookStoreParagraph3” to submit to the GENERATi*ON
tool………...........134
Figure C.3: Generated Table of Contents where all information is encompassed either by actors or
dependencies……134
Figure C.4: Detailed view of the Table of Contents where all information about the internal elements of SR model as
well as dependencies is presented to the user……………………….…………………………….............................135

v

List of tables

Table 3.1 Core concepts of i*-based modeling languages and proposed XML tags for iStarML…………33

Table 3.2 Basic SD rule checks implemented on freely available i* tools versus i*Check….....................34

Table 3.3 Basic SR model rule checks implemented on i* freely available tools versus i*Check………..35

Table 3.4 Results of i* SD diagram debugging tasks using various feedback sources……………………38

Table 3.5 Experiment Trial 1 Results……………………………………………………………………...40

Table 3.6 Experiment Trial 2 Results……………………………………………………………………...40

Table 3.7 Experiment Trial 3 Results……………………………………………………………………...41

1

Chapter 1. Introduction

 This chapter provides an introduction to this PhD research work. Section 1.1 describes the context of

the present research, section 1.2 focuses on stating the problems addressed in this thesis, section 1.3

highlights the research goals, section 1.4 briefly introduces and discusses the proposed solutions for each

mentioned issue i.e. our research contributions and finally, section 1.5 outlines this document structure.

1.1 Research context
 Throughout the years, a significant number of approaches and methodologies have been formulated and

proposed in order to assist the complex and the successful information systems construction. Particularly,

there exist some efforts which concentrate on obtaining a richer understanding of the organizational

environment before even starting the development of the future software systems [1]. In this sense, a

considerable amount of attention has been paid to the early stage of Requirements Engineering (RE) and

which resulted in developing numerous techniques and modeling languages.

 During this phase, namely the early RE, the requirements engineer attempts to determine: a) the

intentions (goals) and the social relationships (dependencies) of the different actors, b) the role of the

software system-to-be in the organizational context by identifying the reason ‘the why’ i.e. the need

behind its construction, c) the impact of the system in the performance of the organizational processes,

and d) the alternatives that may be considered to meet the original objectives. Hence, the captured

knowledge will permit building a software system that works harmoniously within the organization

processes.

 In this context, the i* (iStar) framework [2], a well-founded and widespread RE framework and

modeling language in use today since it allows expressing the intentional and the explicit social relations

between actors as well as describing the internal behaviors which are either behind or working to satisfy

the actors dependencies.

2

 Its modeling language blends concepts coming from both goal-oriented RE (e.g., goal) and agent-

oriented RE (e.g., agent). As a goal-oriented language, it aims to include the ‘why’ of the decisions taken

during system development. As an agent-oriented language, it includes the notion of agent and even more

generally, the notion of ‘actor’.

 This framework is gaining a lot of attention, particularly, in being one of the top candidates for

introducing requirements engineering (discipline) methodologies in undergraduate and graduate

engineering programs worldwide [3, 22, 23, 24, 25, 26, 27, 28, 29]. Despite its simple set of graphical

constructs, mastering the techniques of expressing system requirements using the i* language is not

straightforward for novice learners aka students. It typically requires some practical training time to learn

and grasp its concepts [3] and subsequently model the world under study in a correct way which proves

that novices understand the domain knowledge and information that are shown in their visual depiction.

1.2 Problems Statements
 In this section, we present the main problems that we addressed in this work, namely: a) the confusion

and misunderstanding that novice learners may face in their i* modeling and learning journey and which

mainly stem from the incomplete and limited checking features provided by the freely available tools and

b) the absence of i* models’ contents review and validation approaches.

1.2.1 Checking limitations of the existent i* modeling tools
 The i* framework has been increasingly used by the requirements engineering (RE) community

generally and in particular, it is has been utilized to introduce and teach the RE discipline along other

related courses such as System Information Analysis and Process Modeling in engineering programs. This

fact is encouraged by the existence of a spectrum of i* language variants’ family, state-of-the-art

computer-aided modeling systems and most importantly a dedicated i* Wiki page [4], which is a rich

collection of modelling constructs, documentation, conventions and guidelines and best practices.

However, applications of some of its concepts are not straightforward for the novice learner and will

require practical training time and intensive effort to master the techniques [3].

 Now, in surveying the freely available i* tools [5][6][7][8] that could be used in a classroom setting for

this type of training, we found that none of them provides nor implements the full set of (in-depth) syntax

checking features for detecting errors in the application of the core specification and modeling concepts.

Even when a rule violation is detected in a model, the error message generated sometimes does not

provide adequate and accurate information to direct and guide the beginner on how to fix the problem at

hand. In other words, the studied tools are only equipped with limited checking features sometimes with

poor, ambiguous or even misleading error message explanation which is amenable to originate different

3

interpretations and also can create confusion and misunderstanding for students studying alone or even in

a large classroom setting where it is unlikely that an instructor or teacher assistant will always be nearby

to offer advice on diagram construction and to review its content for subsequent validation purpose and if

possible, it may be error-prone, time consuming and tedious task for him/her. To sum up, this problem is

important in the specific case of i* especially when models become large and complex, checking rules

compliance becomes fundamental and difficult to achieve without the support of the automatic tools

particularly when the produced models would reveal quality deficits which means much more effort is

expected to fetch errors, correct them as well as unlearn the acquired modeling bad practices and habits.

 Figure 1.1 presents an i* model which contains and highlights some examples of i* rules violation and

bad modeling practices.

Figure 1.1: Excerpt from an i* model including some examples of defects proving the bad practice

1.2.2 The lack of i* model content validation
 The main challenge in systems development is that of building the right system – one that meets the

user needs at a reasonable cost. The key to achieving this goal lies in the early stages of systems

development, i.e. during the requirements engineering process where the requirements of the system to be

built are analyzed and often described using a conceptual model. It is essential that the constructed model

of the system correctly represents the piece of reality under consideration i.e. domain knowledge.

4

 The process of ensuring that a model possesses these qualities (coherence between the results and their

original specifications) is called validation which is often an informal process where different stakeholders

participate including people with limited knowledge of the modelling activity and the system design. In

other words, the audience of these models ranges from well-trained requirements engineers and

developers to casual staff members who are inexperienced in terms of modeling languages and may have

severe difficulties in reviewing, understanding, evaluating and subsequently validating a model.

 Accordingly, one could argue that the amount of information included in i* both conceptual models,

namely the SD (Strategic Dependency) and SR (strategic Rationale) may be a subject to validation and

compliance’s review and checking. Hence, in our interest, the novice learners of the i* graphical notation

who are inexperienced with the created requirements models may need the chance to validate the structure,

behavior and the informational content of their sketched models.

1.3 Research goals
 As the title of this thesis “On the development of a web-based toolkit for supporting reviews of the

quality and contents of iStar requirements models” suggests, the aim of our research is to face quality

issues on models raised by the usage of the i* (iStar) as well as its provided tools. To do so, we fixed two

specific objectives for this work:

1) To complement the existing tools’ checking features by constructing a thorough online i* model

quality checker, called i*Check, of almost all specification concepts and modeling rules and

conventions presented in the guidelines of the i* Wiki guide. The tool offers different kinds of

feedback which aim to help the beginner recognize modeling mistakes and deficits at an early

building stage as much as possible and offer him corrective scenarios for each detected flaw.

2) To allow the beginners, given their limited knowledge and skills (not enough experience dealing

with the i* modeling language) to review, evaluate and validate their built i* goal models. To this

purpose, we built a web-based application which we named as GENERATi*ON. Our tool permits

the generation of a table of contents from an input XML-based representation of a certain i*

model for the purpose that consists in validating the “submitted” model content.

1.4 Proposed solutions
 In the context of achieving the goals of this research work, this thesis work provides the following

contributions consisting namely in developing a free web-based toolkit.

5

1.4.1 i*Check: an online free tool to detect and suggest corrections to i* models defects
 One contribution of this research work is the proposal and the development of an online tool which

aims to detect i* models defects and return helpful feedback to novice learners. i*Check covers a

predefined list of checks to support the deep and extensive evaluation thus the checking of the created

diagrams. The idea is to let students (beginners to the i* framework) upload the istarML file, an XML-

based version of their built i* diagrams, and request the online checking service provided by our tool in

order to subsequently obtain feedback for any existing modeling flaw. To sum up, we aim to help the

novices consider and improve their models quality.

1.4.2 GENERATi*ON: an approach for model content review and validation

 With the objective of addressing the problem of validating i* goal models content and helping the

students and novice users review and understand what it has been depicted in the diagramming format

they built; an approach for generating table of contents (TOC), i.e. summary, from an input i* model is

proposed and accordingly, a web application was developed for this purpose. It consists in translating and

verbalizing, corresponding to some semantic features of the i* modeling language, the structural i.e.

different types of relationships as well as the textually annotated i* diagram elements aka the constructs’

labels. As a result, the manual step of model content validation is reduced to just one single click.

1.5 Thesis structure

The organization of this thesis is presented in:

Chapter 1. Introduction

This introductory chapter highlights the research context and provides a brief overview of the issues

analyzed in this thesis, research goals and the proposed solutions. Put differently, it presents the research

work roadmap.

Chapter 2. Background baselines:

This chapter was intended to give the background of the dissertation, by paving the way for the

Requirements Engineering overview, the existing goal modeling approaches to finally focus on the i*

framework which is the center of our research interest.

6

Chapter 3. Supporting the iStar Model Quality Review

In this chapter there is a description of the first system we developed in order to alleviate the first

motivational issue i.e. limited checking features of the existent i* modeling tools along with experimental

evaluation results as well as some observations.

Chapter 4. Supporting the iStar Model Content Review

This chapter presents the solution we proposed in order to address the second problem of this research

work namely the lack of i* model contents validation against facts and domain knowledge.

Chapter 5. Conclusion and future work:

This chapter summarizes the contributions of the thesis and gives insights for future work.

7

CChapter 2. Background baselines

 This chapter has the objective of providing the necessary background knowledge to understand the

remainder of the thesis. It describes the relevant concepts, the theoretical foundations and the context of

the present work. The chapter is organized as follows: Section 2.1 introduces an overview of the

Requirement Engineering (RE) phase. Section 2.2 focuses on the early RE area. Then, section 2.3 presents

the Goal modeling approach. Section 2.4 is concerned with providing an overview of the i* framework.

2.1 Requirements Engineering

 Requirements Engineering (RE) is a specific discipline of the software engineering. Being itself a

process, it is recognized as being the most critical phases in software development.

Its main task is to generate correct specifications that clearly, unambiguously, consistently and compactly,

describe the behavior of the system-to-be. Thus, it seeks to minimize problems related to systems

development. Put differently, errors made during this stage may have negative effects on subsequent

development steps and on the quality of the resulting software.

 In the RE process, we can distinguish two groups of activities. The first group is related to the

requirements development and the second group gathers activities classified as requirements management

activities. The former group contains activities for requirements elicitation, analysis, specification, and

validation. On the other hand, requirements management covers establishing and maintaining an

agreement with stakeholders on the requirements, controlling the baseline requirements and their changes,

and finally keeping requirements consistent with plans and work products.

 This process deals not only with technical knowledge but also with organizational, managerial,

economic and social issues. In this sense, a requirement specification should include not only software

8

specifications, but also any kind of information describing the context in which the intended system will

function.

According to [9], Requirements Engineering has the following objectives (among others):

(a) Proposing communication techniques that facilitate the acquisition of information;

(b) Developing techniques and tools that result in appropriate and precise specifications of requirements;

(c) Considering alternatives in the specification of requirements and

(d) Developing executable specifications to help to speed up the production of a prototype.

 Recently, scholars have made a separation of the requirements stage between early stage RE

(organizational analysis) and late stage RE (requirements analysis) [10]. This separation of concerns

produces a differentiation between research techniques that focus on social concerns (applicable at the

early RE stage) and those that focus on technical concerns (for late RE).

 With attention to early RE, the activities in this phase are typically informal and address organizational

or non-functional requirements. The emphasis is on understanding the motivation and rationale that

underlie system requirements.

 In contrast, the late-phase RE usually focuses on completeness, consistency, and automated (formal)

verification of requirements. It is concerned with the production of a requirement document such that the

resulting system would be adequately specified and constrained in a contractual setting.

 Since in this thesis we concentrate on the early Requirements Engineering, this latter will be the subject

of the next section.

2.2 Early Requirements Engineering

 The early requirements Engineering [10] is a new research area and it is considered as one of the most

important and difficult phases of the software development process. In this phase, the requirements

engineer attempts to understand the organizational context, the goals and social dependencies of its

stakeholders in order to have the appropriate information to develop the future information system. This

phase demands critical interactions with the users since a misunderstanding at this point may lead to

expensive errors during later development stages. Not surprisingly, several approaches have been devoted

to developing languages and analysis techniques for early requirements analysis (NFR, KAOS, i*, Tropos).

9

 The main feature of these techniques is the analysis and understanding of the organizational processes

before starting the construction of an information system.

 In these approaches, it is important to determine: a) the role of the software system in the organizational

context, b) the users of the software system-to-be, and c) the impact of the system on the performance of

the organizational processes.

The resulted knowledge will help in building a software system that works harmoniously with the

organizational processes.

 Goals, a set of objectives the system under consideration should achieve in order to meet stakeholders’

needs, play a very important role in this phase; they have been recognized as a basic tool in Requirements

Engineering [11]. For this reason, they have been used in the early requirements phase to help in obtaining

both the functional and the non-functional requirements for a software system.

A reason for using goals in the early Requirements Engineering phase is that they allow the visualization

of states that an enterprise (desires) expects to achieve. Goals also provide the purpose and reasoning that

will justify each one of the requirements of the information system.

The next section presents one the main concepts that are used in the early requirements phase: the goal-

oriented modeling.

2.3 Goal Modeling
 Goal modeling is a prominent formalism that intends to address the early-phase of requirements

engineering [11], in which stakeholders, their goals (intentions) are explored and alternative system

proposals that satisfy these goals are investigated.

 In [11], Lamsweerde defines the goal concept as “a goal is an objective the system under consideration

should achieve” and it allows for capturing requirements at different levels of abstraction, from high level,

representing strategic concerns, to low level, representing the technical concerns of the system. A

remarkable quality is the possibility of recording the rationale behind them (the why), complementing the

“what” and “how” dimensions that classical modeling approaches address. In goal-oriented RE, the

relationship between the requirements and their motivating goals is represented explicitly, i.e. the goal

graph provides traceability from strategic concerns to technical details.

10

 Goals can be used for requirements elaboration, verification or conflict management. They are also used

to explain the requirements to stakeholders, and the notion of goal refinement provides a natural

mechanism for structuring complex requirement documents.

 Nowadays, several research efforts use goal mechanisms during the requirements elicitation process.

 One of the most relevant works in this field is the KAOS approach [11] [12] [13]. KAOS is a

requirement elicitation technique that provides formal rules for analyzing goals and producing

requirements based on pre-stated goals. It also provides support for finding alternatives to satisfy the

organizational goals. KAOS is a specification language based on concepts such as: object, action, agent,

goal, constraint, etc. This language uses real-time temporal logic to represent constraints on past and

future states. Hence, the use of this approach is restricted to analysts that are used to deal with formal

methods as a current concept in their modeling activities.

 This method includes classical questions, such as how and why, to refine and abstract goals in the goal-

reduction graph: the identification of pre, post and trigger conditions of goals, the identification of agents

to which goals are to be ascribed, identification and resolution of conflicts, etc.

 KAOS classifies goals into: achieve, cease, maintain, avoid and optimize goals. Achieve and cease

goals are said to generate behaviors. Maintain and avoid goals are said to restrict behaviors. Optimize

goals are said to compare behaviors [13]. This classification enables the analyst to capture the complex

organizational setting.

Figure 2.1 depicts an example of a portion of a possible goal structure of a borrower in a library system

and which is modeled by KAOS in [13].

11

Figure 2.1: An extract of a goal structure for a library system’s borrower using KAOS (source:

Fig.3, p.30 from [13])

 An additional goal-oriented method is GBRAM (Goal-Based Requirements Analysis Method) [14] [15],

in which the (high level) goals are used as the appropriate mechanisms to identify and justify the

requirements of a software system according to the business model.

 In this technique, a bottom-up approach must be followed to elicit the requirements. This is because the

goals are obtained from the description of the current processes and also from the descriptions of the

stakeholders. GBRAM is composed of two main processes: goal analysis and goal-refinement.

Figure 2.2 visualizes the different modeling activities of the GBRAM method that appears in [15].

12

Figure 2.2: GBRAM modeling activities (source: Figure 1, p.158 from [15])

 However, this method does not establish a clear distinction between the information used in the early

and late requirements phase [10]. Hence, GBRAM does not have a clear representation of the complete

process for software development.

 Another important research work on goal modeling is the NFR modeling framework [16]. It introduces

the goals of the stakeholders explicitly using a graphical notation, and uses these goals to derive system

requirements and design activities. The NFR framework uses the notion of softgoals (by definition fuzzy

or ambiguous goals) and contribution links.

 Softgoals are goals that are not satisfied via clear-cut criteria, and contribution links represent

potentially partial negative and positive contributions to such goals. These constructs produced a

qualitative framework, able to represent non-functional requirements which are more difficult to define

rigorously, such as security, performance, usability and cost. Figure 2.3 illustrates an example of a NFR

model that was shown in [16].

13

Figure 2.3: An example of a partial hierarchy for the softgoal “usability” using NFR (source: Figure

2, p.94 from [16])

 To sum up, this approach focuses on analyzing the impact of non-functional requirements in the

software development process.

 As i* framework is the main focus of this work, we will devote the next section to investigate and

explore it in details.

2.4 The i* Framework (iStar the 1.0 version)
(Almost all the definitions in this research comply with the ones existing in the i* Wiki [4] and

specifically for iStar 1.0)
 The i* (pronounced i-star where i represents the distributed intentionality) is a goal-oriented and agent-

oriented framework and modeling language proposed by Eric Yu in his PhD thesis in 1995 [2] with the

aim of modelling and reasoning about organizational environments and their Information Systems.

 This modeling framework views organizational models as networks of social actors that have freedom

of action, and depend on each other to achieve their objectives and goals, carry out their tasks, and obtain

needed resources.

 The i* methodology is different from traditional mechanisms to requirements specification that are

based on the description of what must be done in order to accomplish an organizational process.

14

 It is well equipped to expose why business processes are executed in a specific way, and also it permits

the explicit representation of the space of alternatives that exist for fulfilling a business goal. Furthermore,

it permits omitting the operational details of the processes by reducing the complexity of the business

model which allows having a high level representation of the current as well as the future enterprise

situation.

 It has spread and successfully been implemented in different contexts, e.g. Business Process

Reengineering, organizational modeling, requirements elicitation, software design and even security. As a

result, this broad scope has given rise to an extended practice in the construction and analysis of i* models

(more details can be found in i* Wiki [4]).

 The i* modeling language is constituted basically by a set of graphic constructs which can be used in

two types of diagrams.

 A metamodel for the i* modeling language (Figure 2.4), was earlier proposed and revised in [30],

describes the abstract syntax of the language by means of meta-classes, meta-associations and cardinality

constraints. It can serve as a precise description of the notation and is therefore useful in implementing

modeling tools, since it can be used as a basis to define the language syntax.

Figure 2.4: The i* revised Metamodel (taken from [30])

15

2.4.1 Overview of the i* Models
 i* is characterized by defining two levels of diagrams which are used to describe system requirements:

1) the strategic dependency (SD) model for showing how actors/agents in a system depend on one another

and 2) the strategic rationale (SR) model for expressing the goals of each actor/agent and how each goal

can be reasoned and achieved.

2.4.1.1 The Strategic Dependency (SD) Model
 It is a graph involving a network of nodes and links, as it is shown in Figure 2.5, where each node

represents an actor and each link maps out one dependency between exactly two actors. It depicts the

strategic dependencies between actors.

Figure 2.5: The meeting scheduler example [2] (SD model)

 The elements that characterize this model are stated one by one below:

Actor: is the central concept in i* and it represents an entity that has strategic goals and intentionality

within the system or the organizational setting.

The actor is an active entity (can be human, abstract, or electronic) that carries out actions to achieve goals

by exercising its know-how. So, organizational actor is viewed as having intentional properties such as

goals, beliefs, abilities, and commitments.

 The term actor is used to refer generically to any unit to which intentional dependencies can be ascribed.

By depending on others, actors may be able to achieve goals that are difficult or impossible to achieve on

their own and, consequently, they become vulnerable if the depended-on actors do not deliver what the

former ones want and need. Actors are strategic in the sense that they are concerned about opportunities

and vulnerabilities, and seek the arrangements of their environments that would better serve their interests.

16

Actors are represented graphically as a circle containing the actor name. The actor notion can be

expanded into the more specific constructs of an agent, role, or position (see Figure 2.6, left side).

 Agents represent particular instances of people, machines or software within the organization and they

occupy positions and, as a consequence, they play the roles covered by these positions (see Figure 2.6,

right side).

Actor association Links: The relationships between actors are described by graphical association links

between actors. The types of actor association links are:

� Is part of: it is used when an actor is part of another actor. Roles, position and agents each can

have subparts.

� Is a: it is used to represent a generalization with an actor being a specialized case of another actor.

� Plays: it is used between an Agent and a Role, with an Agent playing a Role.

� Covers: it is used to describe the relationship between a Position and the Roles that it covers.

� Occupies: it is used to show that an Agent occupies a Position, meaning that the Agent plays all of

the roles that are covered by the Position.

� Instance of: it is used to represent a specific instance of a more general entity. An agent is an

instantiation of another Agent.

Figure 2.6: Graphical Notations of Actor, Agent, Role, Position and Association

Dependency: A dependency is an explicit “intentional” relationship (link) among actors which expresses

that an actor (depender) depends on some other actor (dependee) in order to obtain some objective

(dependum). The dependum is an intentional element that can be a resource, task, goal or softgoal [2].

The types of strategic dependencies, based on the type of the dependum are:

� Goal Dependency. In goal dependency the depender depends on the dependee to bring about a

certain state of affairs in the world. In goal dependency, all decisions about fulfilling the goal need to be

taken by the dependee, therefore, the depender doesn’t care about how the dependee goes about achieving

the goal. Put differently, the depender delegates the responsibility for fulfilling the goal to the dependee,

who is the new goal owner.

� Softgoal Dependency. The depender depends on the dependee to meet some non-

17

functional requirement. A softgoal is similar to a goal except that the criteria of success are not sharply

defined a priori. The meaning of the softgoal is elaborated in terms of the methods that are chosen in the

course of pursuing the goal. The depender decides what constitutes satisfactory attainment of the goal, but

does so with the benefit of the dependee know how.

� Task Dependency. In task dependency a depender depends on the dependee to execute a given

activity (accomplish some specific task). The depender is the actor that prescribes (imposes) the procedure

to execute the delegated task, in this sense; the dependee has already made decisions about how the task

needs to be carried out.

� Resource Dependency. In a resource dependency, the depender is depending on the provision of

some entity, physical or informational. This type of dependency assumes no open issues or questions

between the depender and the dependee.

The graphical representation of each type of dependency is shown in Figure 2.7 below.

Figure 2.7: Graphical Notations of Dependencies Types

2.4.1.2 The Strategic Rationale (SR) Model
 Strategic Rationale (SR) model is a graph, with several types of nodes and links that work together to

provide a representational structure for expressing the rationales behind dependencies. SR diagrams (see

Figure 2.8) open up actors and show all the internal elements, including goals, softgoals, tasks and

resources, besides three types of internal links inside the i* actor (means–end link, task-decomposition

links and contribution links). These elements are described below:

18

Actor Boundary: An actor boundary indicates intentional boundaries of a particular actor. All of the

elements within a boundary for an actor are explicitly desired by that actor. In order to achieve these

elements, often an actor must depend on the intentions of other actors, represented by dependency links

across actor boundaries.

Figure 2.8: Example of SR Model “from the Trusted Computed Case Study (Soure: Figure 1.1, p. 16

from [18])”

Intentional elements: An intentional element is an entity which allows to relate different actors

conforming a social network or, also, to express the internal rationality of an actor. The types of

intentional elements are:

� Goal: it represents a condition, intentional desire or state of concerns that the actor would like to

obtain (achieve).

� Softgoal: it is similar to the goal except that the criteria for the goal satisfaction are not clear-cut.

It is judged to be sufficiently satisfied from the point of view of the actor. The means to satisfy the

softgoals are described using contribution links from the other modeling elements.

� Task: it specifies a particular way of doing something in order to fulfill some goal.

� Resource: is a physical or informational entity (a means) that must be available for an actor to

perform some task.

Figure 2.9: Graphical symbol of different Intentional Elements

19

Intentional element relationships: An intentional element link represents an n-ary (when n is included in

[1..n]) relationship among intentional elements. The types of intentional element relationship are:

� Means-Ends (ME) links: These links indicate a relationship between an end, and a means for

attaining it. The “means” is expressed by using the concept of task, since the notion of task embodies how

to do something, with the “end” is always expressed as a goal. Accordingly, ME links may break down a

goal into alternative tasks that achieve the goal or to just one possible way to fulfill it (cardinality is [1..n]).

Figure 2.10: Graphical Notation of Means-End links

� Task-Decomposition links: A task element is linked to its component nodes by decomposition

links (AND Decomposition). A task can be decomposed into four types of elements: a subgoal, a subtask,

a resource, and/or a softgoal. The task can be decomposed into one to many of these elements.

Figure 2.11: Graphical Notation of Task-Decomposition links

� Contribution links: The contribution links are: make, some+, Help, Break, some-, hurt,

unknown, AND, and OR. These contribution links can be used to link any of the elements to a softgoal

and contributes to the satisfaction or fulfillment of the softgoal i.e. they express the impact of an element

on softgoals.

20

Figure 2.12: Graphical Notation of Contribution links

2.4.1.3 Concepts not covered (out of this thesis scope)

 The context of the present work covers the i* (iStar) framework and modeling language and precisely

the iStar on its 1.0 version. As mentioned earlier in this work, the i* modeling language offers a set of

graphical concepts that are used for constructing the i* requirements models both SD and SR. In this

research work, we focus on a subset of the i* graphical notation elements i.e. the common and widely used

basic concepts when sketching the i* diagrams. Thus, there are some few modeling constructs which are

not under the scope of (not covered by) our work such as the belief element, the actor specific constructs

(agent, position and role) and the actor association links (is part of, is a, plays, covers, occupies and

instance of).

2.5 Summary

 This chapter introduced the main concepts and notations necessary for the remainder of the thesis. An

overview of the Requirements Engineering phase, early RE and goal modeling has been presented. The i*

framework with its models and their main primitives were described in details here.

21

Chapter 3. Supporting the iStar Model
Quality Review

 This chapter intends to present an overview and revision of some freely available i* modeling language

editors and tools. We mainly assessed and tested their syntactical checking features in order to tell the

reasons that make them insufficient and inadequate to use in a teaching/learning i.e. an educational context.

The results that we got from closely studying these tools were the relevant triggers for the conception of

our proposed research work. This chapter focuses on the first problem treated in this thesis. It unwinds our

proposal to solve it by describing a web application, called i*Check, which was proposed and developed

to complement and enrich the aforementioned available tools that turned out to have limited syntax and

model quality checking features. Also, this chapter includes reports on the experiments that we conducted

in order to evaluate our proposed solution. On Section 3.5, we present some observations and findings

concerning mainly the issues that we encountered when dealing specifically with the development of the

SR model’s checking part. Section 3.6, which is the last section, it summarizes and wraps up this chapter.

3.1 Overview of a selected set from the freely existing i* modeling tools
 Like any other existent modeling technique, the i* goal modeling language is consolidated by free

computer-assisted systems that offer a number of functionalities and features to help users sketch and

create their requirements models as well as check their quality. As a first step, we searched and got some

of these tools which are mainly state-of-the-art research prototypes. We used them to build both correct

and defected (erroneous) models in order to later assess their abilities in catching and detecting any

modeling deficits that we deliberately utilized. Our survey of these tools exposed several shortcomings

particularly in their syntax checking features’ side. It led us to figure out the rising necessity for

22

complementing these tools’ syntactical checking functions. Thus, it motivated the construction of the first

tool that we built for this dissertation.

3.1.1 HiME (Hierarchical i* Model Editor)

HiME [5] is a free i* tool which does not represent the i* models graphically through the language

symbology i.e. visual concepts, instead, it shows them as a folder-tree directory in a file system. It is an

editor that includes specific features for dealing with inheritance operations when inheritance appears in

the models (this is out of the interest and scope of this research work).

This tool uses iStarML [19] as the unique format for storing the created i* models.

Figure 3.1: General view (main window) of the HiME tool (source: Fig.1, p.4 from [36])

 As it is shown in Figure 3.1 above, HiME’s main window is divided in two parts. The model navigator

(left side) is used for viewing and managing the model. The icons that appear in this view give some

23

information about what kind of element is represented. Now, the model statistics (right side) shows

information about the complexity of the model.

 To our experience, HiME requires an effort and practical training time in order to get used to it because

the model readability is not intuitive neither straightforward to it new users. For example (see Figure 3.2),

as it is mentioned in the HiME user guide [36], the meaning of icons, when a task element is a full shape,

this means that this task element is an internal element i.e. an SR element which is used only inside the

boundary of an actor. Whereas, when a task element is just an “empty” hexagon icon, it means that this

task is an external element i.e. a dependum node from a dependency relationship.

 (a) (b)

Figure 3.2: An example showing the iconic filling difference between SR internal elements (a) and

external elements aka dependencies nodes (b)

3.1.2 OpenOME: an Open-source Goal and Agent-Oriented Model Drawing and Analysis

Tool

 The development of OpenOME [7] was initiated in 2004 at the University of Toronto, Canada. It is an

Eclipse-based open-source tool supporting the construction and analysis of the i* models. The tool is in a

stable state and available freely for download. It includes support for forward and backward interactive,

qualitative i* analysis and more importantly to us the syntax checking feature.

 The tool allows users to graphically draw models using a palette of shapes. Standard features such as

saving, zoom, cut, copy, and paste are provided. Models are grouped under user-created projects, shown

in a folder view. OpenOME imports and exports models in the GMF .ood and .oom format, as well the

iStarML format [19]. See Figure 3.3 for a screenshot of the OpenOME interface.

 OpenOME architecture takes advantage of the Eclipse package development, allowing for extension or

customization with the addition of a new development package. The current version is 3.4.1 (as of 2011).

24

Figure 3.3: A screenshot of the OpenOME tool

3.1.3 iStarTool

 The iStarTool [6] supports the graphical modeling of the i* methodology. It has been developed using

the open-source Eclipse platform and model-driven technologies, such as the Graphical Modeling

Framework (GMF).The main purpose of the iStarTool is to facilitate the learning of i* language and

improve the quality of i* models, being especially aimed at beginners.

 Unlike the Syntax Warning System, the Syntax Checker runs offline. The reason is that some i* steps

could be considered wrong if analyzed in real time. In order to execute it, the user has only to click on the

menu button that is called Syntax checker.

 The iStarTool also allows users to work on multiple models at the same time. It saves all models in

XML format, by default, and if necessary, they can be exported as an image. Moreover, the current

features of the iStarTool can be reused to support families of graphical editors for i* based languages.

Figure 3.4 illustrates the main window of iStarTool.

25

Figure 3.4: Screenshot of the iStarTool interface

3.2 Why another model checker is needed?

 i* is a well-documented goal-oriented modelling language which is used in a variety of fields ranging

from RE to business process re-engineering to social modelling. Moreover, it is taught in many

universities around the world for more than a decade. However, some applications of even the basic

concepts are not straightforward for the novice (e.g., how to determine which of the modelling constructs

should be used to describe a particular system requirement, how to properly decompose complex or

hierarchical concepts in the requirements description, etc.) and new learners will require some practical

training to master the techniques. To do this in a classroom setting, it is desirable to have a computer-

aided modeling tool that will make it possible for many students to build and check diagrams on their own

at the same time, since reviewing students work and coaching them on how to find errors on an individual

basis is time- consuming and arduous. Several free i* tools are available [5][6][7][8] to help people sketch

and draw their requirements models according to the prescribed modeling rules of the i* modelling

language. But, according to a survey that we performed on these tools, none of them implemented nor

provided the full and complete set of syntactical quality checking features and this gives novice users

plenty of opportunities to build structures containing errors and amenable to originate confusion and

misinterpretation without even realizing it. Furthermore, unlearning such bad modeling practices will

26

preoccupy them as it would cost them effort and time. To put it more simply, by surveying a set of free i*

tools, we gathered evidences of their limitations concerning the model checking features. These tools do

not provide an accurate and in-depth checking and this may hinder the production of models with high or

even good quality. And clearly, if these tools are used in a classroom setting, with large groups of students

for example, it is possible for these learners to construct models containing errors here and there and not

realize it at all. Learning the basic concepts of a framework incorrectly at the start can lead to high

unlearning costs for handling the correction of bad modeling habits later.

3.2.1 Examples of checking and feedback weaknesses of the surveyed tools

3.2.1.1 The HiME case

 Considering the model checking part, HiME does not offer an explicit function (button). Instead, it does

force its users to select only its offered concepts. So, by this, it prevents errors occurrence as possible as it

can. However, there are some checking gaps, which proves that HiME doesn’t offer the full set of

checking features and this may hamper the correct learning of the i* framework, its modeling rules and

good habits and practices. Figure 3.5 shows an example of Means-End relationship, which MUST be a

relation (link) between a task “the Means” and a goal “the END”. Put it more simply, according to [4], a

goal can only be refined by the Means-End links. The Means-End Link is a type of a relationship that

indicates an End (Goal) and it’s Means (Task), or how to achieve the Goal.

Figure 3.5: An example showing a goal depicted as a Means “Merge Available Dates” in order to

achieve a high-level goal which is an End “Find Agreeable Slot” (screenshot was taken from [5])

3.2.1.2 The OpenOME case

As our main focus and aim is to survey and investigate the checking features of the current free i* tools,

we did study the syntax checking features provided by OpenOME and we found out that it has limited and

incomplete set of i* framework syntax checks. Also, sometimes even if it does detect the error, it delivers

27

error or warning messages which are not straightforward and intuitive to the modeler. So, they can lead to

confusion and may require additional effort in order to correct the caught modeling defect. Figure 3.6

shows some examples of returned errors and warnings from the syntax checker add-on of OpenOME.

Figure 3.6 Screenshot of the returned checking feedback offered by the OpenOME’s checker

 To start with, the model appearing in Figure 3.6 above does contain 12 defects (if we count the number

of occurrences that it is deliberately annotated by this thesis author). However, the checker returns a

feedback summary which only lists two errors and four warnings that are being of the same type, at least

this is what the message suggests, each. To sum up, the checker, not only its feedback is limited but also

sometimes, the returned messages are unclear and that may cause confusion to the user. A positive point

that OpenOME checker provides is that it pinpoints and locates where in the model the defect appears (it

specify the certain and particular element that causes the issue or at least it is involved in some defect).

3.2.1.3 The iStarTool case

 Syntax errors are one of the biggest problems for students learning a modeling language as they slow

students' progress. Typically, error messages are an important tool for novice modelers to use as they help

28

them locate and fix mistakes or issues in their built diagrams. When an error message is unhelpful, it can

be difficult to find the issue and may impose additional challenges in learning the language and its

concepts. To this respect, another body of work has focused on the development of a tool called iStarTool.

It allows students to create i* goal models and also it provides automated help to them consisting in the

syntax checker feature which returns a feedback comprising a list of error messages. However, this tool’s

returned feedback is frequently incomplete and inadequate. For example, Figure 3.7 encompasses seven

errors that exist in the diagram; however, the syntactical checker returns a list that comprises only three

errors. And as we can see, the error messages contents are not beneficial for novice learners since they

may add confusion and misunderstanding that may lead the learners down to the wrong path, as well as, it

is possible that they introduce some new errors.

Figure 3.7: A screenshot of the returned checking feedback offered by iStarTool syntax checker

29

 Let us take the returned message “The same intentional element cannot be target more than one time”.

For example, to our understanding, it refers to two distinct construction rule violations namely number 4

and number 9 in Table 3.2 (see sub-section 3.3.3.1), but it can be confusing to a user, particularly a new

user to the framework, because 1) the meaning of the message is not clear and concise and 2) this message

is addressing two different defects. And, since only one message entry is displayed to the user, the later

can be confused to choose the right defect location in order to introduce the necessary correction.

 To cover this gap in the current i* tools landscape, we developed a web-based system called i*Check to

complement the checking features of the available tools by offering the users automatic on-demand

feedback on the quality of their diagrams i.e. allowing them to review and check their models to

subsequently introduce the necessary correction and improvements as soon as possible to their build-time.

3.3 i*Check: Description and Evaluation

3.3.1 Approach Overview

 Given the necessity and the need for an in-depth model checking according to the i* language rules and

conventions and also in order to achieve a good quality artifact, we built a web-based tool, i*Check

(requiring no download or installation of software), which aims: 1) to help novice modelers recognize

their errors that result from the misinterpreted use of the i* modeling language constructs and 2) to offer

recommendations on how to eliminate these errors by using textual and visual feedback and information.

Particularly, for learners in a classroom setting where an instructor might not always be available to point

out errors in individual graphical representations, the i*Check system will be a useful way for students to

obtain a thorough automatic feedback about the quality of their i* depictions of system requirements. The

rule violations detected by i*Check are indicated to the user through a browser interface along with

specific tips and GIF animations correction scenarios on how to resolve each specific problem.

 Various i* tools use their own file format for saving model data. But some of these tools generate a

text-based extensible markup language (XML) format called iStarML [19] that can be used to export the

model data to other systems. As its usage is outlined in Figure 3.8, the i*Check application accepts this

produced iStarML format data as input and evaluates the quality of the model using a checklist of the i*

core rules. A list of rule violations detected by the system is indicated to the user along with specific tips

and examples on how to resolve each problem. By providing a means for learners to obtain feedback

about the quality of their i* depictions of system requirements in real-time, we let beginners-to-i* learn

how to identify and correct their mistakes as they practice the various design techniques and construct

diagrams of higher quality without the need for constant one-on-one human coaching. Since it is hard for

an instructor, because it is time-consuming and error-prone, to be constantly available to closely

30

superintend students’ work and offer them guidance and advice on the proper usage of this particular RE

methodology throughout their learning process. In the same way, the development and the existence of

such tool will bring benefits to the self-studying people.

Figure 3.8: i*Check tool, whether used in a classroom setting or elsewhere, it evaluates the
Strategic Dependency (SD) and Strategic Rationale (SR) models and indicates the syntax problems

to be fixed and the animated steps for a particular defect correction.

 We implemented the i*Check application using the Hypertext Preprocessor (PHP) [20][21] which

contains a library providing Document Object Model (DOM) [21] XML functions that enabled us to parse,

select particular elements and their attributes from iStarML files and subsequently work on them.

 The animations were first created as slides in Microsoft PowerPoint 2010 and then the created slides

(files) were uploaded to a free website that transformed them to GIF animations (see Figure 3.9). They

aim to offer step by step hints and correction suggestions to the novice learners (those who are

inexperienced as they are taking introductory modeling courses) in case of detected model defects. The

animations are displayed (generated by JavaScript which makes them expanded “showed” and collapsed

“hidden” according to the user’s will) to the users when they click on a link that will load the animation on

the same feedback results’ page in order to not to distract their attention with different pages.

 There is a variety of reasons why we decided to develop i*Check as a web-based application. To start

with, web applications are not tied to a single computing environment. Plus, no installation is required

besides having a browser which students generally have on their PCs. Finally, when the tool is available

31

online, anyone (student or even expert) can access it anywhere (classroom, laboratory or at home) where

there is an internet connection and use it with total freedom.

Figure 3.9: In addition to a textual description of each error detected, the i*Check tool offers

suggestions on how to fix the error in short animations.

3.3.1.1 Feedback improvement

 Error messages are particularly critical for introductory and novice modelers in understanding problems

appearing in their diagrams. In this context, our i*Check tool intends to improve novices’ debugging

performance by providing enhanced error messages that include a more verbose description of the defect

than the ones that are provided by current existing systems.

 Besides, our enhanced feedback system displays for each defect type the corresponding correction

suggestions (sometimes, an error has more than one alternative that can eliminate and thus correct it)

detailing how the detected mistake could be corrected. The GIF animation contains an error example and

states how it can be corrected (some brief explanation consisting in a list of potential corrective actions

that can give extra assistance to the novices). Either, the correction-oriented GIF animation provides one

or more alternatives for solving a defect; it is up to the novice learner to choose and decide the one way

that makes sense to him i.e. the one that corresponds to his conception and his modeling intention. It is

important to mention that the GIF animation does repeat, from its beginning, as many times as wished by

the students and this can be beneficial for them as we believe that they need multiple repetitions of

information before it is understood and memorized.

32

 To put it more clearly, i*Check doesn’t force the beginner to select a specific solution. On the contrary,

it does provide him with a set of solution scenarios so that the beginner can choose one specific desired

solution or rethink his modeling choice. Furthermore, i*Check is not like the Microsoft Word automatic

spelling checker and corrector neither it is like any programming language compiler which guarantees that

only correct code is required to proceed the performance of the desired behavior of the program. In other

words, i*Check “does not do the work for the student”. Instead, it does help its users to recognize, locate

and detect the defects that may reside in their models and each defect type is attached with one alternative

or more proposing how to introduce and thus rectify the error. The final decision is left to beginner as he is

the responsible of the revision of his modeling style and choice (he has to rely on his understanding and

judgement and then proceed the correction work with the more convenient solution according to him) and

this is what proves that the use of i*Check is completely voluntary.

3.3.2 iStarML: Definition and Basic Structure

 As mentioned before, a family of variants was developed based on the concepts of the original i*

framework and modeling technique. The i* family includes the Tropos methodology [31, 32], the

extension of Tropos [33] and Goal Requirement Language (GRL) [34].

 As it can be expected, each variant was consolidated with the building of its corresponding tooling

supports. From these points emerged the necessity of having a common format for enabling

interoperability among i* family tools. For this purpose, iStarML [19], an XML-based format which

focuses on supporting data interchange among different i* variants’ tools, was developed.

 In other words, a common representation allows i) to have an interchange format among i* variants, ii)

the representation of differences and similarities among variants and, iii) to have a repository common of

i* concepts.

 The most important features of iStarML format is that the different i* variants can eventually be

translated into iStarML [19]. Therefore iStarML allows a textual representation of domain models,

requirements, actor relationships and a wide set of the different uses that i* has covered as modeling

language.

The tag <istarml> is the main tag in iStarML. It can contain only the <diagram> tag. In figure 3.10, the

options of this tag are shown. Under this structure, it is possible to store on the same file a set of different

i* diagrams. The derivation of iStarML tags from the i* core concepts has permitted keeping the language

simple and, at the same time, to consider different language variations using the same language constructs.

33

Figure 3.10: the <iStarML> syntax

The table below (Table 3.1) summarizes the basic core concepts of the i* family of variants and their

corresponding suggested XML tags which are specified using iStarML.

 Table 3.1 Core concepts of i*-based modeling languages and proposed XML tags for iStarML

3.3.3 Specification of System Requirements using i*

 The i* modelling language uses a collection of simple graphical objects to represent various

components (e.g., actors, goals, tasks, resources, etc.) of organizational environments and their

information systems. Two types of diagrams – the strategic dependency (SD) diagrams and the strategic

rationale (SR) diagrams – are used to depict the dependency relationships between actors in a system and

the details of how other components are linked to one another. Although only a handful of component

types are used for creating i* diagrams, it is easy for new users to misinterpret how the modeling rules

should be applied when moving between the SD and SR parts. We focused first on the SD diagram

construction rules and quickly observed that although the individual rules are not complicated, when the

diagrams to be reviewed or edited contain many components, it is easy for beginners to overlook errors

that can cause problems in later development steps. Thus, we commenced by assisting new users with

34

gaining basic understanding of the SD diagram construction rules as it is described in the following sub-

section.

3.3.3.1 Model quality checking for Strategic Dependency diagrams

 By gathering information from the i* Wiki portal [4], which provides a collection of documentation and

modelling guidelines that are intended to help users create high quality models of system requirements, we

composed as well as inferred a list of nine basic rule checks for i* SD diagrams that students in an

introductory training course would need to master at an early stage. Table 3.2 shows the results of testing

a number of free i* tools with features for checking model quality that could be used in such training.

 Table 3.2 Basic SD rule checks implemented on freely available i* tools versus i*Check

Strategic Dependency (SD)
rule checks

Tool
A

Tool
B

Tool
C

i*Check

1. Model containing only actors. X Δ Δ
2. Disconnected model elements. X
3. Dangling actors. X
4. Modeling colliding direction of dependency links (having

same direction).
 X Δ

5. Modelling dependency link between actors without showing a
dependum.

 Δ

6. Use other types of links (means-end, contribution, task
decomposition) to denote dependency links.

7. Number of actors is less than 2. X X
8. Number of links for a dependency is less than 2. Δ X
9. Common dependum between multiple actors (connecting more

than 2 actors).
 X Δ

 In the table entries above, a circle indicates that the tool could either (primarily) prevent or detect the

rule violation and provide a clear and lucid error message to indicate it to the user; a triangle indicates

that the violation (defect) is detected, but the tool does not provide a clear and straightforward message

about what exactly the error is and how to fix it; and an X mark indicates that the violation is not

addressed at all by the relevant tool.

 Note that in a real industry setting, the errors listed above in the table 3.2 lower the quality of a model

and may need several iterations of corrections before a useful representation of system requirements is

finally generated for stakeholders discussions and reviews. So, these types of problems need to be

identified and unlearned quickly. However, and as seen above, each tool is offering limited syntax

checking features. Another point to mention is that the checks are scattered between the different tools

(HiME, OpenOME and iStarTool) instead of being under the same platform. Therefore, our aim was to

build and develop a piece of software that can integrate as many of these features as possible i.e. i*Check.

35

 To check his SD model, the novice learner will specify the SD checking feature and submit his request

by clicking on the upload button to let the system proceed with first parsing the iStarML file and then

performing the necessary checking. In case of diagramming defects, the checking functionality will return

a list, a report-like feedback, involving the entire detected flaws details supplemented by correction-

directed animations to facilitate the model rectification and improvement task.

3.3.3.2 Model quality checking for Strategic Rationale Diagrams

 An ideal i* requirements modeling tool should allow for complete diagrams’ quality checking and

assessment. In the previous sub-section, we reported on the first step towards developing our checker

namely the Strategic Dependency (SD) model checking part specifically we mined from existing

guidelines a list of checks concerning this type of i* models. Hereafter, we focus on determining the

different checks specific to the SR model i.e. the second type of i* models checklist.

 Dealing with the SR model necessitates more efforts as it is more refined and contains new additional as

well as more complex concepts i.e. different refinement links. So, once again and from the i* Wiki

documentation, we derived and curated 13 construction rule checks concerning SR diagrams listed in

Table 3.3 to be used in a basic first-level check of i* models created by novice learners to the framework.

 Table 3.3 below shows the results of testing a number of free i* tools against a list of rule checks. As

said before, the list of checks for SR (as was the case for SD) was mainly derived and concluded from the

i* wiki portal (i* 1.0 guide) [4]. (The entries of table 3.3 here have same meaning as the ones in Table 3.2

that was dedicated for SD part).

 Table 3.3 Basic SR model rule checks implemented on i* freely available tools versus i*Check

Strategic Rationale (SR)
defect patterns (rule-violation checks)

Tool A Tool B Tool C i*Check

1) Dependency links used inside an Actor. Δ Δ
2) Including an Actor within another Actor. Δ
3) Strategic Dependency Link in an SR model is not connected
to the correct “internal” element within the actor.

X X

4) Disconnected elements within an Actor. X X

5) Drawing SR model internal elements outside the boundaries of
the corresponding actors.

 X X

6) Extending decomposition Links beyond the boundaries of
actors.

 X X

7) Decomposing goals by Task decomposition link.
8) Decomposing goals by contribution links.
9) Decomposing task by Means-End link. X X X
10) Decomposing task by contribution link. X
11) Decomposing Softgoal by Means-End link. X X
12) Decomposing Softgoal by task decomposition link. Δ
13) Softgoals and Goals are leaves (not refined further). X X

36

3.4 Evaluation of the i*Check prototype

 We used i*Check to explore how different kinds of feedback can help the beginners recognize modeling

mistakes at an early stage in i* learning journey. By asking new learners to debug a series of i* diagrams,

we investigated the effectiveness of our tool in guiding them to locate and correct defects in given

graphical schemas compared to some existing tools’ checking features. We aimed to determine the factors

that contribute to the success or failure of our solution. In the following subsection, we report on the very

first experimental test that we performed to evaluate the early version of our tool which was mainly

devoted for SD checking portion of the i* model data.

3.4.1 Detection and correction of errors in i* SD diagrams by novice learners using i*Check

 In developing the i*Check system, we initially aimed to construct a thorough model quality checker of

almost all specification concepts presented in the guidelines of the i* Wiki guide for SD diagram

construction. Preliminary tests of early versions of the tool indicated that although i*Check returned a full

set of model defects in textual format for beginners, sometimes an incomplete list of errors generated by

some available tools was a more effective aid in completing the task because the messages were combined

with visual markers of where the errors occurred. Since the i*Check system is intended to work in

complement with the available tools and not as a replacement for them, we expanded the development and

followed up our tool to include GIF format animation for explaining how to remove and rectify specific

errors in a model and this combination proved to be the most effective in reducing the confusion beginners

experience in debugging exercises of defected requirements models.

 In a series of tests, we measured how quickly and accurately engineering students with an introductory

background on requirements engineering methodologies using the i* framework are able to identify and

correct modeling errors in a collection of SD diagrams such as the example in Figure 3.11 using a textual

description of the system requirements and various types of syntax checking feedback to see how well

each type is able to guide them through the tasks.

37

Figure 3.11: SD diagrams error debugging experiment with users receiving: 1) no feedback from
existing tools, 2) available tool’s feedback, and 3) i*Check rule violation feedback summary

information.

 Participants in this early investigational study and evaluation of i*Check were undergraduate computer

science and engineering students at Shinshu University (Nagano, Japan) with no previous experience with

the i* modelling language. Following an introductory tutorial on the i* modelling language and

framework, the participants were given a number of sample models to debug, using various types of

syntax checking information from currently available systems and the i*Check system that we developed.

The test groups included: 1) NoTool users, who received no syntax checking feedback for the debugging

task, 2) WithAvailTool users, who received feedback from an available tool that offers partial syntax

checking features, and 3) WithI*Check users, those using the i*Check support tool. In the test, the

subjects of the NoTool group could rely only on their understanding and knowledge from the tutorial to do

the debugging work. The WithAvailTool subjects were able to view carefully a snapshot of the syntax

checking results of a selected tool as a reference in deciding how to correct the defects. The final group is

the WithI*Check group that was able to use the online i*Check system to view the list of defects caught in

the model and access the correction tips, which are in the form of GIF animations, as needed and as it is

shown in the image in Figure 3.12 below.

38

 Table 3.4 Results of i* SD diagram debugging tasks using various feedback sources

Error Feedback
Type

Number of
participants

Average score (%) of
debugging task

Average time for
task completion

NoTool 4 45% 13.5 min.

WithAvailTool 4 50% 7 min.

WithI*Check 4 75% 13.5 min.

Figure 3.12: i*Check web tool checks for rule violations in an SD diagram and provides correction

hints with text and GIF animation.

 To begin, the subjects did a warmup exercise to be sure they understood the i* model conctruction

concepts to be judged and each subject had no difficulty in debugging the simple example. However, each

model used in the actual test (e.g., Figure 3.12) contained 4 errors to be corrected and the average rates of

success for each group are summarized in Table 3.4 along with the average time required to complete the

debugging task.

 A post-test questionnaire was used to verify that subjects were fairly confident in their answers, but as

seen in the results of the table, without a complete list of defects the novice learner is not able to

sufficiently find and correct more than half of the detected errors even in a small-scale test model.

39

 The average time for task completion with the i*Check tool was the same as the case of having no error

feedback references and we observed that the subjects spent most of this time viewing the looping and

animated correction hints to achieve a high success rate in the specified task.

 To sum up, the early system version’s evaluation (2015) was promising and proved the potential that

i*Check bore to guide the novice learners throughout the checking and correction procedures.

3.4.2 Detection and correction of errors in i* SR diagrams by novice learners using i*Check

Encouraged by the first evaluation of i*Check, we continued the development of the SR model checking

part while adopting the usage of the same strategy of providing users with graphical GIF animations on

how to resolve model defects and flaws. And subsequently, we used our prototype for checking the SR

specifications of an i* requirements model and testing its operation and usefulness as a tool that can be

used in the classroom, the place where we expect tool assistants for syntax checking to be needed the most.

3.4.2.1 SR rule violation detection/correction tasks

 During a short series of lectures to undergraduate and graduate computer science students on the i*

framework, including the construction rules for SD and SR diagrams, we conducted a series of tests in

which the students were tasked with detecting and correcting errors in i* model samples using three types

of model checking: 1) no tool feedback (“WithoutTool”), 2) feedback from selected existing tools

(“WithAvailTool”), and 3) feedback from selected existing tools together with i*Check rule violation

summaries (“WithAvailToolPlusI*Check”) as shown in Figure 3.13 below.

Figure 3.13: SR construct error debugging experiment with users receiving: 1) no feedback from
existing tools, 2) some tool feedback, and 3) some tool feedback with i*Check rule violation

summary information.

40

 The experiments were conducted on three different days in lecture sessions of 2 hours each. For each

experiment, we prepared three i* diagram samples containing construction rules violations and asked the

students to detect and correct as many as they could in a fixed time. For each test, we measured not only

the accuracy of defect detection and correction, but also the time spent to accomplish each task.

The number of subjects for each experiment was three computer science students at Shinshu University

just beginning training in the i* framework. All experiments’ subjects received the same tutorial to ensure

that they acquired the necessary knowledge about the framework.

For each task, the subjects were asked to detect and correct as many construction rule violations as they

could find in a printed i* diagram containing 10 defects. The syntax checking feedback from an available

tool was provided in a printed form. Besides, students were able to access the i*Check feedback and

correction suggestion animations directly through a PC web browser that displays it on demand. The

given time for performing each task was 20 minutes.

3.4.2.2 Experimental Results
The test results for each day are shown in Tables 3.5-3.7 below. Each test was given on a different day,

and with each passing trial, the time required for students to complete the debugging tasks to the best of

their ability improved for all checking methods.

 Table 3.5 Experiment Trial 1 Results

Checking method WithoutTool WithAvailTool WithAvailTool
PlusI*Check

Average number of
Correct Answers

6.33 6 6.33

Average time (min.) 22 16 18.67

 Table 3.6 Experiment Trial 2 Results

Checking method WithoutTool WithAvailTool WithAvailTool
PlusI*Check

Average number of
Correct Answers

4.33 7 5.33

Average time (min.) 12.67 8.67 8.67

41

 Table 3.7 Experiment Trial 3 Results

Checking method WithoutTool WithAvailTool WithAvailTool
PlusI*Check

Average number of
Correct Answers

4.33 6 7.33

Average time
(min.)

4.67 6.67 11.33

 However, as the types of construction rule violations to be detected became more varied by the third

trial, students who did the debugging work with no feedback from any tools (WithoutTool) could not find

more than half of the basic errors and quickly realized (average of 4.67 mins. into the “given” 20 min.

task) that they would not be able to do anymore corrections and gave up. The results for the

WithAvailTool and WithAvailToolPlusI*Check students were nearly the same for the first trial, but the

longer time spent can be attributed to the time required for playing the correction suggestions and hints

animations on i*Check during the debugging. By the third trial, as students became more accustomed to

using the combination of feedback from the existing tools and i*Check we find that they are able to

correct 73% of the defects as compared to 43% and 60% for WithoutTool and WithAvailTool,

respectively.

The experimental results also indicate that, day by day, there is a reduction in effort (time spent) to

review and correct the defected models. Such decrease can be attributed to the i*Check tool support usage

as it helps students in steadily progress in grasping the i* modeling language rules and good practices.

 To illustrate, the benefits of our tool include a reduced effort to check and correct the defected models

followed by an increased correct answers rate. Subsequently, the experimental results endorse the

effectiveness and the impact of i*Check usage on assimilating the framework concepts and its role to help

the new users check their own models and improve their skills’ level without asking for a coach’s help.

3.5 Observations

 As mentioned before in this thesis, some of the freely existing tools allow the exportation of an XML-

based specification of the built i* model aka iStarML. We did test our syntax checker prototype on a

variety of iStarML format data files exported from these i* authoring tools. Although some of the

aforementioned tools included information specific to their operation (e.g., placement of graphics, etc.),

extracting the necessary SD related data for checking the SD part in particular was successful. While, in

developing the SR checking part, we observed that some tools used different interpretations

42

“representations”of the i* constructs for SR diagrams which needed to be taken into a deep consideration

for the prototype to work correctly.

3.5.1Discrepancies in interpretation of iStarML constructs

As described above, we used the iStarML description in [19] as the basis for developing the SR syntax

checker proposed in this work. However, we discovered that among the tools that export their i* model

data in this format, some differences in the interpretation as well as the representation of the elements

exist and we give an example in Figure 3.14.

Moreover, we tried to import an iStarML file which is generated by Tool A [5] and examine it using

Tool B [7]. However, instead of displaying the expected model with its components and links, the output

was a big mess with a lot of gaps and shortcomings which make it partial with a lot of missing graphical

constructs. The tools are different in many structural and componential directions. Such format’s

difference hampers the files’ interchange between both tools.

 If we sketch the SR diagram components in Figure 3.14 (a) on different editors and export the data in

iStarML format, we expect the same information to be contained in each file, but we discovered that this

is not always the case. Figure 3.14 (b) and Figure 3.14 (c) show two different iStarML representations of

the same diagram from two different tools. In the iStarML data of the first tool (HiME [5]), the Plan the

Route task is decomposed into the Map resource and the Prepare list of customers subtask and the

ielementLink descriptions are listed as children of the task being decomposed, namely the Plan the route

element. However, in the second tool (OpenOME [7]), the ielementLinks are listed as children of the

decomposing elements, i.e., the Map resource and the Prepare list of customers subtask.

43

(a) Sample description of internal elements of an actor

 (b) (c)

Figure 3.14: (a) Part of SR diagram showing the internal elements of an actor, specifically a task

(Plan the route) decomposed to a subtask (Prepare list of customers) and a resource (Map). (b)

iStarML output from Tool A (HiME) showing ielementLinks as children of the Plan the route task.

(c) iStarML output of Tool B (OpenOME) where ielementLinks are given as children of

decomposing ielements, i.e., Map resource and Prepare list of customers task.

 These types of differences not only create a problem in porting iStarML data between different

authoring and editing tools, but also need to be checked carefully to be sure that our syntax checkers are

extracting the information from iStarML files correctly. The current version of i*Check assumes the Tool

B’s (OpenOME) iStarML style.

44

3.6 Summary

 In this chapter, we started by giving an overview of the freely available i* modeling tools and showed

evidences of their limitations concerning the syntactical checking functionalities. Thus, we highlighted

and justified the need for a “complementary” tool to the already existent tools which unfortunately do not

offer the very complete and comprehensive set of checking rules and sometimes even if they do, the

returned error message is poorly constructed and explained and this may lead to novice learner’s

confusion and misunderstanding. Then, we presented in details the web-based i*Check system which is

developed to help i* users detect and correct syntax errors in the strategic dependency (SD) specifications

of their requirements models as well as in the detailed (SR) portion of i* diagrams. From the i* Wiki

documentation, we compiled a list of 9 basic (SD) and 13 basic (SR) construction and syntax rule checks

that should be done in every i* model created by novice learners. Since we tested a number of freely

available i* authoring tools, we found out that none of them provided syntax checking features for the full

set of rules and conventions. Rather than create a completely new authoring tool, we designed i*Check to

work as a tool assistant to the existing systems. By using the iStarML (XML) data files exported by the

available modeling tools as input and producing a summary of the (SD) and (SR) construction rule

violations detected along with suggestions and hints in animation form on how to rectify the problems.

Eventually, we consider our tool as an explanatory tool that provides students with further information

about their models, the rules that were violated and by then the correction steps by means of GIF

animations which are presented to the system user to guide him through his model review and rectification.

 One important discovery during the development of i*Check was that different i* tools sometimes used

different interpretations of how to document the elements particularly those of SR specifications in an i*

model in iStarML format. That is, the same i* model created on different tools could result in different

exported iStarML files’ styles. This problem needs to be addressed further not only to solve portability

problems, but also because it affects how i*Check extracts SR data from the exported files.

 Finally, the testing and evaluation of the i*Check syntax checking functions with novice learners to the

framework proved the effectiveness of our proposed tool.

45

Chapter 4. Supporting the iStar Model
Content Review and Validation

 In the previous chapter, we have seen the proposed solution for the i* (iStar) model quality undetected

or poorly expressed feedback for syntactical defects. In this chapter, we present our approach to address

the second important research thread i.e. the lack of i* model content review for the subsequent validation.

4.1 The lack of i* model review for validation

 When teaching a new paradigm which involves a practical training to a large group of students, it often

becomes time-consuming and impractical for a single instructor to give advice on an individual basis on

how to correct errors being made or to evaluate the model informational content for validation purpose

and subsequently, the need for computer-aided assistants arises.

 In Chapter 3, we discussed the necessity of having a tool that covers almost the complete set of i*

modeling rule checks and we reported on our proposed tool’s, i*Check, development work and its

evaluation results. Although i*Check tool was useful in showing novice learners how to edit their models

to make them free of syntax errors, there were a number of situations in which they could not recognize

the semantical flaws and defects (the second part of model quality issues) of a model using the feedback

from our i*Check tool. Put differently, in continued observations of novice learners constructing and

checking i* models, we discovered that although the i*Check tool feedback was effective in guiding

beginners on how to correct basic syntax errors, several situations occurred in which users missed errors

concerned with the informational contents of diagrams, i.e., the novices grasped the mechanics for

sketching diagrams, but did not realize that they had misrepresented or added unnecessary information to

the built requirements model.

46

 After practicing how to gather requirements from a natural language description in documentations or

from interviews/workshops and constructing an i* model of the collected information, the beginners

needed a simple way to confirm that the information contained in the created models matched their

understanding of the requirements, with no omissions or unnecessary additions. Put differently, capturing

knowledge in i* goal models is a critical task that must be discussed, understood, reviewed, evaluated,

questioned and validated by all the different stakeholders ranging from domain experts to technical people

aka requirements engineers (IT experts) to ensure that the embodied information in the model is adequate.

Misunderstandings lead to approval of immature or incorrect models. And such produced models can lead

to additional e ort to perform in later stages when they face the reality.

4.1.1 Examples of observed model content deviations

 In the following sub-section, we present two examples that show how an automatic summary of the

contents of an i* diagram organized in an outline form would be useful for beginners who need to revisit

the original descriptions of the software requirements of a system and validate that their constructed

models are error-free in a semantical sense.

4.1.1.1 Misrepresentation of intended requirements

 Although i* uses only a small set of graphical constructs to represent the actors involved in a system,

their dependency relationships, and the breakdown of their goal oriented requirements, some practical

training time is necessary for beginners to grasp how to use the various constructs and rules to represent

this information. In the SD portion for an i* model, the main job is to identify all of the actors in a system

and document what each will need provided or fulfilled by others such as in Figure 4.1 above. For the

beginner, the SD construction rules are not difficult to apply, but in the course of model construction,

humans sometimes introduce errors (either out of misunderstandings or out of carelessness).

Figure 4.1: Example of wrong direction of the dependency relationship. There is no syntactical

error in the application of the design rule, but the intended meaning (“The system depends on the

student to submit an assignment answer.”) is depicted in the reverse direction.

47

 In Figure 4.1, for example, a requirement stating, “The system depends on the student to submit an

assignment answer” is written in the reverse direction. The format of the dependency specification is not

in error so there will be no warning by i* syntax checkers, but the meaning is incorrect. Although this

type of error could be caught with careful review, as a model grows in size and becomes complex, it will

be easier for a human to mistakenly overlook such an error and propagate it to later stages of development

(overloaded diagrams complicate the perception of information). This can cause misunderstanding and

confusion issues and costly corrections that the requirements engineers are particularly employed to avoid.

 If this misrepresentation is not corrected at the SD diagram level, the next step of specifying and

refining the goals of each actor, i.e., the SR diagram construction, will proceed and it will become more

difficult to spot the error. If the SD level misrepresentation of information shown in Figure 4.1 is left

uncorrected and the modelling process continues to formulate the expanded SR model, the chances of a

human catching the error from doing just a manual check of the information will not be high. Even an

examination of the human-readable istarML (XML-format) data of the model (Figure 4.2) will not easily

detect the problem since a human must often sift through and jump to different locations of the file just to

recognize one piece of information, in this case that a student and the system to be developed have a

dependency relationship in which the system depends on the student to take action on submitting

assignment answers.

48

 In our observations of i* model construction and checking works by novice users, it became apparent

that a simple summarization of the backbone elements of an i* model could be helpful in reducing the

time and effort of checking the meaning of the information expressed. So, we proposed an automatic tool

like i*Check which can work online and take as input iStarML data of models generated from various

modeling tools and editors to produce short natural language descriptions of the i* model backbone

elements in a simple table of contents (TOC) style (Figure 4.2(c)). In this way, beginners to the modeling

domain can have a more human-friendly document to check for discrepancies in the model description.

Figure 4.2: Checking the meaning of each piece of information in a requirements model can

become tedious for a human when (a) the number of components in a model grows and (b)

tracing the human-readable iStarML data of the model requires jumping to different areas of

the file to compile one piece of information. (c) An automatic summary generator extracting

the i* model backbone elements from the XML data and listing the basic requirements

information in short natural language sentences could help novices more easily find errors in

the model contents.

49

4.1.1.2 Misinterpretation of design constructs

 The second example of novice users having problems recognizing how to specify requirements in i*

occurred in the goal refinement work of SR diagram construction. In this situation, users learned that the

Means-End link is the modeling construct for presenting the alternative ways of achieving a goal. The

examples in the tutorial lesson always showed multiple alternatives and the guidelines did not explicitly

define the cardinality (1..n) of the construct so it was not completely clear to some students that it is

possible to have only one means for achieving a goal as shown in the example of Figure 4.3.

 This resulted in some students forcing model edits to create a situation in which each goal had at least

two alternatives listed, even if such information was not contained in any of the requirements of the

system. As with the example in the previous sub-section, a syntax check of the model will declare that it

is free of design errors, but in fact irrelevant components exist and some human judgment will be

necessary to determine whether or not the information contained in a model is enough or too much. Such

misinterpretations of the model construction rules in a new modeling paradigm occur frequently with new

users. So, again, the support beyond simple syntax checking is necessary to detect this type of error. The

automatic generation of textual summaries of i* models can be a useful tool for other persons reviewing

the models constructed by beginners to check their meanings.

Figure 4.3: Example of goal refinement showing that a single means is the only (sufficient) way to

achieve the goal. Beginners forcing multiple alternatives to be listed for each goal will see no

syntax errors in their diagrams, but may be introducing irrelevant components without realizing

it.

50

4.2 GENERATi*ON: a tool to assist beginners in reviewing and validating

iStar diagrams’ contents

 To address the aforementioned problem (the second problem of this thesis), we proposed the

development of a tool assistant, called GENERATi*ON [35], which can be used in combination with our

i*Check tool which also accepts an iStarML (XML representation of an i* diagram) file as input to

generate a textual summary of the backbone elements of a model in short natural language sentences

organized in a table of contents style.

 Despite there seems to be a little work in the literature, we found a work on the development of an

Eclipse based tool [37] which supports a proposed programming-like textual syntax language for Goal-

oriented Requirement Language (GRL), an i* variant, which allows for both the creation and modification

of large models. However, a simple translation into natural language, rather than programming language,

will suffice for enhancing the error detection ability of novices in the scenarios presented in the examples

of this thesis.

 The most important elements of the i* SD diagram include a list of the actors in a system and the

dependencies between them, i.e., what each actor needs provided or accomplished by the other actors,

expressed in short statements of the form “A depends on B for…”. Such a summary can be a useful,

complementary document to the i* diagrams for beginners to quickly review their models for semantical

errors such as unintentional reversals of meaning, omissions of information, inclusions of irrelevant

information, etc. As the SR diagram components add complexity to an i* model, the automatically

generated textual annotations of the contents by the tool assistant proposed in this work will be even more

useful. The summaries can be used not only by novice learners to check the meanings of model constructs,

but also by other persons such as non-technical stakeholders who are involved in discussions and

decisions concerning the requirements of a “future” system and need to review the model contents

although they are not specialists in the modeling paradigm.

 We advocate the importance as well as the efficiency of our tool as it is convenient and appropriate to

translate an i* model, its structure (The parent/child relationship resulted for any refinement type) and the

wording used in labeling its involved conceptual constructs to a more human readable i.e. more “natural

language” format. As models may grow complex in a very rapid way and with the absence of i*

modularity, we believe in the added value that novices can get when they have both views of the very

same system story (domain under study) so they can compare the two versions (representations) namely

51

the graphical and textual (natural language NL descriptions) to ascertain that what they really meant in the

first place is present in the model and its accompanying and corresponding table of contents (TOC).

 Our aim is to assist the novice learners of the i* language to carefully review and check the meaning

and the content details of their created models in order to increase students’ comprehension on software

requirements models particularly the i* models by deriving tables of contents reflecting the informational

and structural details that reside in the models while in a very organized and indented way. Thus, we let

them (the beginners) introduce corrections and improvements in case of detected semantic mistakes. Put

differently, we aspire to allow the students to get a structured view where they can access and navigate to

see the different “model” elements grouped by type (from high level: actors, dependency to more detailed

level: refined internal elements and links connecting them) in a very elegant way. In other words, we

assume that such grouping will allow the beginner to easily figure out and detect any misinterpretation,

misunderstanding or misrepresentation of the original set of requirements in the system story.

4.2.1 Development description

 The GENERATi*ON tool assistant was developed with web-based technologies, the PHP language, in

order to take advantage of recent advances on web browser performance and the provided accessibility

and most importantly, it benefited again from the offered parsing functionalities of DOM XML.

 Initially, the models of our concern are represented in their native format since they are designed using

the existing diagramming editors. These models are either translated into XML format or they are

manually created from scratch by the student (which risks being an error-prone and tedious work). Then,

these iStarML files are used as inputs to the table of contents generator aka GENERATi*ON as it was the

case for i*Check system. Once uploaded, the iStarML version of the model will be analyzed and parsed

and then a hyperlinked version (of the model) will be returned to the user. This result will report

information on every actor, dependency, intentional element and links existing in the model. Figure 4.4

illustrates an overview of the role played by our proposed tool.

52

Figure 4.4: An overview of the model validation activity using the GENERATi*ON tool

 By developing our tool, we do not intend to deny the expressivity and the intuition that do offer the

visual representations of i* requirements, in the contrary, we consider the derived table of contents as a

mirror that reflects and reproduces what is being expressed inside the diagram. Moreover, we resorted to

table of contents generation approach in order to alleviate to some extent the difficulty of i* model

navigation and pursue for example, in case of large and evolving SR model with insufficient space

(unclear structure caused by intersected links etc…), elements refining some higher level goal or task.

 We seek a lot of advantages out of our approach, as our online tool automatically creates and gives back

the table of contents any time on demand to help the novices understand the technique especially when the

models get complex or more generally to any non-technical i.e. non-expert person who doesn’t have the

required skills to understand i* goal models (may prefer the textual representation) and so he will find our

approach easier as it gives him the chance to inspect and detect any misinterpretation, misrepresentations

(of the domain under study) to later introduce modifications, improvements or corrections to his design if

necessary (localizing problematic parts of the models helps stakeholders focus their discussion and take

corrective actions). In other words, it is of great importance that the various stakeholders from different

backgrounds carefully review, evaluate, correct, and propose improvements to these sketched i* models.

53

 For example, a complex i* model in its diagrammatic representation is not easily understood and the

navigation through it is time consuming whereas, inspecting the generated TOC could be useful and

helpful in pinpointing omissions, misrepresentations or unnecessary additions to the requirements model.

Thus, the ability to automatically derive a TOC makes our system a useful tool for debugging any i*

model.

 The generated table of contents (TOC) by our prototype tool is delivered as precise, verbose and

complete as the original i* model from which it is derived and subsequently, each time the i* goal model

is changed, saved and exported to iStarML (the same process), the new (modified) TOC can be re-derived

once again in order to keep in synchronization with the evolving model. Furthermore, it lists the names of

the actors, intentional elements (either internal elements or dependums) from the i* requirements model

and it utilizes the same icons used in the diagrammatic representation for each concept. Such icons can be

helpful for users to remind them of the concepts’ types. They also provide some visual grouping of the

model constructs by their types. The indentation in the table of contents appears by level, after clicking on

a certain hyperlink.

4.2.1.1 Suggested and developed generation templates

 i* goal models are often used to support the understanding, the modelling and the analysis of

organizational environments and their information systems. The accuracy of such models usually requires

that domain experts (staff of the organization) carefully review, revise, evaluate, correct, and why not

propose improvements to these models. However, domain experts are often not experts in (conceptual)

modeling. Consequently, they may not have the skills to understand, for example, in our case the i*

models except at a relatively superficial level.

 Generally, we believe that the validation of requirements models using one readable representation i.e.

textual description, is useful because all stakeholders (novice learners like students, business people and

non-technical staff, whom are inexperienced users of the i* methodology and modeling language and its

tooling) will be more comfortable and confident to understand the discourse in natural language.

 To this respect, we define an approach for generating (natural language) textual descriptions based on i*

goal models. The approach consists in a set of phrasing templates (patterns implemented in PHP codes)

dedicated to each type of i* models, namely the SD and SR models.

� In case of the Strategic Dependency (SD) model:

Given that this model focuses on the external relationships (dependencies) among actors that provide a

more abstract view of the reality. There exist 4 types of dependencies: goal, softgoal, task and resource.

54

The goal here is to translate each relationship (dependency) type between two actors into an equivalent

and corresponding pattern that verbalizes and expresses it firmly (nothing less nothing more).

 The candidate ‘Task dependency’ phrasing template:

-<Actor1: the depender> depends on <Actor2: the dependee> to <Task dependency (label)>

Example: Meeting initiator depends on Meeting participant to send the preferred dates.

 The candidate ‘Resource dependency’ phrasing template:

-<Actor1: the depender > shall receive <Resource dependency (label)> from <Actor2: the dependee >

Example: Meeting Participant shall receive proposed date from Meeting Initiator.

The candidate ‘Goal dependency’ phrasing template:

-<Actor1: the depender> depends on <Actor2: the dependee> to achieve the goal <Goal dependency

(label)>

Example: Patient depends on Doctor to achieve the goal medical care received.

The candidate ‘Softgoal dependency’ phrasing templates:

-<Actor1: the depender> depends on <Actor2: the depend> to satisfy the softgoal <Sofgoal dependency

(label) >

Example: Patient relies on Medical Professional to satisfy the softgoal privacy of personal data.

In case of the Strategic Rationale (SR) model:

The SR model provides a more detailed level of modeling by looking “inside” the actors to model internal

intentional elements and the different relationships (refinements) among them.

Therefore, the textual generation task here is performed per actor.

55

The starting point will be the generation of all different internal elements that reside inside the actor

boundary using the following template:

The internal elements of the actor <The actor Name> are grouped by type:

 -<List of goals (labels) >

 -<List of softgoals (labels) >

 -<List of tasks (labels) >

 -<List of resources (labels) >

Phrasing templates for each Intentional Elements Relationship (different refinements types)

concerning only the internal elements which are generated in a hyperlinked format.

� In case of Means-End relationships:

� To achieve the goal <Goal label>, one of the following elements (alternatives) must be

accomplished:

 -<[List of] Tasks labels>

Example: To achieve the goal "Air ticket purchased", one of the following elements (alternatives)

must be accomplished:

-Buy the ticket online

-Buy the ticket via a travel agency

� In case of Task-Decomposition links (AND Decomposition):

� To perform <Task label>, all the following elements must exist:

-<[List of] different internal elements (subgoals, softgoals, subtasks, resources) labels >

Example: To perform "Provide book information", all the following elements must exist:

-Extract book data

-Provide info by title

-Book

56

� In case of Contribution links:

The following elements (which can be goal, softgoal, task and resource) <Intentional Element label >

contribute to:

- <Softgoal label> Value (Make, Help, Some +, Break, Hurt, Some-, Unkown, AND, OR)

Example: The following elements contribute to "Attract more customers":

-Sell the books online help

-Offer some coupons help

Evidently, obtaining a high quality i* goal models minimizes flaws percentage in later software

development phases and helps the modeler to produce an i* model that is easier to understand and

maintain.

4.3 Summary

 The aim of this chapter is to describe our developed table of contents (TOC) generation tool and also to

show the benefits of having a graphical version depicting the system story under study consolidated with a

more human oriented and well-structured version i.e. maintaining both graphical representation alongside

with the textual format to finally and accurately review and validate the desired model. Put differently, the

generated TOC of an i* model is beneficial to different stakeholders. However, it is certainly not a

replacement for the diagrammatic view as we believe that the two representations complement each other.

 We assume that our prototype provides an added value in terms of understanding the i* models as it is

designated to complement the visual representations of the i* models and thus allow their accessibility to

various stakeholders with different background and training. The current version of the GENERATi*ON

application assumes and works best for the HiME style of the input iStarML. We seek one more

advantage from our prototype. Since, for example, it returns the intentional elements grouped by their

types (by goal, by task, etc.), this will facilitate the checking of the conventional labeling styles provided

for each intentional element type (e.g. a task should be specified and written as follows: task � verb +

object).

 One obvious disadvantage (weak point) of the generated TOC may be its increasing size (after each

click, new information will be displayed on PC screen). However, this is inevitable since all generated

information results from the elements, their textual annotations and the linking which binds between them

i.e. captured from the created model.

57

CChapter 5. Conclusion and Future Work

 This chapter summarizes the entire thesis and sheds light on possible future research topics that can be

performed.

5.1 Synthesis

 In general, modelling has been advocated as a very important part of software development, particularly

in the requirements engineering (RE) phase, in order to tackle complexity by providing abstractions and

hiding technical details. Thus, due to the wide and increasing application of modelling in the past few

decades, numerous formal and semi-formal approaches to modelling have been developed such as the i*

(iStar) framework.

 Now, i* is one of the most widespread, best positioned and well-grounded goal modeling languages and

methodologies. Like any modeling language and technique, i* has a large documentation covering the

basic ingredients for modeling rules, guidelines, conventions and best practices on how to select the

language constructs with an overall lower complexity as well as define the patterns for better usage and

combination of those constructs and concepts. Obviously, i* has been supported by a vast range of tools

available, enabling its widespread adoption and practice usage, to permit the practitioners (experts,

instructors and students) sketch their requirements models. Despite the aforementioned positive points, it

is not straightforward that examining a graphical description could allow users, in particular novice

learners, to easily discover modeling errors (e.g. disconnected elements, absent dependum, etc.).

 Choosing a certain tool to use when teaching the i* language is challenging and delicate, as instructor

has to be careful about his choice since surveying the state-of-the-art tools revealed some weaknesses,

despite their merits, that would affect and impact upon the quality of produced models. In other words, we

performed an analysis of a set of i* Wiki-derived checks for a specific set of freely available tools and we

58

could find out their strong points as well as their shortcomings and imperfections. The aforementioned

defects are represented in two main categories: the ones related to SD model and the ones that specifically

concerned the SR model.

 The evidence that we got from the performed tools’ survey settled down the framework of this research

work through the definition of the first research problem and one of the major contributions expected from

this dissertation.

 First aim of our research work is to face model syntactical quality issues (not respecting nor adhering to

the i* modeling language rules, guidelines and best practices) on i* models raised by the usage of the

existent systems and their checking features. Those issues can be tackled facing the before mentioned sub-

problem i.e. limitation of checking features provided by the freely available tools.

 Our second goal in this thesis work is to allow the model creators review their built models for

subsequent validation of their contents correctness and compliance with domain knowledge. Such

validation is so important since it enables the modelers communicate what has been expressed in their

models. To put it in another way, we desire to also detect and clear errors other than syntactical ones

(those which cannot be fixed in the same way and strategy like the syntax defects require).

 So, the main contribution intended by this dissertation was the improving of the quality of iStar models

at the analysis phase by developing a web-based toolkit that supports i* modelers in reviewing their

models syntactical quality at a first step and then helps them in validating what has been described in their

graphical depictions. It is important to mention here that our intention was not to suggest how the RE, in

particular the i* methodology subject, should be introduced and taught effectively in a classroom setting

since we know that the learning process is based on many phases. Instead, our goal is to assist the novices

in reviewing their built models to make sure of both their syntactical quality and valid correct contents

without the help of a nearby coach or teaching assistant.

5.2 Contributions

In the following sub-sections we summarize the major contributions of our dissertation.

5.2.1 i*Check: an online free tool to detect i* models defects

 Aware of the mentioned limitation revealed in the tools’ assessment i.e. limited model checking

features (since the principal consideration that influenced the development of our tool was that the existent

tools’ error messages could, and should be improved upon) which is also scattered between the three

59

different surveyed systems, we developed an online system which is envisioned to circumvent this gap

and complement the existing i* tool landscape as it will only offer checking functionality to the input i*

diagrams’ iStarML representation. To say it in simple way, we provided and developed an online

“separate and independent” model quality checker designated to produce a report like feedback that

describes the detected (if any) defects and gives hints and suggestions on how to correct them. Thus, we

aim to support the i* language learners and users to produce good quality models as, in case of detected

model flaws and rule violations, the modelers will iteratively introduce the necessary corrections and

improvements until they get models totally free of any error and rule violations. Our work can be

considered as a resource for instructors of introductory RE courses, using the i* approach, and why not

developers of tools which are designated for novice modelers.

 i* tools generally allow for modeling artifacts and some of them enable the interchange and

interoperability among different tools. Most of the interchanged models use a serial representation of i*

requirement model through a dialect of XML called iStarML. We make use of this interchange format as

an input to our prototype aka i*Check which will be parsed in order to fetch for any possible modeling

faults (i.e. i* model checking must be preceded by either a model exportation from a tool offering the

functionality that is allowing and supporting the interoperability format aka iStarML or a manual iStarML

file construction by the novice modeler).

 The returned checking results consist in two types of feedback: one is textual error description (error

display) and GIF animations (fix suggestions). We assume that the latter one is just needed in the very

beginning of the learning journey and at some point the novice learner will be accustomed and familiar

with the necessary correction steps and thus, he will be satisfied only with the textual error messages as

we suppose they will be enough for the learner to introduce the required fixes.

 Note that the detected defects along with their corresponding exigent corrections can change a model

that is not fully well-structured into a well-structured and sound one without changing its (yet informal)

semantics and thus they help novices avoid any possible source of misunderstandings and wrongful

implementations later.

 The effectiveness of our proposed tool was empirically tested by means of experimentations which

returned positive and promising results of using i*Check as a complementary tool to the available systems.

5.2.2 GENERATi*ON: an approach for model content review and validation

 Besides model syntactical quality, the produced i* models would also reveal other types of

shortcomings and imperfections, due to misinterpretation, misunderstanding (switching roles, omitting

something because of carelessness) and even because of total freedom when expressing the under study

domain knowledge.

60

 For this purpose and as was previously mentioned, we developed an online application called

GENERATi*ON which also (same strategy that is used by i*Check) accepts an iStarML version of the

created i* model, parses it to extract specific data and then generates a table of contents that describes and

reflects the content of the model in a structured way. Put differently, it allows expressing and translating

the different types of elements of the model including constructs, links and relationships connecting them,

which are visually expressed along with their textual annotations, to a human understandable manner.

5.3 Future work

 Inspired by the proposal in this thesis, we have identified some additional research directions that could

be extensions to the actual work or new perspectives for new research lines. In other words, there are

several interesting avenues for future work.

 The first research direction could be continuing the improvement of our current toolkit by addressing

the limitation of our current tool i.e. not covering all the i* framework constructs.

 The second research direction, for improving the current work, includes the extension of our prototypes

in the following ways: update and upgrade our i*Check tool and allow it to offer the checking of best-

practices rules reinforcement of iStar 2.0 (released in mid-2016). Following the same strategy, this tool

should provide hints (a depiction of a model with the error found and its corrected version) and guide the

modelers in the overcoming of non-compliances in i* models. Obviously, GENERATi*ON tool support

will also be a subject of such updating.

 Although we have performed case studies to evaluate each part of the thesis, we have acknowledged the

needs of collecting further empirical evidence in regard to the follow aspects: firstly, the case studies we

have performed within laboratory experimentations which provide preliminary evidence that our

approaches can be adopted in reality i.e. in real classroom setting. However, we need to further evaluate

our approach with a significant number of participants. To this end, controlled experiments would be the

ideal empirical method to collect such empirical evidence. Another idea is to separate the effectiveness’

evaluation of the i*Check system by investigating in an independent manner the efficiency of each

feedback type, i.e. the returned textual descriptions of detected errors versus the GIF animations errors’

fixing hints, and test how, how fast and which one of them is more helpful and useful than the other.

 Additionally, extending the model checking facility (especially for i*Check) in order to register the

history of modeling errors introduced by the user and providing the functionality to the user to allow him

generate reports with this information and understand in which i* model scopes he introduces more errors

and exactly in which type of i* elements, so the user can improve his knowledge in this area, enhance his

i* modeling skills and potentially avoid introducing these errors in future, can be another perspective for

further research work.

61

References

[1] E.S.K. Yu. “ Towards modelling and reasoning support for early-phase requirements engineering”, in

Proceedings of the Third IEEE International Symposium on Requirements Engineering, pages 226–235.

IEEE, 1997.

[2] E. Yu. “Modeling Strategic Relationships for Process Reengineering”. PhD thesis, Department of

Computer Science, University of Toronto, Canada, 1995.

[3] J. Horkoff. “Observational Studies of new i* Users: Challenges and Recommendations”. in Proc.

iStarT, 2015, pp. 13-18.

[4] i* Wiki Guide, http://istar.rwth-aachen.de/tiki-index.php?page=i%2A+Guide .

[5] HiME: Hierarchical i-star Modelling Editor, http://www.upc.edu/gessi/istar/tools/hime/index.html .

[6] Á. Malta, M. Soares, E. Santos , J. Paes , F. Alencar and J. Castro. “iStarTool: Modeling requirements

 using the i* Framework”. CEUR Proceedings of the 5th International i* Workshop (iStar 2011), Trento,

 Italy, pp. 163-165.

[7] OpenOME, an open-source requirements engineering tool, http://www.cs.toronto.edu/km/openome/ .

[8] R. Laue, A. Storch. “A Flexible Approach for Validating i* Models”. CEUR Proceedings of the 5th

 International i* Workshop (iStar 2011), Trento, Italy, pp. 32-36.

[9] Alencar F., Castro J., “Integrating Early and Late-phase Requirements: A Factory Case Study”.

[10] Yu E., “Towards Modelling and Reasoning support for Early-Phase Requirements Engineering”.

Proceedings of the 3rd IEEE International Symposium on Requirements Engineering (RE'97) pp. 226-

235 .IEEE Computer Society Washington, DC, USA 97.

[11] Lamsweerde A., “Goal-Oriented Requirements Engineering: A Guided Tour”. Invited

minitutorial, Proceeding 5th IEEE International Symposium on (RE’01), Toronto, IEEE, August

 2001, pp. 249-263.

[12] Letier E., Lamsweerde A., “Reasoning about Partial Goal Satisfaction for Requirements and Design

Engineering”. Proceedings of FSE’04, 12th ACM International Symp. On the Foundations of Software

Engineering, Newport Beach (CA), Nov. 2004, pp. 53-62.

[13] Dardenne A., Lamsweerde A., and Fickas S., “Goal Directed Requirements Acquisition”. Science of

62

Computer Programming, vol. April 1993, Pp. 3-50.

[14] Potts C., Takahashi K. and Anton A. I., “Inquiry-Based Requirements Analysis”. IEEE Software,

March 1994. pp.21-32.

[15] Anton. I. A. and Potts C. “The Use of Goals to Surface Requirements for Evolving Systems”.

International Conference on Software Engineering (ICSE `98), Kyoto, Japan, pp. 157-166, 19-25 April

1998.

[16] Mylopoulos J., Chung L., Liao S.S.Y., Wang H. and Yu E., (1992, June). “Exploring Alternatives

During Requirements Analysis”. IEEE Software, Volume (18), Issue: 1, Jan/Feb 2001, pp. 92 - 96.

[17] Cares C., Franch X., Lopez L., Marco J., “Definition and Uses of the i* Metamodel”.

[18] Horkoff J. M., “Using i* Models for Evaluation”. Master Thesis (2006), Department of Computer

Sciences, University of Toronto.

[19] iStarML: The i* Mark-up Language guide, http://www.essi.upc.edu/~ccares/papers/istarmlRefGuide.pdf.

[20] Hypertext Preprocessor PHP, http://www.php.net .

[21] PHP DOM XML, http://php.net/manual/en/book.dom.php .

[22] F. Dalpiaz. “Teaching Goal Modeling in Undergraduate Education”, in Proc. iStarT, 2015, pp1-6.

[23] J. P. Carvallo. “Teaching Information Systems: an i*-based approach”, in Proc. iStarT, 2015, pp.7-12.

[24] E.O. Svee, J. Zdravkovic. “ iStar Instruction in Mixed Student Cohort Environments”, in Proc. iStarT,

2015, pp19-24.

[25] E. Yu, L. Lessard, Z. Babar, S. Nalchigar and J. Horkoff. “Teaching i* Alongside a Contrasting

Modeling Framework”, in Proc. iStarT, 2015, pp25-30.
[26] Z. Babar, S. Nalchigar, L. Lessard, J. Horkoff and E. Yu. “Instructional Experiences with Modeling

and Analysis using the i* Framework”, in Proc. iStarT, 2015, pp31-36.

[27] E. Paja, J. Horkoff and J. Mylopoulos. “The importance of teaching goal-oriented analysis techniques:

an experience report”, in Proc. iStarT, 2015, pp37-42.

[28] A. Bennaceur, J. Lockerbie and J. Horkoff. “On the Learnability of i*: Experiences from a New

Teacher”, in Proc. iStarT, 2015, pp43-48.

[29] A.P.A. Oliveira, V.M.B. Werneck, J. C.S.P. Leite and L.M. Cysneiros. “The Monopoly Game to

Teach ERi*c - Intentional Requirements Engineering”, in Proc. iStarT, 2015, pp49-54.

[30] C. Cares, X. Franch, L. Lopez and J. Marco. “Definition and Uses of the i* Metamodel”, in Proc.

iStar10, 2010, pp20-24.

63

[31] J. Mylopoulos, M. Kolp and J. Castro. “UML for Agent Oriented Software Development: The Tropos

Proposal”, volume 2185 of Lecture Notes in Computer Science, 2001, pages 422–441.

[32] P. Giorgini, J. Mylopoulos, and R. Sebastiani. Goal-oriented requirements analysis and reasoning in

the Tropos methodology. Engineering Applications of Artificial Intelligence, 18(2):159–171, 2005.

[33] A. Fuxman, M. Pistore, J. Mylopoulos and P. Traverso. “Model checking early requirements

specifications in Tropos”, in Proceedings of the Fifth IEEE International Symposium on Requirements

Engineering,, pages 174–181. IEEE, 2001.

[34] Canada University of Toronto. GRL - Goal-oriented Requirement Language.
http://www.cs.toronto.edu/km/GRL/, 2015.
[35] Hajer Mejri. “Insights on How to Enhance the Detection of Modeling Errors by iStar Novice

Learners”, in American Scientific Research Journal for Engineering, Technology, and Sciences

(ASRJETS), 2017, Volume 32, No 1, pp. 160-167.

[36] HiME User Manual. Available at:

http://www.upc.edu/gessi/istar/tools/hime/download/Hime.UserGuide.pdf

[37] V. Abdelzad, D. Amyot, S. A. Alwidian and T. C. Lethbridge. “A Textual Syntax with Tool Support

for the Goal-oriented Requirement Language,” in Proc. iStar, 2015, pp.61-66.

[38] Hajer Mejri and Pauline N. Kawamoto: “Development and Evaluation of an Online Assistant for

Helping Novice Learners Correct Defects in i* Models”; 2016 Convention Record of the Shin-Etsu

Chapter of the Institute of Electronics, Information, and Communication Engineers, IEEE Shin-etsu Poster

Session, P2-7, October 8, 2016, 165.

[39] i* Models Design Quality and Contents Reviewer Toolkit:

http://lang.cs.shinshu-u.ac.jp/p/hajer/Toolkit/uploader.html

64

AAppendix A: Source code and screenshot of the
toolkit homepage

A.1 Toolkit overview

Our proposed toolkit includes two tools (i*Check and GENERATi*ON) that enable the i* goal

modeling’s novice learners to check and review their created i* requirements diagrams’ both layers

namely the syntactical and contents qualities using the Internet service. Each of aforementioned tools

allows its users in general, either beginners or experts, to connect to the server through a standard browser

and proceed with their desired review type. Figure A.1 shows the homepage for the latest version of our

toolkit.

Figure A.1: Toolkit homepage interface [39]

65

The toolkit homepage is created by means using HTML language and it is named as “uploader.html”.

Mainly, it includes a form that allows the user to browse to his desired model file which is in iStarML

format (either for model quality checking purpose or for model content validation), choose the type of his

model (SD or SR model), indicate the tool that he wants to use (i.e. the type of review he wants to perform

on the model) and finally he submits the iStarML file. Once clicked on, the upload button will send the

submitted form information to a PHP file with the name (fileUpload.php). This PHP file does the

necessary checks that are indispensable for a sound and correct iStarML uploading to a chosen tool like

verifying the extension of the uploaded file (only files with the “istarml” extension and format are

supported and accepted by the toolkit and in case of different extension, an error message would appear

on the screen and no uploading is performed), its size and if the file already exists (if it exists, a “-” and

the next available number will be added to the file name. After performing all the aforementioned checks

the file will be uploaded by moving and redirecting it to a specific PHP file for a subsequent model review.

Figure A.2 Overview of the i* model quality and content reviews toolkit architecture

A.2 Source codes

A.2.1 uploader file code (HTML)

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Welcome to our i* models uploading web page!</title>
</head>
<body>
 <center>

66

 <h1><i>i*</i> Models Quality and Contents Reviewer Toolkit</h1>
 <h3>istarML File Uploading Interface</h3>

 <form method="post" action="fileUpload.php" enctype="multipart/form-data">
 <table border="3">

 <tr>
 <td>Pick your file :</td>
 <td><input type="file" name="userfile" /></td>
 </tr>
 <tr>
 <td>Checking by Model Type :</td>
 <td>
 <select name="selectType" onchange="redirect()">
 <option value="sd">Strategic Dependency (SD) Model</option>
 <option selected="selected" value="sr">Strategic Rationale (SR) Model</option>
 </select>
 </td>
 </tr>
 <tr>
 <td>Choose Available Tool :</td>
 <td>
 <select name="selectTool" onchange="redirect()">
 <option value="i*check" selected="selected">i*Check Tool</option>
 <option value="generati*on">Generati*on Tool</option>
 </select>
 </td>
 </tr>

 <tr>
 <td colspan="2" align="center"><input type="submit" value="Upload" /></td>
 </table>
 </form>

 </center>
</body>
</html>

A.2.2 fileUpload.php code (PHP)

<?php

 if(isset($_FILES['userfile'])){
 $errors= array();
 $file_name = $_FILES['userfile']['name'];
 $file_size =$_FILES['userfile']['size'];
 $file_tmp =$_FILES['userfile']['tmp_name'];
 $file_type=$_FILES['userfile']['type'];
 $file_ext=strtolower(end(explode('.',$_FILES['userfile']['name'])));

67

 $select= $_REQUEST['selectType'];
 $select1= $_REQUEST['selectTool'];

 $extension= array("istarml");

 //cheching for any file errors
 $errors_Found=FALSE;
 //to check the extension of the uploaded file
 if(in_array($file_ext,$extension)=== false)
 {
 $errors_Found=True;

 echo "extension not allowed, please choose an istarml file.";
 }
 //to check the size of the uploaded file
 if($file_size > 5000000)
 {
 $errors_Found=True;
 echo 'File size must not exceed be 5 MB';
 }

 //to check if the file already exists, if so it adds - and the next available number
 $i = 0;
 $parts = pathinfo($file_name);
 echo $parts["filename"];
 while (file_exists("upload/" . $file_name))
 {
 $i++;
 $file_name = $parts["filename"] . "-" . $i . "." . $file_ext;
 }

 if ($select1 == 'i*check')
 {
 move_uploaded_file($file_tmp,"upload/" . $file_name);
 }
 elseif($select1 == 'generati*on')
 {
 move_uploaded_file($file_tmp,"UploadedFiles/" . $file_name);
 }

function redirect($where)
 {
 header("Location: $where");
 }
 if ($select1 == 'i*check')
 {

 if ($select == 'sd')
 {
 redirect("SDCheck.php?filename=$file_name&checkType=$select");

68

 }
 elseif($select == 'sr')
 {
 redirect("try.php?filename=$file_name&checkType=$select");
 }
 }
 elseif($select1 == 'generati*on')
 {

 redirect("ParseForGeneration00++.php?filename=$file_name&checkType=$select");

 }

?>

69

Appendix B: Source code and screenshots of
the i*Check tool

This appendix contains the source code and the returned feedback screenshots that are relative to the

i*Check tool which was developed with the purpose of detecting defects in the submitted i* goal models

of the novice learners and then guiding them to introduce correction by offering hints and suggestions on

possible and potential solutions for each particular error caught (it suggest a set of actions to do in order to

improve the conceptual model). Put differently, i*Check returns two types of feedback: textual feedback

which describes the detected defect and GIF animation which proposes corrective steps to follow.

We used PHP as main programming language, JavaScript was used to define the showing and hiding

(showHide) function for the GIF animations feedback. We used CSS to describe how HTML elements are

displayed on screen. Each uploaded (submitted for i*Check) iStarML file will be stored in a folder in

server called “upload”.

Figure B.1: Description of i*Check tool’s components for SD and SR checking respectively.

70

B.1 SD Checking

Figure B.2: An example of selecting an SD model “sd3” to submit to the i*Check prototype

Figure B.3: Example of feedback returned from i*Check showing an error in a SD model

71

Figure B.4: The GIF animation corrective steps to solve the error detected in sd3.istarml file

B.1.1 SD checking part source code

SDCheck.php file source code

<script language="javascript" type="text/javascript">
function showHide(shID) {
 if (document.getElementById(shID)) {
 if (document.getElementById(shID+'-show').style.display != 'none') {
 document.getElementById(shID+'-show').style.display = 'none';
 document.getElementById(shID).style.display = 'block';
 }
 else {
 document.getElementById(shID+'-show').style.display = 'inline';
 document.getElementById(shID).style.display = 'none';
 }
 }
}

72

</script>
<style type="text/css">
 /* This CSS is just for presentational purposes. */
 body {
 font-size: 62.5%;
 background-color: beige; }
 #wrap {
 font: 1.4em/1.3 Arial, Helvetica, sans-serif;
 width: 30em;
 margin: 0 auto;
 padding: 0em;
 background-color: transparent; }

 /* This CSS is used for the Show/Hide functionality. */
 .more {
 display: none;
 border-top: 1px solid #666;
 border-bottom: 1px solid #666; }
 a.showLink, a.hideLink {
 text-decoration: none;
 color: #36f;
 padding-left: 8px;
 background: transparent url(down.gif) no-repeat left; }
 a.hideLink {
 background: transparent url(up.gif) no-repeat left; }
 a.showLink:hover, a.hideLink:hover {
 border-bottom: 1px dotted #36f; }
</style>

<?php
$dom = new DOMDocument();
$dom->preserveWhiteSpace = FALSE;
$name= $_REQUEST['filename'];
$type= $_REQUEST['checkType'];
$dom->load("upload/$name");
$xpath = new DOMXpath($dom);

$actors = $xpath->query('//actor');

function getDepParentName ($dependency)
{
 $Parent= $dependency->parentNode;
 $ParentName= $Parent->getAttribute('name');

 return $ParentName;

}

function ActorIDExists ($id)
{

73

 global $actors;
 foreach ($actors as $actor)
 {
 $identifier=$actor->getAttribute('id');
 if ($identifier == $id)
 {
 return 1;
 }

 }
 return 0; //no actor in the specified list had that given $id

}

function Check_for_isolated_dep ($dependency)
{
 global $actors;

 //if the dependency does not have a valid der AND valid dee (attribute aref exist and it has some
valid value) so we return 1, else we return 0.
 if (!$dependency->hasChildNodes())
 {
 return 1;
 }

 $listDers = $dependency->getElementsByTagName('depender');
 $listDees = $dependency->getElementsByTagName('dependee');
 $numb_Ders= $listDers->length;
 $numb_Dees= $listDees->length;
 if ($numb_Ders == 0 and $numb_Dees == 0)
 {
 return 1;
 }
 //First we checked the dependers list side
 foreach ($listDers as $der)
 {
 if ($der->hasAttributes())
 {
 $arefFound=FALSE;
 foreach ($der->attributes as $attr)
 {

 $namer = $attr->nodeName;
 $valuer = $attr->nodeValue;
 if ($namer=='aref')
 {
 $arefFound=true;
 if ($valuer!='')
 {
 $actorExists= ActorIDExists ($valuer);
 if ($actorExists)

74

 {
 return 0; // this dependency has AT
LEAST one VALID Der specification which means the dependency IS NOT ISOLATED!!!!
 }
 }

 }
 }
 }

 }

 //Second we check the dependees list side
 foreach ($listDees as $dee)
 {
 if ($dee->hasAttributes())
 {
 $arefFound=FALSE;
 foreach ($dee->attributes as $attr)
 {

 $namee = $attr->nodeName;
 $valuee = $attr->nodeValue;
 if ($namee=='aref')
 {
 $arefFound=true;
 if ($valuee!='')
 {
 $actorExists= ActorIDExists ($valuee);
 if ($actorExists)
 {
 return 0; // this dependency has AT
LEAST one VALID Dependee specification which means the dependency IS NOT ISOLATED!!!!
 }
 }

 }
 }
 }

 }
return 1;
}

function display_SD(){

$dom = new DOMDocument();

75

$dom->preserveWhiteSpace = FALSE;
$name= $_REQUEST['filename'];
$dom->load("upload/$name");
$xpath = new DOMXpath($dom);

global $actors;
//$actors = $xpath->query('//actor');
$ielements = $xpath->query('//ielement');
$AllDependencies = $xpath->query('//dependency');
$Alldependees = $xpath->query('//dependee');
$Alldependers = $xpath->query('//depender');
$AllIntentionalLinks = $xpath->query('//ielementLink');
$diagramList= $dom->getElementsByTagName('diagram');
$diagram= $diagramList->item(0);
$diagramName = $diagram->getAttribute('name');
echo '<h3>Information and issues of the SD diagram from the file
'.$diagramName.'</h3>',"
";

echo 'The number of existing actors in this model is '. $actors->length. '.' ,"
";
echo "
";

// It was a code to remove the unwanted elements. WE DIDN'T touch the source file!!!
$GraphicNodes = $dom->getElementsByTagName('graphic');

if ($GraphicNodes->length == 0)
{
 $done = True; //the istarml File has no graphic nodes ()tags)
}
else
{
 $done = False;
}
 for (; !$done;)
 {

 $gnode=$GraphicNodes->item(0);

 $gnode->parentNode->removeChild($gnode);

 if ($GraphicNodes->length == 0)
 {
 $done = True; // no more graphic nodes left
 }

 }

76

$error_label=1;
//displaying the ordered list of errors

//Check #7
$error_number= 1; // it starts with 1 because it is used in counting the number of appearance of a certain
error
if($actors->length==0 OR $actors->length==1) // if ($actors->length < 2)
{

 echo $error_label.'. --->ERROR!!! There should be at least two actors in the
i* model!! ',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
}

 echo "
";

//Check #3:
foreach ($actors as $actor)
{
 $acteurs= $actor->getAttribute('name');
 echo 'The name of the existing actor is "'. $acteurs.'".' ,"
";

 $IdA= $actor->getAttribute('id');
 // this loop is iterating to make sure that one actor appears at least in one dependency either as
depender or as dependee!!

 $found = FALSE;
 foreach($Alldependers as $depender)
 {

 $dependerId= $depender->getAttribute('aref');

 if ($IdA==$dependerId)
 {
 $found=True;

 break;

77

 }
 }
 if (!$found)
 {
 foreach ($Alldependees as $dependee)
 {
 $dependeeId= $dependee->getAttribute('aref');
 if ($IdA==$dependeeId)
 {
 $found=True;
 break;
 }
 }
 }
 if (!$found) // if the actor id is still not found
 {

 echo $error_label.'. --->ERROR!!! This actor is a dangling
actor!', "
";

 $error_label++; //increment the error_label
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example2_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example2_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example2_'.$error_number.'" class="more">';
 echo '<p><center></center></p>';
 echo '<p><a href="#" id="example2_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example2_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;

 }

}

 echo '<HR>';

if ($AllDependencies->length!=0) //if the list of dependencies is not empty
{
 foreach($ielements as $ielement)
 {
 $nom = $ielement->getAttribute('name');
 //check if the ielement is not inside an actor boundary (dependency)
 $Parent=$ielement->parentNode;
 $ParentName=$Parent->nodeName;
 if ($ParentName!='boundary')
 {

78

 if ($ielement->hasChildNodes())
 { //check if ielement has children called dependency

 $dependencies=$ielement->getElementsByTagName('dependency'); //grab only the
dependency tagged children

 if ($dependencies->length!=0)
 { //if the ielement has children tagged as dependency
 foreach($dependencies as $dependency)
 { //get the dependencies list one by one
 $depName = $ielement->getAttribute('name'); //go get the dependency
name
 echo 'this dependency is labeled as "'.$depName.'"', "
"; //display the
dependency name
 $dependers= $dependency->getElementsByTagName('depender');
 $dependees= $dependency->getElementsByTagName('dependee');
 $ders= $dependers->length;
 $dees=$dependees->length;
 echo 'number of dependers in this dependency is '.$ders,"
";
 echo 'number of dependees in this dependency is '.$dees,"
";

 //Check #4
 if ($ders>1 and $dees==0)
 {

 echo $error_label.'. --->ERROR!!! Each
dependency must have exactly one depender and one dependee! ',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example3_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example3_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example3_'.$error_number.'" class="more">';
 echo '<p><center><img src="./solutionPattern4.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example3_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example3_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;

 }
 //Check #8
 if ($ders ==1 and $dees==0)
 {

 echo $error_label.'. --->STOP!!! Each
dependency has to have one and only one depender AND one and only one dependee!! ',"
";

79

 $error_label++;

 echo '<div id="wrap">';
 echo '<p><a href="#" id="example4_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example4_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example4_'.$error_number.'" class="more">';
 echo '<p><center><img src="./solutionPattern8.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example4_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example4_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;

 }

 //Check #9
 if ($ders >1 and $dees==1)
 {

 echo $error_label.'. --->ERROR!!! Two Dependency Links
outgoing from two Dependers should not be joined to target one Dependum ',"
";
 echo '---> Only one link should be drawn on both
sides of a Dependum!!!',"
";

 $error_label++;

 echo '<div id="wrap">';
 echo '<p><a href="#" id="example5_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example5_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example5_'.$error_number.'" class="more">';
 echo '<p><center><img src="./solutionPattern9.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example5_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example5_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;

 }
 //Check #10
 if ($ders == 1 and $dees>1)
 {
 echo $error_label.'. --->ERROR!!! A Dependency
Link should not be split into two links from one Dependum to two Dependees! ',"
";

 $error_label++;

80

 echo 'Only one link should be drawn on both sides
of a Dependum!!!',"
";
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example6_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example6_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example6_'.$error_number.'" class="more">';
 echo '<p><center><img src="./solutionPattern10.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example6_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example6_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 }
 }

 }
 }

//this else is the else of the if ($ielement->hasChildNodes()) above
 else
 {
 echo $error_label.'. --->ERROR! There exist some
disconnected elements in this model: '. $nom, '
';
 $error_label++;

 echo '<div id="wrap">';
 echo '<p><a href="#" id="example7_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example7_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example7_'.$error_number.'" class="more">';
 echo '<p><center></center></p>';
 echo '<p><a href="#" id="example7_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example7_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;

 }
 echo "
";

 }

 }
}

//Check #1 MODEL contains Actors ONLY!!!

81

else //this else is the else of the if ($Alldependencies->length!=0) above
{
// I need to check if there is ielement

if ($ielements->length==0)
{
echo $error_label.'. --->ERROR! This model does not contain any dependency
binding the actors! ' ,"
";
$error_label++;
echo '<div id="wrap">';
echo '<p><a href="#" id="example8_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example8_'.$error_number.'\');return false;">See correction explanation...</p>';
echo '<div id="example8_'.$error_number.'" class="more">';
echo '<p><center></center></p>';
echo '<p><a href="#" id="example8_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example8_'.$error_number.'\');return false;">Hide this explanation.</p>';
echo '</div>';
echo '</div>';

$error_number++;
}
}

//check #5: The dependum is absent
foreach ($AllDependencies as $dependency)
{
 $DepChildren=$dependency->childNodes;
 if ($DepChildren->length ==2)
 {
 $dependerList= $dependency->getElementsByTagName('depender');
 $dependeeList= $dependency->getElementsByTagName('dependee');
 foreach ($dependerList as $depender)
 {
 $der=$depender->getAttribute('aref');
 $Found=FALSE;

 foreach ($actors as $actor)
 {
 $id = $actor->getAttribute('id');
 if ($id==$der)
 {
 $Found=True;
 $nameDer = $actor->getAttribute('name');
 break;
 }
 }
 }
 foreach ($dependeeList as $dependee)
 {
 $dee=$dependee->getAttribute('aref');

82

 $Found=FALSE;

 foreach ($actors as $actor)
 {
 $id = $actor->getAttribute('id');
 if ($id==$dee)
 {
 $Found=True;
 $nameDee = $actor->getAttribute('name');
 break;
 }
 }
 }

 }
 $parent= $dependency->parentNode;
 $ParentName=$parent->nodeName;
 if ($ParentName != 'ielement')
 {

 echo $error_label. '. --->ERROR! The dependum is absent between
"'.$nameDer. '" and "'.$nameDee.'"',"
";
 $error_label++;

 echo '<div id="wrap">';
 echo '<p><a href="#" id="example9_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example9_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example9_'.$error_number.'" class="more">';
 echo '<p><center></center></p>';
 echo '<p><a href="#" id="example9_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example9_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 }

}

//Check for Disconnection #2 EVERY ELEMENT IS ISOLATED

//if AT LEAST one actor AND ielement exist in the model
if ($ielements->length>0 and $actors->length>0)
{
$non_isolated_dependency_found = FALSE;
foreach ($AllDependencies as $dependency)
{

$status = Check_for_isolated_dep ($dependency);

83

 if ($status == 0)
 {
 $non_isolated_dependency_found = true;
 break;

 }

}
if (!$non_isolated_dependency_found)
{
 echo $error_label.'. --->ERROR! All elements of model are completely
disconnected! ',"
";
 $error_label++;

 echo '<div id="wrap">';
 echo '<p><a href="#" id="example10_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example10_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example10_'.$error_number.'" class="more">';
 echo '<p><center></center></p>';
 echo '<p><a href="#" id="example10_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example10_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;

}

}
echo '<HR>';

//check #6
foreach ($AllIntentionalLinks as $Link)
{
 $LinkParent= $Link->parentNode;
 $done=FALSE;
 $found=False;
 while (!$done && !$found)
 {
 $Name=$LinkParent->nodeName;
 if ($Name == 'boundary')
 {
 $found =True;
 }
 else
 {
 if ($Name== 'diagram')
 {
 $done = True;
 }

84

 else
 {
 $LinkParent= $LinkParent->parentNode;
 }
 }
 }
 if (!$found)
 {
 echo $error_label.'. --->ERROR! There should not be any
decomposition outside the actor boundary! ', "
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example11_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example11_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example11_'.$error_number.'" class="more">';
 echo '<p><center></center></p>';
 echo '<p><a href="#" id="example11_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example11_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;

 }
}

}// End of display_SD();
echo '<TABLE border = 1 cellpadding = 20>';
echo '<TR>';
echo '<TD> <center>List of SD diagram
defects</center></TD>';
echo '</TR>';

echo '<TD valign=top>',display_SD();
echo '</TD>';
?>

85

B.2 SR Checking

Figure B.5: An example of selecting an SR model called “SROME09” to submit to the i*Check
prototype

86

Figure B.6: The feedback returned from i*Check showing a list of errors in SR model

87

Figure B.7: Example of GIF animation offering steps to correct a specific SR error

B.2.1 SR part checking code source

try.php file source code

<script language="javascript" type="text/javascript">
function showHide(shID) {
 if (document.getElementById(shID)) {
 if (document.getElementById(shID+'-show').style.display != 'none') {

88

 document.getElementById(shID+'-show').style.display = 'none';
 document.getElementById(shID).style.display = 'block';
 }
 else {
 document.getElementById(shID+'-show').style.display = 'inline';
 document.getElementById(shID).style.display = 'none';
 }
 }
}
</script>
<style type="text/css">
 /* This CSS is just for presentational purposes. */
 body {
 font-size: 62.5%;
 background-color: beige; }

 #wrap {
 font: 1.4em/1.3 Arial, Helvetica, sans-serif;
 width: 30em;
 margin: 0 auto;
 padding: 0em;
 background-color: transparent; }

 /* This CSS is used for the Show/Hide functionality. */
 .more {
 display: none;
 border-top: 1px solid #666;
 border-bottom: 1px solid #666; }
 a.showLink, a.hideLink {
 text-decoration: none;
 color: #36f;
 padding-left: 8px;
 background: transparent url(down.gif) no-repeat left; }
 a.hideLink {
 background: transparent url(up.gif) no-repeat left; }
 a.showLink:hover, a.hideLink:hover {
 border-bottom: 1px dotted #36f; }
</style>

<?php
//include 'SDCheck.php'; //try before server and change the file name in this file copy in server to contain
the same SRFileName

include 'CheckTask.php';
include 'CheckGoal.php';
include 'CheckSoftgoal.php';
include 'CheckResource.php';
function display_SR()
{
$dom = new DOMDocument();

89

$dom->preserveWhiteSpace = False;
//$dom->load('SRFileName.istarml');
$name= $_REQUEST['filename'];
$dom->load("upload/$name");
$xpath = new DOMXpath($dom);
$Allactors = $xpath->query('//actor');
$Allboundaries = $xpath->query('//boundary');
$Allielements = $xpath->query('//ielement'); //all of the ielements
$diagramList=$dom->getElementsByTagName('diagram');
$diagram=$diagramList->item(0);
$diagramName = $diagram->getAttribute('name');
$Alldependencies= $xpath->query('//dependency');
$ieLinksList= $xpath->query('//ielementLink');

echo '<h3>Information and issues of the SR diagram from the file
'.$diagramName.'</h3>',"
";

// It was a code to remove the unwanted elements. WE DIDN'T touch the source file!!!
$GraphicNodes = $dom->getElementsByTagName('graphic');

if ($GraphicNodes->length == 0)
{
 $done = True; //the istarml File has no graphic nodes ()tags)
}
else
{
 $done = False;
}
 for (; !$done;)
 {

 $gnode=$GraphicNodes->item(0);

 $gnode->parentNode->removeChild($gnode);

 if ($GraphicNodes->length == 0)
 {
 $done = True; // no more graphic nodes left
 }

 }

90

//DEVIATION aka Divergence from purpose text + GIF animation
$error_number= 1;
$error_label= 1;
//From check 7~12
foreach ($Allactors as $actor)
{

 if ($actor->hasChildNodes())
 {
 $bound=$actor->firstChild;
 if($bound->hasChildNodes())
 {
 $boundaryKids=$bound->childNodes;

 foreach ($boundaryKids as $ielement)
 {
 $ielementType = $ielement->getAttribute('type');
 $intentional= $ielement->getAttribute('name');
 $id=$ielement->getAttribute('id');

 if ($ielementType=='task')
 {
 // echo 'This internal element is a '. $ielementType. ' and it is labeled as "'.
 $intentional. '"' ,"
";
 list ($label, $number)=CheckTask($ielement, $ielementType, $intentional, $id, $bound,
$error_label, $error_number);
 $error_label=$label;
 $error_number=$number;
 }
 echo "
";
 if ($ielementType=='goal')
 {
 list ($label, $number)=CheckGoal($ielement, $ielementType,
$intentional, $id, $bound, $error_label, $error_number);
 $error_label=$label;
 $error_number=$number;

 }
 echo "
";
 if ($ielementType=='softgoal')
 {
 list ($label, $number)=CheckSG($ielement, $ielementType, $intentional,
$id, $bound, $error_label, $error_number);
 $error_label=$label;
 $error_number=$number;

 }
 echo "
";
 if ($ielementType=='resource')
 {

91

 list ($label, $number)=CheckResource($ielement, $ielementType,
$intentional, $id, $bound, $error_label, $error_number);
 $error_label=$label;
 $error_number=$number;

 }
 echo "
";

 }

 }

 }

}

//Check#1 Checking if a dependency link is drawn or used inside an actor boundary between internal
elements

foreach ($Allboundaries as $bound)
{

 if($bound->hasChildNodes())
 {
 $boundaryKids=$bound->childNodes;
 //echo $boundaryKids->length, "
";
 if ($boundaryKids->length>0)
 {
 foreach ($boundaryKids as $child)
 {
 $childName=$child->getAttribute('name');
 //echo $childName;
 if ($child->hasChildNodes())
 {
 $childKids=$child->childNodes;
 if ($childKids->length>0)
 {
 foreach ($childKids as $kid)
 {
 if ($kid->nodeName=='dependency')
 {
 echo $childName, "
";
 echo $error_number.'---
>Error!!! Dependency links cannot be used to connect two internal intentional elements inside the
same actor!!', "
";
 echo '--->Dependency link can be used to connect an
internal element to a dependum!!!', "
";
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">See correction explanation...</p>';

92

 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./GifSR01.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide"
class="hideLink" onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this
explanation.</p>';
 echo '</div>';
 echo '</div>';
 $error_number++;
 }
 }

 }

 }

 }

 }
 }
}
 echo '
';
 echo '<HR>';

echo '<HR>';

//OLD Check #1 Checking if a dependency link is drawn or used inside an actor boundary between
internal elements
foreach ($Allboundaries as $border)
{
 $ieLinks = $border->getElementsByTagName('ielementLink');
 foreach($ieLinks as $lien)
 {
 $LinkType = $lien->getAttribute('type');
 if($LinkType == "dependency")
 {
 echo $error_number.' ---> ERROR!! A dependency link
should not exist inside an actor boundary!',"
";
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';
 $error_number++;
 }

93

 }

}

// CHECK #2: checking for actor existence inside another actor
foreach ($Allactors as $actor)
{

 if ($actor->hasChildNodes())
 {
 $bound=$actor->firstChild;
 if($bound->hasChildNodes())
 {
 $ElementsWithActorTag=$bound->getElementsByTagName('actor');

 // get the list of kids by actor name tag while it should not have ANY
 if ($ElementsWithActorTag->length!=0)
 {
 foreach ($ElementsWithActorTag as $withinActor)
 {
 $nom= $withinActor->getAttribute('name');
 echo $nom ,"
";
 }
 echo $error_number.' ---> ERROR!! An actor should not be
included within (inside) another actor!',"
";
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';
 $error_number++;

 }

 }

 }

}

//CHECK #3: CHECK if the dependum is not connected to the right internal element
foreach ($Alldependencies as $dependency)
{

94

 $dependerList= $dependency->getElementsByTagName('depender');
 $dependeeList= $dependency->getElementsByTagName('dependee');
 $dependencyIElementParent = $dependency->parentNode;
 $DepName= $dependencyIElementParent->getAttribute('name');

 foreach ($dependerList as $der)
 { // get the aref of the current $der
 if ($der->hasAttribute('aref'))
 {
 $arefer=$der->getAttribute('aref');

 // go and find the actor id corresponding to the aref and check if the actor has internal ielements
 $Found=FALSE;
 foreach ($Allactors as $actor)
 {
 $id = $actor->getAttribute('id');
 if ($id==$arefer)
 {
 $Found=True;
 $nameDer = $actor->getAttribute('name');

 $numberIE=0;
 if ($actor->hasChildNodes())
 {
 $border=$actor->firstChild;
 if ($border->hasChildNodes())
 {
 $internalElements=$border->childNodes;
 $numberIE=$internalElements->length;

 }
 }

 if ($numberIE != 0)
 {
 if (!$der->hasAttribute('iref'))
 {
 echo $nameDer, "
";
 echo $DepName, "
";
 echo $error_number.'--->ERROR! The depender side of
this dependency is not connected to the right internal element', "
";
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./GifSR03.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';

95

 echo '</div>';
 $error_number++;

 }
 else
 {

 $irefer=$der->getAttribute('iref');
 //go check the internal elements which matches the corresponding iref
 $Found=FALSE;
 foreach ($internalElements as $ielement)
 {
 $idElement = $ielement->getAttribute('id');

 if ($idElement==$irefer)
 {
 $Found=True;

 }
 }

 if (!$Found)
 {
 echo '--->the iref in the depender is not matching
any internal element id! ', "
";// BE RIGHT BACK
 }
 }
 }

 }
 }
 }

 }

echo "
";
echo "
";

 foreach ($dependeeList as $dee)
 { // get the aref of the current $der
 if ($dee->hasAttribute('aref'))
 {
 $arefee=$dee->getAttribute('aref');

 // go and find the actor id corresponding to the aref and check if the actor has internal
ielements
 $Found=FALSE;
 foreach ($Allactors as $actor)
 {

96

 $id = $actor->getAttribute('id');
 if ($id==$arefee)
 {
 $Found=True;
 $nameDee = $actor->getAttribute('name');

 $numberIE=0;
 if ($actor->hasChildNodes())
 {
 $border=$actor->firstChild;
 if ($border->hasChildNodes())
 {
 $internalElements=$border->childNodes;
 $numberIE=$internalElements->length;

 }
 }

 if ($numberIE != 0)
 {

 if (!$dee->hasAttribute('iref'))
 {
 echo $nameDee, "
";
 echo $DepName, "
";
 echo $error_number.'--->ERROR! The dependee side of
this dependency is not connected to the right internal element!', "
";
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./GifSR0302.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';
 $error_number++;

 }
 else
 {

 $irefee=$dee->getAttribute('iref');
 //go check the internal elements which matches the corresponding iref
 $Found=FALSE;
 foreach ($internalElements as $ielement)

97

 {
 $idElement = $ielement->getAttribute('id');

 if ($idElement==$irefee)
 {
 $Found=True;

 }
 }

 if (!$Found)
 {
 echo '--->the iref in the dependee is not
matching any internal element id! ', "
";// BE RIGHT BACK
 }
 }
 }

 }
 }
 }

 }

}
 echo '
';
 echo '
';
 echo '
';

// CHECK #4: Check for disconnected internal elements!!
foreach($Allboundaries as $border)
{
 $ieLinks = $border->getElementsByTagName('ielementLink');
 $insideElements= $border->getElementsByTagName('ielement');
 foreach($insideElements as $intentional)
 {
 $name= $intentional->getAttribute ('name');
 // does $intentional have any ielementLink children?
 $Links=$intentional->childNodes;
 $found = FALSE;
 if ($Links->length>0)
 {
 foreach($Links as $liens)
 {
 // check if $intentional has any children as ielementLink (here it is source)
 if ($liens->nodeName == 'ielementLink')
 {

98

 $found = True;
 break;
 }

 }

 }
 if (!$found) // This means that the above checking fails
 {
 // check if $intentional is referenced in another ielement s ielementLink (here it is target)
 $id = $intentional->getAttribute('id');
 foreach ($ieLinks as $Lien)
 {
 $iref = $Lien->getAttribute('iref');

 if ($id == $iref)
 {
 $found=True;
 break;
 }

 }
 }
 if (!$found){
 echo $error_number.'---> ERROR!! The internal element
labeled as '.' "' .$name. '"'.' is not connected to another internal
element"!!' ,"
";
 echo '---> ERROR!! This model is
incomplete!' ,"
";
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';
 $error_number++;

 }
 }

}

echo "<HR>";

//CHECK #5: Check if an SR element is drawn outside the actor boundary
if($diagram->hasChildNodes())

99

{
 $diagramKids=$diagram->childNodes;
 if ($diagramKids->length>0)
 {
 echo 'number of diagram children is: '. $diagramKids->length, "
";
 foreach ($diagramKids as $kid)
 {
 if ($kid->nodeName=='ielement')
 {

 $ielementType = $kid->getAttribute('type');
 $intentional= $kid->getAttribute('name');
 $id=$kid->getAttribute('id');

 if ($kid->hasChildNodes())
 {

 $ielementsChildren=$kid->childNodes;

 $childrenByTag=$kid->getElementsByTagName('ielementLink');
 if ($childrenByTag->length>0)
 {
 echo $error_number.'--->Error!!! The intentional
element "'.$intentional.'" is drawn outside of the actor
boundary!!!', "
";
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';
 $error_number++;

 }

 }

 }
 }
 }

}

100

 echo '
';
 echo '<HR>';

//CHECK #6 refinement/Decomposition links Extension out of an actor boundary

foreach ($Allboundaries as $bound)
{

 if($bound->hasChildNodes())
 {
 $boundaryKids=$bound->childNodes;
 echo 'The number of children in this boundary is :'.$boundaryKids->length , "
";
 foreach ($boundaryKids as $ielement)
 {

 $ielementType = $ielement->getAttribute('type');
 $intentional= $ielement->getAttribute('name');
 $id=$ielement->getAttribute('id');

 if ($ielement->hasChildNodes())
 {

 $ielementsChildren=$ielement->childNodes;
 //get the node of the the current iemement's encompassing actor

 $childrenByTag=$ielement->getElementsByTagName('ielementLink');
 if ($childrenByTag->length>0)
 {

 foreach($childrenByTag as $iLink)
 {

 $iref = $iLink->getAttribute('iref');
 //get the node of the the current iemementLink's
encompassing actor
 $ielementLinkGGP=$iLink->parentNode->parentNode->parentNode;
 $idActor=$ielementLinkGGP->getAttribute('id');
 $ActorName=$ielementLinkGGP->getAttribute('name');
 $Found=FALSE;

 foreach($Allielements as $intentionalElement)
 {
 $ide= $intentionalElement->getAttribute('id');

 $nameIE= $intentionalElement->getAttribute('name');

 $grandparentIE=$intentionalElement->parentNode->parentNode;
 $grandparentIEID=$grandparentIE->getAttribute('id');

 $grandparentIEName=$grandparentIE->getAttribute('name');

101

 if ($iref==$ide)
 {
 $Found=True;
 if ($grandparentIE->nodeName=='actor')
 {
 if ($idActor!=$grandparentIEID)
 {
 echo $error_number.'--->Error!!! A decomposition link
is extended beyond the boundaries of the actors!! "', "
";
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./GifSR06.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';
 $error_number++;
 }
 }

 }
 }
 }

 }

 }

 }

 }

}

//Check #13

//the ielementLinks iref refer to any ielement but the ones as sg and goal leaves Except for goal and SG as
root,
foreach ($Allboundaries as $bound)
{
 if ($bound->hasChildNodes())
 {

102

 $boundaryKids=$bound->childNodes;
 if($boundaryKids->length>0)
 {
 $ielementsInBound=$bound->getElementsByTagName('ielement');
 $ielementLinks=$bound->getElementsByTagName('ielementLink');
 if($ielementsInBound->length>0)
 {
 foreach($ielementsInBound as $ielement)
 {
 $id=$ielement->getAttribute('id');
 $intentional=$ielement->getAttribute('name');
 $type=$ielement->getAttribute('type');
 if ($type=='goal' or $type=='softgoal')
 {
//if it is SG or G so go and check if its id appears in one ielementLink iref

 if($ielementLinks->length>0)
 {
 $found=FALSE; //will be True if we find that $id=$iref
 foreach($ielementLinks as $ilink)
 {
 $iref=$ilink->getAttribute('iref');

 //which are not referenced in any $id nowhere besides $ielement then ERROR
 //if not found (!found) code then
 if ($id == $iref)
 {
 $found=True;
 break;
 }
 }
 //AFTER FINISHING THE LOOP, if no match
was found so we should print the error msg
 if (!$found)
 {
 echo $id. ", ". $type. ", ".$intentional;
 echo $error_number.'--->
ERROR!! Softgoals and Goals should be decomposed further!!' ,"
";
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show" class="showLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">See correction explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./GifSR13.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';
 $error_number++;

103

 }

 }

 }
 }

 }
 }

 }

}

}
echo '<TABLE border = 1 cellpadding = 20>';
echo '<TR>';

echo '<TD> <center>List of SR diagram
defects</center></TD>';
echo '</TR>';
echo '<TR>';

echo '<TD valign=top>',display_SR();
echo '</TD>';
echo '</TR>';
echo '</TABLE>';

?>

CheckTask.php file source code

<?php
function CheckTask($ielement, $ielementType, $intentional, $id, $bound, $error_label, $error_number)
{
 //echo 'This internal element is a '. $ielementType. ' and it is labeled as "'. $intentional. '"' ,"
";
 if ($ielement->hasChildNodes())
 {
 $ielementsChildren=$ielement->childNodes;

 //we did grab only ielementLink children of the ielement since DOM xml php considers space,
text and tags as childNodes.

104

 //$childrenByTag are the specific children that we want to get from the list of children other than
space and maybe text
 $childrenByTag=$ielement->getElementsByTagName('ielementLink');
 if ($childrenByTag->length>0)
 {

 foreach($childrenByTag as $iLink)
 {
 $iLinkType = $iLink->getAttribute('type');
 $iref = $iLink->getAttribute('iref');
 $ILvalue = $iLink->getAttribute('value');

 if($iLinkType=='decomposition' and $ILvalue=='or')
 {
 $done=False;
 $found=False;
 for($ielement2=$bound->firstChild ; !$done&&!$found;)
 {
 $id2=$ielement2->getAttribute('id');
 if($id2==$iref)
 {
 $found=True;
 }
 else
 {

$ielement2=$ielement2->nextSibling;
 if ($ielement2
== False or $ielement2==NULL)
 {
 $done = true;
 }
 }
 }
 if ($found)
 {
 $ielement2Type = $ielement2->getAttribute('type');
 $ielement2name = $ielement2->getAttribute('name');
 switch
($ielement2Type)
 {
 case "task":

 echo
$error_number.' ---> ERROR!! A Means-end link was misused
(inappropriately used) and was connecting a MEANS (TASK) to an END (TASK)!!',"
";
 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal relationship)!!!',"
";

105

 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./METaskT.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;

 case "goal":
 echo '<Font COLOR =
GREEN>---> Successful Goal Decomposition!!',"
";

 break;

 case "softgoal":
 echo $error_number.' ---> ERROR!! A Means-end
link was misused (inappropriately used) and was connecting a MEANS (TASK) to an END
(softgoal)!!',"
";
 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal relationship)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./METaskSG.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;

 break;

 case "resource":
 echo $error_number.' ---> ERROR!! A Means-end
link was misused (inappropriately used) and was connecting a MEANS (TASK) to an END
(resource)!!',"
";

106

 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal relationship)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./METaskResource.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;

 break;
 default:
 echo '---> ERROR!! An unexpected and
unconventional element type was used!!',"
";
 }

 }
 }
 elseif ($iLinkType=='decomposition' and $ILvalue=='and')
 {
 $done=False;
 $found=False;
 for($ielement2=$bound->firstChild ; !$done&&!$found;)
 {
 $id2=$ielement2->getAttribute('id');
 if($id2==$iref)
 {
 $found=True;
 }
 else
 {

$ielement2=$ielement2->nextSibling;
 if ($ielement2
== False or $ielement2==NULL)
 {
 $done = true;
 }
 }
 }
 if ($found)
 {

107

 $ielement2Type = $ielement2->getAttribute('type');
 $ielement2name = $ielement2->getAttribute('name');

 switch
($ielement2Type)
 {
 case "task":
 echo '---> Successful task
decomposition!!',"
";
 break;

 case "goal":
 echo $error_number.' ---> ERROR!! A failure of
goal decomposition!! A task decomposition was misused to refine a goal!!!',"
";

 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./TDTaskGoal.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;

 case "softgoal":
 echo $error_number.' ---> ERROR!! A task
decomposition was misused to refine a softgoal!!!',"
";
 echo '<Font COLOR =
PURPLE> ---> Attention! A task decomposition link should be used to decompose a TASK into sub
elements (sub-task, sub-goal, resource and softgoal) that are necessary to its
accomplishment!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./TDTaskSG.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

108

 $error_number++;
 break;

 case "resource":
 echo $error_number.' ---> ERROR!! A task
decomposition was misused to refine a resource!!!',"
";
 echo '<Font COLOR =
PURPLE> ---> Attention! A task decomposition link should be used to decompose a TASK into sub
elements (sub-task, sub-goal, resource and softgoal) that are necessary to its
accomplishment!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./TDTaskResource.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;
 default:
 echo '---> ERROR!! An unexpected and
unconventional element type was used!!',"
";
 }

 }

 }

 else
 {
 if($iLinkType=='contribution')
 {
 $done=False;
 $found=False;
 for($ielement2=$bound->firstChild ; !$done&&!$found;)
 {
 $id2=$ielement2->getAttribute('id');
 if($id2==$iref)
 {
 $found=True;
 }
 else
 {

109

$ielement2=$ielement2->nextSibling;
 if ($ielement2
== False or $ielement2==NULL)
 {
 $done =
true;
 }
 }
 }
 if ($found)
 {
 $ielement2Type = $ielement2->getAttribute('type');
 $ielement2name = $ielement2->getAttribute('name');
 switch
($ielement2Type)
 {
 case "task":

 echo
$error_number.' ---> ERROR!! contribution link was misused and was
depicting a task contributing to another TASK!!',"
";
 echo' ---> Attention!
contribution link should be used to indicate that an element is contributing positively or negatively to
satisficing a softgoal!!!',"
";

 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./ContributionTaskTask.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;

 case "goal":
 echo
$error_number.' ---> ERROR!! contribution link was misused and was
depicting a task contributing to a goal!!',"
";
 echo' ---> Attention!
contribution link should be used to indicate that an element is contributing positively or negatively to
satisficing a softgoal!!!',"
";
 $error_label++;
 echo '<div id="wrap">';

110

 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./ContributionTaskGoal.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;
 case "softgoal":
 echo '---> Successful softgoal
refinement!!',"
";

 break;

 case "resource":
 echo $error_number.' ---> ERROR!! contribution
link was misused and was depicting a task contributing to a resource!!',"
";
 echo' ---> Attention!
contribution link should be used to indicate that an element is contributing positively or negatively to
satisficing a softgoal!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./ContributionTaskResource.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;
 default:
 echo '---> ERROR!! An unexpected and
unconventional element type was used!!',"
";
 }
 }

 }

 }

111

 }
 }

 }

return array ($error_label, $error_number);
}

?>

CheckGoal.php file source code

<?php
function CheckGoal($ielement, $ielementType, $intentional, $id, $bound, $error_label, $error_number)
{

 if ($ielement->hasChildNodes())
 {
 $ielementsChildren=$ielement->childNodes;

 $childrenByTag=$ielement->getElementsByTagName('ielementLink');
 if ($childrenByTag->length>0)
 {

 foreach($childrenByTag as $iLink)
 {
 $iLinkType = $iLink->getAttribute('type');
 $iref = $iLink->getAttribute('iref');
 $ILvalue = $iLink->getAttribute('value');

 if($iLinkType=='decomposition' and $ILvalue=='and')
 {
 $done=False;
 $found=False;
 for($ielement2=$bound->firstChild ; !$done&&!$found;)
 {
 $id2=$ielement2->getAttribute('id');
 if($id2==$iref)
 {
 $found=True;
 }
 else
 {

$ielement2=$ielement2->nextSibling;
 if ($ielement2
== False or $ielement2==NULL)
 {$done = true;

112

 }
 }
 }
 if ($found)
 {
 $ielement2Type = $ielement2->getAttribute('type');
 $ielement2name = $ielement2->getAttribute('name');
 switch
($ielement2Type)
 {
 case "task":
 echo '<Font
COLOR = GREEN>---> Successful Task decomposition!!',"
";

 break;

 case "goal":
 echo
$error_number.' ---> ERROR!! A task decomposition link was
misused!!',"
";
 echo '<Font
COLOR = RED> ---> ERROR!! A goal should not be refined to subgoals!!',"
";

 echo' ---> Attention!
Decomposition link should be used to depict a relationship between a decomposed TASK and its
components (subtask, subgoal, resource and softgoal)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./TDGoalGoal.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;
 case "softgoal":
 echo
$error_number.' ---> ERROR!! A task decomposition link was
misused!!',"
";
 echo ' ---> ERROR!! A goal-softgoal
relationship should illustrate a goal contributing to a softgoal via a contribution link!!',"
";

113

 echo' ---> Attention!
Decomposition link should be used to depict a relationship between a decomposed TASK and its
components (subtask, subgoal, resource and softgoal)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./TDGoalSoftGoal.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;

 case "resource":
 echo $error_number.' ---> ERROR!! A task
decomposition link was misused!!',"
";
 echo ' ---> ERROR!! There is no direct
relationship between a goal and a resource!!',"
";

 echo' ---> Attention!
Decomposition link should be used to depict a relationship between a decomposed TASK and its
components (subtask, subgoal, resource and softgoal)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./TDGoalSResource.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;
 default:
 echo '---> ERROR!! An unexpected and
unconventional element type was used!!',"
";
 }

 }
 }

114

 elseif($iLinkType=='decomposition' and
$ILvalue=='or')
 {
 $done=False;
 $found=False;
 for($ielement2=$bound->firstChild ; !$done&&!$found;)
 {
 $id2=$ielement2->getAttribute('id');
 if($id2==$iref)
 {
 $found=True;
 }
 else
 {

$ielement2=$ielement2->nextSibling;
 if ($ielement2
== False or $ielement2==NULL)
 {$done = true;
 }
 }
 }
 if ($found)
 {
 $ielement2Type = $ielement2->getAttribute('type');
 $ielement2name = $ielement2->getAttribute('name');
 switch
($ielement2Type)
 {
 case "task":

 echo $error_number.' ---> ERROR!! A Means-end
link was misused (inappropriately used) and was connecting a MEANS (goal) to an END
(task)!!',"
";
 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal relationship)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./MEGoalTask.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

115

 $error_number++;
 break;

 case "goal":
 echo
$error_number.' ---> ERROR!! A Means-end link was misused
(inappropriately used) and was connecting a MEANS (goal) to an END (goal)!!',"
";
 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal relationship)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./MEGoalGoal.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;
 case "softgoal":
 echo
$error_number. ' ---> ERROR!! A Means-end link was misused
(inappropriately used) and was connecting a MEANS (goal) to an END (softgoal)!!',"
";
 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal relationship)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./MEGoalSoftgoal.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;

 case "resource":

116

 echo $error_number.' ---> ERROR!! A Means-end
link was misused (inappropriately used) and was connecting a MEANS (goal) to an END
(resource)!!',"
";
 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal relationship)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./MEGoalResource.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;
 default:
 echo '---> ERROR!! An unexpected and
unconventional element type was used!!',"
";
 }

 }

 }

 else
 {
 if($iLinkType=='contribution')
 {
 $done=False;
 $found=False;
 for($ielement2=$bound->firstChild ; !$done&&!$found;)
 {
 $id2=$ielement2->getAttribute('id');
 if($id2==$iref)
 {
 $found=True;
 }
 else
 {

$ielement2=$ielement2->nextSibling;
 if ($ielement2
== False or $ielement2==NULL)
 {

117

 $done
= true;
 }
 }
 }
 if ($found)
 {
 $ielement2Type = $ielement2->getAttribute('type');
 $ielement2name = $ielement2->getAttribute('name');

 switch
($ielement2Type)
 {
 case "task":

 echo $error_number.' ---> ERROR!! A
contribution link was misused and was connecting a goal to a task!!',"
";
 echo ' ---> Attention! A
contribution link should be used to refine a softgoal and to indicate the contributing elements to its
satisficing!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./ContributionGoalTask.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;

 case "goal":
 echo
$error_number.' ---> ERROR!! There is no way to connect a goal to another
goal by any refinement link (There should not be any link connecting two goals)!!',"
";
 echo ' ---> Attention! A
contribution link should be used to refine a softgoal and to indicate the contributing elements to its
satisficing!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./ContributionGoalGoal.gif" width = "500"
height="800"></center></p>';

118

 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;
 case "softgoal":
 echo '<Font
COLOR = Green> ---> Successful contribution refinement!!',"
";

 break;

 case "resource":
 echo $error_number.' ---> ERROR!! A
contribution link was misused and was connecting a goal to a resource!!',"
";
 echo ' ---> Attention! A
contribution link should be used to refine a softgoal and to indicate the contributing elements to its
satisficing!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./ContributionGoalResource.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;
 default:
 echo '---> ERROR!! An unexpected and
unconventional element type was used!!',"
";
 }

 }

 }

 }

 }

 }
 }

119

return array ($error_label, $error_number);
}
?>

CheckSoftgoal.php file source code

<?php
function CheckSG($ielement, $ielementType, $intentional, $id, $bound, $error_label, $error_number)
{

 if ($ielement->hasChildNodes())
 {
 $ielementsChildren=$ielement->childNodes;

 $childrenByTag=$ielement->getElementsByTagName('ielementLink');
 if ($childrenByTag->length>0)
 {
 foreach($childrenByTag as $iLink)
 {
 $iLinkType = $iLink->getAttribute('type');
 $iref = $iLink->getAttribute('iref');
 $ILvalue = $iLink->getAttribute('value');

 if($iLinkType=='decomposition' and $ILvalue=='and')
 {
 $done=False;
 $found=False;
 for($ielement2=$bound->firstChild ; !$done&&!$found;)
 {
 $id2=$ielement2->getAttribute('id');
 if($id2==$iref)
 {
 $found=True;
 }
 else
 {

$ielement2=$ielement2->nextSibling;
 if ($ielement2
== False or $ielement2==NULL)
 {
 $done = true;
 }
 }
 }
 if ($found)
 {

120

 $ielement2Type = $ielement2->getAttribute('type');
 $ielement2name = $ielement2->getAttribute('name');
 switch ($ielement2Type)
 {
 case "task":

 echo '---> Successful Task
decomposition!!',"
";

 break;

 case "goal":

 echo $error_number.' ---> ERROR!! A task
decomposition link was misused!!',"
";

 echo' ---> Attention!
Decomposition link should be used to depict a relationship between a decomposed TASK and its
components (subtask, subgoal, resource and softgoal)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./TDSoftgoalGoal.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;

 case "softgoal":
 echo
$error_number.' ---> ERROR!! A task decomposition link was
misused!!',"
";

 echo' ---> Attention!
Decomposition link should be used to depict a relationship between a decomposed TASK and its
components (subtask, subgoal, resource and softgoal)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';

121

 echo '<p><center><img src="./TDSoftgoalSoftgoal.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;

 case "resource":
 echo $error_number.' ---> ERROR!! A task
decomposition link was misused!!',"
";

 echo' ---> Attention!
Decomposition link should be used to depict a relationship between a decomposed TASK and its
components (subtask, subgoal, resource and softgoal)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./TDSoftgoalResource.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;
 default:
 echo '---> ERROR!! An unexpected and
unconventional element type was used!!',"
";
 }
 }
 }

 elseif($iLinkType=='decomposition' and
$ILvalue=='or')
 {
 $done=False;
 $found=False;
 for($ielement2=$bound->firstChild ; !$done&&!$found;)
 {
 $id2=$ielement2->getAttribute('id');
 if($id2==$iref)
 {
 $found=True;

122

 }
 else
 {

$ielement2=$ielement2->nextSibling;
 if ($ielement2 ==
False or $ielement2==NULL)
 {
 $done
= true;
 }
 }
 }
 if ($found)
 {
 $ielement2Type = $ielement2->getAttribute('type');
 $ielement2name = $ielement2->getAttribute('name');
 switch ($ielement2Type)
 {
 case "task":

 echo $error_number.' ---> ERROR!! A Means-end
link was misused (inappropriately used) and was connecting a MEANS (softgoal) to an END
(task)!!',"
";
 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal relationship)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./MESGTask.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;

 case "goal":
 echo
$error_number.' ---> ERROR!! A Means-end link was misused
(inappropriately used) and was connecting a MEANS (softgoal) to an END (goal)!!',"
";
 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal relationship)!!!',"
";
 $error_label++;

123

 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./MESGGoal.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;
 case "softgoal":
 echo
$error_number.' ---> ERROR!! A Means-end link was misused
(inappropriately used) and was connecting a MEANS (softgoal) to an END (softgoal)!!',"
";
 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal relationship)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./MESGSG.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;

 case "resource":
 echo ' ---> ERROR!! A Means-end link was
misused (inappropriately used) and was connecting a MEANS (softgoal) to an END
(resource)!!',"
";
 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal relationship)!!!',"
";

 break;
 default:
 echo '---> ERROR!! An unexpected and
unconventional element type was used!!',"
";
 }

124

 }

 elseif($iLinkType=='contribution')
 {
 $done=False;
 $found=False;
 for($ielement2=$bound->firstChild ; !$done&&!$found;)
 {
 $id2=$ielement2->getAttribute('id');
 if($id2==$iref)
 {
 $found=True;
 }
 else
 {

$ielement2=$ielement2->nextSibling;
 if ($ielement2
== False or $ielement2==NULL)
 {
 $done =
true;
 }
 }
 }
 if ($found)
 {
 $ielement2Type = $ielement2->getAttribute('type');
 $ielement2name = $ielement2->getAttribute('name');
 switch
($ielement2Type)
 {
 case "task":
 echo
$error_number.' ---> ERROR!! A contribution link was misused and was
connecting a softgoal to a task as the softgoal is contributing to the task!!',"
";
 echo ' ---> Attention! A
contribution link should be used to refine a softgoal and to indicate the contributing elements to its
satisficing!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./ContributionSGTask.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

125

 $error_number++;

 break;

 case "goal":
 echo
$error_number.' ---> ERROR!! A contribution link was misused and was
connecting a softgoal to a goal as the softgoal is contributing to the task!!',"
";
 echo ' ---> Attention! A
contribution link should be used to refine a softgoal and to indicate the contributing elements to its
satisficing!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./ContributionSGGoal.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;

 break;
 case "softgoal":
 echo '<Font
COLOR = GREEN> ---> Correct softgoal refinement!!',"
";

 break;

 case "resource":
 echo ' ---> ERROR!! A contribution link was
misused and was connecting a softgoal to a resource as the softgoal is contributing to the
resource!!',"
";
 echo ' ---> Attention! A
contribution link should be used to refine a softgoal and to indicate the contributing elements to its
satisficing!!!',"
";

 break;
 default:
 echo '---> ERROR!! An unexpected and
unconventional element type was used!!',"
";
 }

 }

 }

126

 }

 }

 }
 }

return array ($error_label, $error_number);
}
?>

CheckResource.php file source code

<?php
function CheckResource($ielement, $ielementType, $intentional, $id, $bound, $error_label,
$error_number)
{
if ($ielementType=='resource')
 {

 if ($ielement->hasChildNodes())
 {
 $ielementsChildren=$ielement->childNodes;

 $childrenByTag=$ielement->getElementsByTagName('ielementLink');
 if ($childrenByTag->length>0)
 {
 foreach($childrenByTag as $iLink)
 {
 $iLinkType = $iLink->getAttribute('type');
 $iref = $iLink->getAttribute('iref');
 $ILvalue = $iLink->getAttribute('value');

 if($iLinkType=='decomposition' and $ILvalue=='and')
 {
 $done=False;
 $found=False;
 for($ielement2=$bound->firstChild ; !$done&&!$found;)
 {
 $id2=$ielement2->getAttribute('id');
 if($id2==$iref)
 {
 $found=True;
 }
 else
 {

127

$ielement2=$ielement2->nextSibling;
 if ($ielement2
== False or $ielement2==NULL)
 {
 $done = true;
 }
 }
 }
 if ($found)
 {
 $ielement2Type = $ielement2->getAttribute('type');
 $ielement2name = $ielement2->getAttribute('name');
 switch ($ielement2Type)
 {
 case "task":

 echo '---> Successful Task
decomposition!!',"
";

 break;

 case "goal":

 echo $error_number.' ---> ERROR!! A task
decomposition link was misused!!',"
";

 echo' ---> Attention!
Decomposition link should be used to depict a relationship between a decomposed TASK and its
components (subtask, subgoal, resource and softgoal)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./TDResourceGoal.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;
 break;

 case "softgoal":
 echo
$error_number.' ---> ERROR!! A task decomposition link was misused
(incorrectly used)!!',"
";

128

 echo' ---> Attention! A
decomposition link should be used to depict a relationship between a decomposed TASK and its
components (subtask, subgoal, resource and softgoal)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./TDResourceSoftgoal.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;

 break;

 case "resource":
 echo $error_number.' ---> ERROR!! A task
decomposition link was misused!!',"
";

 echo' ---> Attention!
Decomposition link should be used to depict a relationship between a decomposed TASK and its
components (subtask, subgoal, resource and softgoal)!!!',"
";
 $error_label++;

 $error_number++;

 break;
 default:
 echo '---> ERROR!! An unexpected and
unconventional element type was used!!',"
";
 }
 }
 }
 elseif($iLinkType=='decomposition' and
$ILvalue=='or')
 {

 $done=False;
 $found=False;
 for($ielement2=$bound->firstChild ; !$done&&!$found;)
 {
 $id2=$ielement2->getAttribute('id');
 if($id2==$iref)

129

 {
 $found=True;
 }
 else
 {

$ielement2=$ielement2->nextSibling;
 if ($ielement2
== False or $ielement2==NULL)
 {
 $done = true;
 }
 }
 }
 if ($found)
 {
 $ielement2Type = $ielement2->getAttribute('type');
 $ielement2name = $ielement2->getAttribute('name');
 switch ($ielement2Type)
 {
 case "task":

 echo $error_number. ' ---> ERROR!! A Means-
end link was misused (inappropriately used) and was connecting a MEANS (resource) to an END
(task)!!',"
";
 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal)!!!',"
";
 $error_label++;
 echo '<div id="wrap">';
 echo '<p><a href="#" id="example_'.$error_number.'-show"
class="showLink" onclick="showHide(\'example_'.$error_number.'\');return false;">See correction
explanation...</p>';
 echo '<div id="example_'.$error_number.'" class="more">';
 echo '<p><center><img src="./MERTask.gif" width = "500"
height="800"></center></p>';
 echo '<p><a href="#" id="example_'.$error_number.'-hide" class="hideLink"
onclick="showHide(\'example_'.$error_number.'\');return false;">Hide this explanation.</p>';
 echo '</div>';
 echo '</div>';

 $error_number++;

 break;

 case "goal":
 echo
$error_number.' ---> ERROR!! A Means-end link was misused
(inappropriately used) and was connecting a MEANS (resource) to an END (goal)!!',"
";

130

 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal)!!!',"
";
 $error_label++;

 $error_number++;
 break;
 case "softgoal":
 echo
$error_number. ' ---> ERROR!! A Means-end link was misused
(inappropriately used) and was connecting a MEANS (resource) to an END (softgoal)!!',"
";
 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal)!!!',"
";
 $error_label++;

 $error_number++;
 break;

 case "resource":
 echo $error_number.' ---> ERROR!! A Means-end
link was misused (inappropriately used) and was connecting a MEANS (resource) to an END
(resource)!!',"
";
 echo ' ---> Attention! A
means-End link should be used to indicate the alternatives(TASKs) to achieve a GOAL (namely a task as
means to achieve an end aka Goal)!!!',"
";
 $error_label++;

 $error_number++;
 break;
 default:
 echo '---> ERROR!! An unexpected and
unconventional element type was used!!',"
";
 }
 }

 }
 else
 {
 if($iLinkType=='contribution')
 {
 $done=False;
 $found=False;
 for($ielement2=$bound->firstChild ; !$done&&!$found;)
 {
 $id2=$ielement2->getAttribute('id');
 if($id2==$iref)
 {
 $found=True;

131

 }
 else
 {

$ielement2=$ielement2->nextSibling;
 if ($ielement2
== False or $ielement2==NULL)
 {
 $done =
true;
 }
 }
 }
 if ($found)
 {
 $ielement2Type = $ielement2->getAttribute('type');
 $ielement2name = $ielement2->getAttribute('name');
 switch ($ielement2Type)
 {
 case "task":
 echo '<Font
COLOR = RED> ---> ERROR!! A contribution link was misused and was connecting a resource to a
task!!',"
";
 echo ' ---> Attention!
A contribution link should be used to refine a softgoal and to indicate the contributing elements to its
satisficing!!!',"
";

 break;

 case "goal":
 echo '<Font
COLOR = RED> ---> ERROR!! A contribution link was misused and was connecting a resource to a
goal!!',"
";
 echo ' ---> Attention!
A contribution link should be used to refine a softgoal and to indicate the contributing elements to its
satisficing!!!',"
";

 break;
 case "softgoal":
 echo '<Font
COLOR = RED> ---> Incorrect softgoal refinement! A softgoal cannot be refined using a resource
element!!',"
";
 echo ' ---> Attention!
A softgoal can only be refined by using goal, softgoal, task and belief elements!!!',"
";
 echo
' ---> Attention! The permitted elements to contribute to a softgoal
satisficing are: goal, softgoal, task and belief!!!',"
";
 break;

 case "resource":

132

 echo ' ---> ERROR!! A contribution link was
misused and was connecting a resource to a resource!!',"
";
 echo ' ---> Attention!
A contribution link should be used to refine a softgoal and to indicate the contributing elements to its
satisficing!!!',"
";

 break;
 default:
 echo '---> ERROR!! An unexpected and
unconventional element type was used!!',"
";
 }
 }

 }

 }

 }

 }
 }
 }

return array ($error_label, $error_number);
}
?>

133

AAppendix C. Source code and screenshots of
the GENERATi*ON tool

Appendix C contains the source code and the screenshots for the generated table of contents from the

input iStarML files so it is relative to the GENERATi*ON tool which aims at deriviving summaries from

the submitted i* models in order to let the users evaluate and review the content of their models for a

subsequent model information validation. We continued the usage of PHP as the main programming

language and once again JavaScript was used to define the showing and hiding (showHide) function for

managing the appearance of certain content once a hypertext link is clicked on. CSS was used to describe

how HTML elements are displayed on screen. Each uploaded iStarML file to this application will be

stored in a folder in server called “UploadedFiles”.

Figure C.1: Description of GENERATi*ON tool files and the interrelation (interaction) between

them.

134

Figure C.2: An example of selecting an i* model “BookStoreParagraph3” to submit to the
GENERATi*ON tool

Figure C.3: Generated Table of Contents where all information is encompassed either by actors or
dependencies

135

Figure C.4: Detailed view of the Table of Contents where all information about the internal
elements of SR model as well as dependencies is presented to the user

GENERATi*ON tool files’ source code

ParseForGeneration00++.php file source code

<script language="javascript" type="text/javascript">

function show(elementId) {

 document.getElementById(elementId).style.display="block";

}

136

function Hide(elementId) {

 document.getElementById(elementId).style.display="none";

}

</script>

<style type="text/css">

 /* This CSS is just for presentational purposes. */

 body {

 font-size: 75%;

 background-color: #fcfcfc; }

 #wrap {

 font: 1.2em/1 Times New Roman, Helvetica, sans-serif;

 margin: 0 auto;

 padding: 0em;

 background-color: #e0e0e0; }

 #wrap1 {

 font: 1.2em/1 Times New Roman, Helvetica, sans-serif;

 width: 98%;

 margin: 0 auto;

 padding: 0em;

 background-color: #f0f0f0;

 }

137

 #wrap2{

 font: 1.2em/1 Times New Roman, Helvetica, sans-serif;

 width: 96%;

 margin: 0 auto;

 padding: 0em;

 background-color: #B0C4DE; }

 #wrap3 {

 font: 1.2em/1 Times New Roman, Helvetica, sans-serif;

 width: 95%;

 margin: 0 auto;

 padding: 0em;

 background-color: #f0f0f0;

 }

 /* This CSS is used for the Show/Hide functionality. */

 .more {

 display: none;

 border-top: 1px solid #666;

 border-bottom: 1px solid #666; }

138

 a.showLink, a.hideLink {

 text-decoration: none;

 color: #36f;

 background: transparent url(down.gif) no-repeat left; }

 a.hideLink {

 background: transparent url(up.gif) no-repeat left; }

 a.showLink:hover, a.hideLink:hover {

 border-bottom: 1px dotted #36f; }

</style>

<?php

include("linking.php");

include ("explanationDependum.php");

include ("GenerateSR.php");

$dom = new DOMDocument();

$dom->preserveWhiteSpace = FALSE;

$name= $_REQUEST['filename'];

$Type= $_REQUEST['checkType'];

$dom->load("UploadedFiles/$name");

$xpath = new DOMXpath($dom);

$imgPath="./ICONS/";

$Allactors = $xpath->query('//actor');

$Allielements = $xpath->query('//ielement');

$Alldependencies = $xpath->query('//dependency');

$Alldependees = $xpath->query('//dependee');

139

$Alldependers =$xpath->query('//depender');

$Alldiagrams = $xpath->query('//diagram');

foreach($Alldiagrams as $diagram) {

$diagramName = $diagram->getAttribute('name');

echo '<h1> Table Of Contents of the <i>i* </i>Diagram from the file
"'.$diagramName.'.istarml"</h1>' ,"
";

echo "
";

echo "
";

}

// It was a code to remove the unwanted elements. WE DIDN'T touch the source file!!!

$GraphicNodes = $dom->getElementsByTagName('graphic');

if ($GraphicNodes->length == 0)

{

 $done = True; //the istarml File has no graphic nodes ()tags)

}

else

{

 $done = False;

}

 for (; !$done;)

 {

140

 $gnode=$GraphicNodes->item(0);

 $gnode->parentNode->removeChild($gnode);

 if ($GraphicNodes->length == 0)

 {

 $done = True; // no more graphic nodes left

 }

 }

$nbactors=1;

$listActors=0;

$link=1;

$SR=1;

echo '<a href="#" id="example_'.$listActors.'-show" class="showLink"
onclick="show(\'example_'.$listActors.'\');return false;"> I. ACTORS ';

echo '<div id="wrap1">';

 echo '<div id="example_'.$listActors.'" class="more">';

 echo 'There exist '.$Allactors->length. ' actor(s) in this model.
';

 foreach($Allactors as $actor) {

 $nameA = $actor->getAttribute('name');

 $idA = $actor->getAttribute('id');

141

 echo 'I.'.$nbactors.' ';

 //echo '1'.$nbactors;

 echo "";

 if (!$actor->hasChildNodes()){

 echo ''.$nameA.'';

 echo "
";}

 else

 {

 echo '<a href="#" id="example8_'.$link.'-show" class="showLink"
onclick="show(\'example8_'.$link.'\');return false;"> <font size = "4" color =
RED>'.$nameA.'', "
";

 echo "
";

 echo '<div id="wrap2">';

 echo '<div id="example8_'.$SR.'" class="more">';

 GenerateSR($name, $idA, $nameA);

 echo "
";

 echo '<a href="#" id="example8_'.$SR.'-hide" class="hideLink"
onclick="Hide(\'example8_'.$SR.'\');return false;">(Hide details)';

 echo '</div>';

 echo '</div>';

 $SR++;

142

 echo"
";

 }

 $link++;

echo"
";

 $nbactors++;

}

 echo '<a href="#" id="example_'.$listActors.'-hide" class="hideLink"
onclick="Hide(\'example_'.$listActors.'\');return false;">Hide actor list';

 echo '</div>';

 echo '</div>';

 echo "
";

// HERE STARTS THE DEPENDENCIES LIST:

echo"
";

$nbDep=1;

$linkD=1;

$listDep=0;

143

echo '<a href="#" id="example1_'.$listDep.'-show" class="showLink"
onclick="show(\'example1_'.$listDep.'\');return false;"> II. DEPENDENCIES ';

echo '<div id="wrap">';

echo '<div id="example1_'.$listDep.'" class="more">';

echo "
";

//They are listed as below:

// pour afficher la liste des noms des dependencies une par une, suite a une icone dr dependum comme une
puce

echo 'There exist '.$Alldependencies->length. ' dependency(ies) in this model. ',"
"; //list as follows

echo"
";

foreach ($Alldependencies as $dependency){

 $parentIE= $dependency->parentNode;

$nameD = $parentIE->getAttribute('name');

$TypeD = $parentIE->getAttribute('type');

echo 'II.'.$nbDep.' ';

switch ($TypeD) {

 case "task":

 echo " ";

 break;

 case "goal":

 echo " ";

 break;

 case "softgoal":

 echo " ";

144

 break;

 case "resource":

 echo "";

 break;

 default:

 echo " ";

}

echo '<a href="#" id="example7_'.$linkD.'-show" class="showLink"
onclick="show(\'example7_'.$linkD.'\');return false;"> <font size=
"4">'.$nameD.'';

echo '<div id="wrap2">';

echo '<div id="example7_'.$linkD.'" class="more">';

elaborate ($name, $idA, $nameA, $TypeD, $nameD) ;

echo "
";

echo '<a href="#" id="example7_'.$linkD.'-hide" class="hideLink"
onclick="Hide(\'example7_'.$linkD.'\');return false;">Hide details ';

 echo '</div>';

 echo '</div>';

 $linkD++;

echo"
";

$linkD++;

$nbDep++;

}

echo '<a href="#" id="example1_'.$listDep.'-hide" class="hideLink"
onclick="Hide(\'example1_'.$listDep.'\');return false;">Hide dependency (ies) list';

145

 echo '</div>';

 echo '</div>';

 echo"
";

 echo"
";

 echo"
";

?>

linking.php file source code

<?php

include("explanation.php");

 function Role ($filename,$id,$nameActor){

$dom = new DOMDocument();

$dom->preserveWhiteSpace = FALSE;

$dom->load("UploadedFiles/$filename");

$xpath = new DOMXpath($dom);

$imgPath="./ICONS/";

$actors = $xpath->query('//actor');

$ielements = $xpath->query('//ielement');

$Alldependencies = $xpath->query('//dependency');

$Alldependees = $xpath->query('//dependee');

$Alldependers =$xpath->query('//depender');

//STEP 1 We got the id of the actor of concern

146

//STEP 2 is looping through the list of dependers and find the dependers with aref equals to $id

echo '<ins>'.$nameActor.'</ins> --> "as Depender": ',"
";

echo "
";

$numdep=1;

$num_ders_cases=0;

foreach ($Alldependers as $depender){

$arefer=$depender->getAttribute('aref');

if ($arefer == $id) {

 //we checked the ielement of the current depender to get the needed info

 $grandparent=$depender->parentNode->parentNode;

 $gpname= $grandparent->getAttribute('name');

 $gpType= $grandparent->getAttribute('type');

 //go get the dependee aref

 $parent=$depender->parentNode;

 $DependeeList=$parent->getElementsByTagName('dependee');

 if($DependeeList->length==1){

 $NBee=$DependeeList->length;

 $Dependee=$DependeeList->item(0);

 $arefDependee=$Dependee->getAttribute('aref');

 foreach ($actors as $actor){

 $nameActeur = $actor->getAttribute('name');

147

 $idActeur = $actor->getAttribute('id');

 if ($idActeur==$arefDependee){

 $nomDependee=$nameActeur;

 $num_ders_cases++;

 }

 }

 echo $numdep.". ";

 Explain ($filename, $id, $nomDependee, $nameActor, $gpname, 1, $gpType);

 echo "
";

 $numdep++;

}

}

}

if ($num_ders_cases==0)

{echo " No instance of this actor plays the role of a depender in any
dependency!!","
";

}

echo '<ins>'.$nameActor.'</ins> --> "as Dependee": ',"
";

148

echo "
";

$numD=1;

$num_dees_cases=0;

foreach ($Alldependees as $dependee){

$arefee=$dependee->getAttribute('aref');

if ($arefee == $id) {

 $grandparent=$dependee->parentNode->parentNode;

 $gpname= $grandparent->getAttribute('name');

 $gpType= $grandparent->getAttribute('type');

 $parent=$dependee->parentNode;

 $DependerList=$parent->getElementsByTagName('depender');

 if($DependerList->length==1){

 $Depender=$DependerList->item(0);

 $arefDepender=$Depender->getAttribute('aref');

 //}

foreach ($actors as $actor){

 $nameActeur = $actor->getAttribute('name');

 $idActeur = $actor->getAttribute('id');

 if ($idActeur==$arefDepender){

 $nomDepender=$nameActeur;

 $num_dees_cases++;

149

 }

 }

 echo ' ';

 echo $numD.". ";

 Explain ($filename, $id, $nomDepender, $nameActor, $gpname, 2 , $gpType);

 echo "
";

$numD++;

}

}

}

if ($num_dees_cases==0)

{echo " No instance of this actor plays the role of a dependee in any
dependency!!","
";

}

}

?>

explanation.php file source code

<?php

150

function Explain ($fname, $id, $otherActorName, $nameActor, $gpname, $numTemplate, $gpType)

{

$dom = new DOMDocument();

$dom->preserveWhiteSpace = FALSE;

$dom->load("UploadedFiles/$fname");

$xpath = new DOMXpath($dom);

$imgPath="./ICONS/";

$actors = $xpath->query('//actor');

$ielements = $xpath->query('//ielement');

$Alldependencies = $xpath->query('//dependency');

$Alldependees = $xpath->query('//dependee');

$Alldependers =$xpath->query('//depender');

//STEP 1 We got the id of the actor of concern

switch ($numTemplate) {

 case "1":

 // Before it was above but in the browser it displayed index problem of an empty arefDepender
and nDer are not defined

 $nameDependee= $otherActorName;

 switch ($gpType){

 case "task":

 echo $nameActor." depends on <img src=\"$imgPath","acteur.png\" width = \"15\" height=\"20\"
>".$nameDependee. " to <img src=\"$imgPath","tache.png\" width = \"15\" height=\"20\"
>".$gpname,"
";

 break;

151

 case "resource":

 echo $nameActor." shall receive <img src=\"$imgPath","ressource.png\" width = \"15\"
height=\"20\" > ".$gpname." from <img src=\"$imgPath","acteur.png\" width = \"15\" height=\"20\"
>".$nameDependee,"
";

 break;

 case "goal":

 echo $nameActor."depends on <img src=\"$imgPath","acteur.png\" width = \"15\" height=\"20\"
>".$nameDependee. " to achieve the goal <img src=\"$imgPath","but.png\" width = \"15\" height=\"20\"
>".$gpname,"
";

 break;

 case "softgoal":

 echo $nameActor." depends on <img src=\"$imgPath","acteur.png\" width = \"15\" height=\"20\"
>".$nameDependee. "to achieve the softgoal <img src=\"$imgPath","doux.png\" width = \"15\"
height=\"20\" >".$gpname,"
";

 break;

 default:

 echo " ";

 }

 break;

 //--

 case "2":

 // Before it was above but in the browser it displayed index problem of an empty arefDependee
and nDee are not defined

 $nameDepender= $otherActorName;

152

 switch ($gpType){

 case "task":

 echo $nameActor. " shall (can/may) <img src=\"$imgPath","tache.png\" width = \"15\"
height=\"20\" >".$gpname,"
";

 break;

 case "resource":

 echo $nameActor." shall provide <img src=\"$imgPath","ressource.png\" width = \"15\"
height=\"20\" >".$gpname." to <img src=\"$imgPath","acteur.png\" width = \"15\" height=\"20\"
>".$nameDepender,"
";

 break;

 case "goal":

 echo $nameActor." shall attain the goal <img src=\"$imgPath","ressource.png\" width = \"15\"
height=\"20\" >".$gpname,"
";

 break;

 case "softgoal":

 echo $nameActor." shall be able to attain <img src=\"$imgPath","ressource.png\" width = \"15\"
height=\"20\" >".$gpname,"
";

 break;

 default:

 echo " ";

 }

 break;

 //---

 default:

 echo " ";

}

153

}

?>

explanationDependum.php file source code

<?php

function elaborate ($name, $idA, $nameA, $TypeD, $nameD)

{

$dom = new DOMDocument();

$dom->preserveWhiteSpace = FALSE;

$dom->load("UploadedFiles/$name");

$xpath = new DOMXpath($dom);

$imgPath="./ICONS/";

$actors = $xpath->query('//actor');

$ielements = $xpath->query('//ielement');

$Alldependencies = $xpath->query('//dependency');

//STEP 1 We got the id of the actor of concern

foreach ($Alldependencies as $dependency){

// check either i am looking at the very precise dependency specified by nameD and TypeD

$parent = $dependency->parentNode;

$DepName = $parent->getAttribute('name');

$DepType = $parent->getAttribute('type');

if($DepType==$TypeD and $DepName==$nameD){

 $dependerList= $dependency->getElementsByTagName('depender');

 $dependeeList= $dependency->getElementsByTagName('dependee');

154

 if ($dependerList->length ==1){

 $depender=$dependerList->item(0);

 $arefDepender= $depender->getAttribute('aref');

 }

 if ($dependeeList->length ==1){

 $dependee=$dependeeList->item(0);

 $arefDependee= $dependee->getAttribute('aref');

 }

// here we are looking for the actor whos id is matching the arefDepender

 $founder = FALSE;

 foreach($actors as $actor) {

 $nameA = $actor->getAttribute('name');

 $idA = $actor->getAttribute('id');

 if ($idA==$arefDepender){

 $founder=True;

 $nameDepender=$nameA;

 break;

 }

 }

 // here we are looking for the actor whos id is matching the arefDependee

 $foundee = FALSE;

155

 foreach($actors as $actor) {

 $nameA = $actor->getAttribute('name');

 $idA = $actor->getAttribute('id');

 if ($idA==$arefDependee){

 $foundee=True;

 $nameDependee=$nameA;

 break;

 }

 }

 switch ($TypeD){

 case "task":

 echo "".$nameDepender."
depends on ".$nameDependee. " to
".$nameD,"
";

 break;

 case "resource":

 echo "".$nameDepender."
shall receive ".$nameD. " from
".$nameDependee,"
";

 break;

 case "goal":

 echo "".$nameDepender." depends
on ".$nameDependee. " to achieve the
goal ".$nameD,"
";

 break;

156

 case "softgoal":

 echo "".$nameDepender."
depends on ".$nameDependee. " to
satisfy the softgoal ".$nameD,"
";

 break;

 default:

 echo " ";

 }

}

}

}

?>

GenerateSR.php file source code

<?php

include("perTemplate.php");

function GenerateSR($filen, $id, $nameActor) {

$dom = new DOMDocument();

$dom->preserveWhiteSpace = FALSE;

$dom->load("UploadedFiles/$filen");

$xpath = new DOMXpath($dom);

$imgPath="./ICONS/";

$actors = $xpath->query('//actor');

$ielementList = $xpath->query('//ielement');

157

$boundaryList = $xpath->query('//boundary');

//STEP 1 We got the id and the name of the actor of concern

$found=FALSE;

$nbactors=1;

foreach ($actors as $actor){

 $actorID= $actor->getAttribute('id');

 $actorName=$actor->getAttribute('name');

 if ($actorID == $id){

 $found=True;

 echo "The internal elements of the actor <img src=\"$imgPath","acteur.png\" width = \"15\"
height=\"20\" >".$nameActor. " are grouped by type: ","
";

 echo "
";

if ($actor->hasChildNodes()){

 $BoundariesList=$actor->getElementsByTagName('boundary');

 $boundary=$BoundariesList->item(0);

 $ielements=$boundary->childNodes;

 //preparing arrays to collect the task name and initialize its index at 0

 $taskArray = array(array());

 $tai=0;

 $goalArray = array(array());

158

 $gai=0;

 $resourceArray = array(array());

 $rai=0;

 $sgArray = array(array());

 $sai=0;

 //looping through the list of ielements

 foreach ($ielements as $ielement)

 {

 $ielementType = $ielement->getAttribute('type');

 $intentional= $ielement->getAttribute('name');

 $identifier=$ielement->getAttribute('id');

 //we extracted the type and name of each ielement and we will group them by their type

 switch ($ielementType){

 case "task":

 $taskArray[$tai][0]= $intentional;

159

 //for taskArray, it has 4 rows: 1st row is for the name of the element, second row is for the
hasChildNodes flag (0 -> no children, 1 -> has children),

 //the 3rd row is root flag (0 ->not root node, 1 means it is a root node so it has no id) and the
fourth row is for id of non root elements. if it is a root so in the fourth row and the concerned case we
insert -1

 //checking if task has children, if yes then $taskArray[$tai][1]=1; flag as 1

 if ($ielement->hasChildNodes())

 {

 $taskArray[$tai][1]=1;

 }

 else{

 $taskArray[$tai][1]=0;

 }

 if($identifier == ''){

 //$taskArray[$tai][2]=0;

 //$taskArray[$tai][3]=-1;

 $taskArray[$tai][2]=1;

 $taskArray[$tai][3]=-1;

 }

 else {$taskArray[$tai][2]=1;

 $taskArray[$tai][3]=$identifier;

 }

160

 $tai++;

 break;

 case "resource":

 $resourceArray[$rai][0]= $intentional;

 //ACTUALLY resources are not decomposable

 if ($ielement->hasChildNodes())

 {

 $resourceArray[$rai][1]=1;

 }

 else{

 $resourceArray[$rai][1]=0;

 }

 if($identifier == ''){

 $resourceArray[$rai][2]=1;

 $resourceArray[$rai][3]=-1;

 }

 else {$resourceArray[$rai][2]=0;

 $resourceArray[$rai][3]=$identifier;}

 $rai++;

161

 break;

 case "goal":

 $goalArray[$gai][0]= $intentional;

 //checking if goal has children, if yes then $goalArray[$gai][1]=1; flag as 1

 if ($ielement->hasChildNodes())

 {

 $goalArray[$gai][1]=1;

 }

 else{

 $goalArray[$gai][1]=0;

 }

 if($identifier == ''){

 $goalArray[$gai][2]=1;

 $goalArray[$gai][3]=-1;

 }

 else {$goalArray[$gai][2]=0;

 $goalArray[$gai][3]=$identifier;}

 $gai++;

 break;

 case "softgoal":

162

 $sgArray[$sai][0]= $intentional;

 //checking if sg has children, if yes then $sgArray[$tai][1]=1; flag as 1

 if ($ielement->hasChildNodes())

 {

 $sgArray[$sai][1]=1;

 }

 else{

 $sgArray[$sai][1]=0;

 }

 if($identifier == ''){

 $sgArray[$sai][2]=1;

 $sgArray[$sai][3]=-1;

 }

 else {$sgArray[$sai][2]=0;

 $sgArray[$sai][3]=$identifier;}

 $sai++;

 break;

 default:

 echo " ";

163

 }

 }

 //printing all the existing elements in the goal array

 echo ' I.' .$nbactors.'.1.GOALS ', "
";

 if ($gai>0){

 $i=0;

 $g=1;

 $x=1;

 $done=FALSE;

 // while not done, check if $goalArray[$gai][1]=1 means the current element is having childNodes

 while (!$done){

 $goal=$goalArray[$i][0];

 $goalID=$goalArray[$i][3];

 if($goalArray[$i][1]==1){

 if ($goalArray[$i][2]==1){

 echo " ";

 echo "";

 echo '<a href="#" id="example10_'.$id.'_'.$g.'-show" class="showLink"
onclick="show(\'example10_'.$id.'_'.$g.'\');return false;"> I.' .$nbactors.'.1.'.$x.' '.$goal.'', "
";

164

 echo "
";

 echo '<div id="wrap3">';

 echo '<div id="example10_'.$id.'_'.$g.'" class="more">';

 Template($filen, $goalID, "goal", $goal, 1, 1);

 echo "
";

 echo '<a href="#" id="example10_'.$id.'_'.$g.'-hide" class="hideLink"
onclick="Hide(\'example10_'.$id.'_'.$g.'\');return false;">(Hide details)';

 echo '</div>';

 echo '</div>';

 $x++;

 echo "
";

 }

 else{echo " ";

 echo "";

 echo '<a href="#" id="example12_'.$id.'_'.$g.'-show" class="showLink"
onclick="show(\'example12_'.$id.'_'.$g.'\');return false;"> I.' .$nbactors.'.1.'.$x.' ' .$goal.'', "
";

 echo "
";

 echo '<div id="wrap3">';

 echo '<div id="example12_'.$id.'_'.$g.'" class="more">';

 Template($filen, $goalID, "goal", $goal, 0, 1);

 echo "
";

 echo '<a href="#" id="example12_'.$id.'_'.$g.'-hide" class="hideLink"
onclick="Hide(\'example12_'.$id.'_'.$g.'\');return false;">(Hide details)';

 echo '</div>';

165

 echo '</div>';

 $x++;

 echo "
";

 }

 }

 else {echo " ";

 echo '
I.' .$nbactors.'.1.'.$x.' '.$goal,"
";

 $x++;

 }

 $i++;

 $g++;

 //$tai represents the number of tasks written to the array

 if ($i==$gai)

 {$done=True;}

 }

 }

 else {echo " ";

 echo '→NOT
SPECIFIED!!',"
";}

 echo "
";

 echo ' I.' .$nbactors.'.2 SOFTGOALS
', "
";

 if ($sai>0){

 $i=0;

166

 $s=1;

 $done=FALSE;

 // while not done, check if $goalArray[$tai][1]=1 means the current element is having childNodes

 while (!$done){

 $sg=$sgArray[$i][0];

 $softID=$sgArray[$i][3];

 if($sgArray[$i][1]==1){

 if ($sgArray[$i][2]==1){

 echo " ";

 echo "";

 echo '<a href="#" id="example14_'.$id.'_'.$s.'-show" class="showLink"
onclick="show(\'example14_'.$id.'_'.$s.'\');return false;"> I.' .$nbactors.'.2.'.$s.' ' .$sg.'', "
";

 echo "
";

 echo '<div id="wrap3">';

 echo '<div id="example14_'.$id.'_'.$s.'" class="more">';

 Template($filen, $softID, "softgoal", $sg, 1, 2);

 echo "
";

 echo '<a href="#" id="example14_'.$id.'_'.$s.'-hide" class="hideLink"
onclick="Hide(\'example14_'.$id.'_'.$s.'\');return false;">(Hide details)';

 echo '</div>';

 echo '</div>';

 $s++;

 echo "
";

 }

 else {

167

 echo " ";

 echo "";

 echo '<a href="#" id="example15_'.$id.'_'.$s.'-show" class="showLink"
onclick="show(\'example15_'.$id.'_'.$s.'\');return false;"> I.' .$nbactors.'.2.'.$s.' ' .$sg.'', "
";

 echo "
";

 echo '<div id="wrap3">';

 echo '<div id="example15_'.$id.'_'.$s.'" class="more">';

 Template($filen, $softID, "softgoal", $sg, 0, 2);

 echo "
";

 echo '<a href="#" id="example15_'.$id.'_'.$s.'-hide" class="hideLink"
onclick="Hide(\'example15_'.$id.'_'.$s.'\');return false;">(Hide details)';

 echo '</div>';

 echo '</div>';

 $s++;

 echo "
";

 }

 }

 else {echo " ";

 echo '<img src=\"$imgPath","doux.png\" width = \"19\" height=\"15\"
>I.' .$nbactors.'.2.'.$s.' '.$sg,"
";

 $s++;}

 $i++;

 //$tai represents the number of tasks written to the array

 if ($i==$sai)

168

 {$done=True;}

 }

 }

 else{echo " ";

 echo '→NOT
SPECIFIED!!',"
";}

 echo "
";

 //we declare $i initialized at 0 and $done is false //$i will pcurs the array of tasks until it gets equal
to $tai which counts the length of

 //the array (its number of elements)

 echo ' I.' .$nbactors.'.3 TASKS ', "
";

 if ($tai>0){

 $i=0;

 $t=1;

 $done=FALSE;

 // while not done, check if $taskArray[$tai][1]=1 means the current element is having childNodes

 while (!$done){

 $task=$taskArray[$i][0];

 $taskID=$taskArray[$i][3];

 if($taskArray[$i][1]==1){

 if ($taskArray[$i][2]==1){

 echo " ";

 echo " ";

169

 echo '<a href="#" id="example16_'.$id.'_'.$t.'-show" class="showLink"
onclick="show(\'example16_'.$id.'_'.$t.'\');return false;">I.' .$nbactors.'.3.'.$t.' ' .$task.'', "
";

 echo "
";

 echo '<div id="wrap3">';

 echo '<div id="example16_'.$id.'_'.$t.'" class="more">';

 Template($filen, $taskID, "task", $task, 1, 3);

 echo "
";

 echo '<a href="#" id="example16_'.$id.'_'.$t.'-hide" class="hideLink"
onclick="Hide(\'example16_'.$id.'_'.$t.'\');return false;">(Hide details)';

 echo '</div>';

 echo '</div>';

 $t++;

 echo "
";

 }

 else {echo " ";

 echo " ";

 echo '<a href="#" id="example17_'.$id.'_'.$t.'-show" class="showLink"
onclick="show(\'example17_'.$id.'_'.$t.'\');return false;"> I.' .$nbactors.'.3.'.$t.' ' .$task.'', "
";

 echo "
";

 echo '<div id="wrap3">';

 echo '<div id="example17_'.$id.'_'.$t.'" class="more">';

 Template($filen, $taskID, "task", $task, 0, 3);

170

 echo "
";

 echo '<a href="#" id="example17_'.$id.'_'.$t.'-hide" class="hideLink"
onclick="Hide(\'example17_'.$id.'_'.$t.'\');return false;">(Hide details)';

 echo '</div>';

 echo '</div>';

 $t++;

 echo "
";

 }

 }

 else {echo " ";

 echo "<img src=\"$imgPath","tache.png\" width = \"19\" height=\"15\"
>I." .$nbactors.".3.".$t." " .$task,"
";

 $t++;}

 $i++;

 //$tai represents the number of tasks written to the array

 if ($i==$tai)

 {$done=True;}

 }

 }

 else{echo " ";

 echo '→NOT
SPECIFIED!!',"
";}

 echo "
";

171

 echo ' I.' .$nbactors.'.4 RESOURCES
', "
";

 if ($rai>0){

 $i=0;

 $done=FALSE;

 while (!$done){

 $resource=$resourceArray[$i][0];

 if($resourceArray[$i][1]==1){

 if ($resourceArray[$i][2]==1){

 echo " ";

 echo '<a
href>I.' .$nbactors.'.4.'.' '.$resource."","
";

 }

 }

 else {echo " ";

 echo "<img src=\"$imgPath","ressource.png\" width = \"19\" height=\"15\"
>I." .$nbactors.".4."." " .$resource,"
";}

 $i++;

 //$rai represents the number of resources written to the array

 if ($i==$rai)

 {$done=True;}

 }

 }

 else{ echo " ";

 echo '→NOT
SPECIFIED!!',"
";}

 }

172

}

$nbactors++;

}

}

?>

perTemplate.php file source code

<?php

function Template($filename, $idE, $typeIE, $nameIE, $root, $numTemplate){

$dom = new DOMDocument();

$dom->preserveWhiteSpace = FALSE;

$dom->load("UploadedFiles/$filename");

$xpath = new DOMXpath($dom);

$imgPath="./ICONS/";

$actors = $xpath->query('//actor');

$ielementList = $xpath->query('//ielement');

$AllIntentionalLinks = $xpath->query('//ielementLink');

//STEP 1 We got the id and the name of the actor of concern

$found=FALSE;

$label='';

foreach ($ielementList as $ielement){

 $type= $ielement->getAttribute('type');

173

 $label=$ielement->getAttribute('name');

 $idIE=$ielement->getAttribute('id');

 if ($root==0){

 if ($idIE == $idE){

 // We have found the non root element having the same id $found=True;

 $found=True;

 break;

 }

 }

 else{

 if ($type==$typeIE and $label==$nameIE){

 //We have found the root element

 $found=True;

 break;

 }

 }

}

if (!$found) {

echo 'not found';

}

// maybe down

 $boundary=$ielement->parentNode;

 switch ($numTemplate) {

174

 case "1":

 // we should look in all the array created before or pass their content because they contain all the
internal elements of the actor of our concern.

 echo ' To achieve the goal "'.$nameIE. '", one of the following elements
(alternatives) must be accomplished: ',"
";

 echo "
";

 foreach($ielement->childNodes as $iLink) { //the $ielement here is the one that we found after the
passage and comparison between idIE and idE so it is the ielement of concern

 if ($iLink->nodeName == 'ielementLink')

 {

 $iLinkType = $iLink->getAttribute('type');

 $iref = $iLink->getAttribute('iref');

 if($iLinkType=='means-end')

 {

 $ielementList2=$boundary->childNodes;

 foreach($ielementList2 as $iel2)

 {

 $id2=$iel2->getAttribute('id');

 if($id2==$iref)

 {

 $found=True;

 $name2=$iel2->getAttribute('name');

175

 echo '-'. $name2 ,"
";

 break;// stop and leave the loop

 }

 }

 }

 }

 }

 echo "";

 break;

 case "2":

 // we should look in all the array created before or pass their content because they contain all the
internal elements of the actor of our concern.

 echo ' The following element contribute to "'.$nameIE.'": ',"
";

 echo "
";

 $SGchildren=$ielement->childNodes;

 foreach($ielement->childNodes as $iLink) { //the $ielement here is the one that we found after the
passage and comparison between idIE and idE so it is the ielement of concern

 if($iLink->nodeName == 'ielementLink')

 {

 $iLinkType = $iLink->getAttribute('type');

 $iLinkValue = $iLink->getAttribute('value');

 $iref = $iLink->getAttribute('iref');

 if($iLinkType=='contribution')

176

 {

 $ielementList2=$boundary->childNodes;

 foreach($ielementList2 as $iel2)

 {

 $id2=$iel2->getAttribute('id');

 if($id2==$iref)

 {

 $found=True;

 $name2=$iel2->getAttribute('name');

 echo '-'.$name2;

 echo ' ';

 echo " ";

 echo''.$iLinkValue.'' ,"
";

 break;// stop and leave the loop

 }

 }

 }

 }

 }

 echo "";

 break;

177

 case "3":

 $found = FALSE;

 echo 'To perform "'.$nameIE. '" all the following elements must exist: ',"
";

 echo "
";

 // we should look in all the array created before or pass their content because they contain all the
internal elements of the actor of our concern.

 foreach($ielement->childNodes as $iLink) { //the $ielement here is the one that we found after the
passage and comparison between idIE and idE so it is the ielement of concern

 if ($iLink->nodeName == 'ielementLink')

 {

 $iLinkType = $iLink->getAttribute('type');

 $iref = $iLink->getAttribute('iref');

 if($iLinkType=='decomposition')

 {

 $done=False;

 $found=False;

 $ielementList2=$boundary->childNodes;

 foreach($ielementList2 as $iel2)

 {

 $id2=$iel2->getAttribute('id');

178

 if($id2==$iref)

 {

 $found=True;

 $name2=$iel2->getAttribute('name');

 echo '-'. $name2 ,"
";

 break;// stop and leave the loop

 }

 }

 }

 }

 }

 echo "";

 default:

 echo " ";

 break;

 }

 if (!$found)

 {

 echo 'not found';

 }

}

?>

