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Abstract

The multislope ski-rental problem is an extension of the classical ski-rental problem,
where the player has several lease options besides the pure rent and buy options. In this
problem the hardness of an instance, which is the setting of options, significantly affects
the player’s performance. There is an algorithm that for a given instance, computes the
best possible strategy. However, the output is given as numerical values and therefore the
relational nature between an instance and the best possible performance for it has not been
known. In this paper we prove that even for the easiest instance, a competitive ratio smaller
than e/(e — 1) ~ 1.58 cannot be achieved. More precisely, a tight lower bound on the best
possible performance is obtained in a closed form parametrized by the number of options.
Furthermore, we establish a matching upper and lower bound on the competitive ratio each
for the 3-option and 4-option problems.

1 Introduction

In the classical ski-rental problem [KMRS88], the player decides either to rent a ski set or buy
one, each time he/she goes skiing. For example, a store may offer the following options for ski
sets: Rent for $50 per day or buy for $500. Each of the player’s decisions has to be made in
an online manner where he/she has no information on how many times he/she is going skiing
from now and on. The objective is to minimize the total cost.

The multislope ski-rental problem [AIS08, LPSR08] is an extension of the classical ski-rental
problem, where the player has several [ease options of paying both of a per-time fee and an
initial fee, in addition to the pure rent and buy options. The store may offer, other than the
rest and buy options above, the following two lease options: Lease for $30 per day with an
initial fee of $100, or lease for $15 per day with an initial fee of $250.

We refer to a set of such options as an instance, denoted by a pair of two vectors (r,b).
The vector r indicates the per-time fee of each option and the vector b tells the fee of switching
options. (The detailed definition shall appear in Section 2.) A strategy of the player specifies
when and to which option to switch. According to the standard definition, we say that a
strategy has a competitive ratio of c if the player along the strategy is charged at most ¢ times
the optimal offline cost, i.e., one with the number of times of skiing known in advance. For a
given instance (r,b), we define the best possible competitive ratio é(r,b) as the minimum value
of the competitive ratios for all possible strategies for (r,b). In short, ¢(r, b) is the competitive
ratio of the best possible strategy for (7, b).

The numerical value of ¢(r, b) can be calculated by an algorithm of Augustine et al. [AIS08].
However, almost nothing has been known of dependencies between (7,b) and é(r,b). In this
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paper we analyze inf &(r,b) and sup é&(r, b) over reasonable instances, revealing the easiest and
the hardest instances. Notice here that the supremum coincides with the matching upper and
lower bound on the competitive ratio in the standard sense.

The analysis of the infimum is motivated by a realistic application: This problem can be
regarded as Dynamic Power Management [ISG03] on a system that has multiple energy-saving
states, for example, a Windows computer with Stand By state, Hibernate state, and so on.
The objective is to minimize the energy consumption during an idle period when there is no
user response. A pair of a strategy and an instance that achieve the infimum present the best
specification of energy-saving states and the best state-transition schedule.

1.1 Our Contribution

Our results are summarized as follows:
(I) For integer k > 2, let I(k) denote the entire set of instances, each consisting of exactly
k + 1 options. We here mean by “exactly” that there is no redundant option in each instance.

(See Section 2 for the detailed settings.) For fixed k, we prove that inf{é(r,b) | (r,b) € I(k)} =

(b 1)F The infimum value monotonically decreases as k grows. For example, 1.80 for k = 2,

(k+1)F—kF "
1.73 for k = 3, and 1.70 for k = 4. We have as corollary that inf{é(r,b) | (r,b) € I(k),k >
2} = 2% ~ 1.58. Our results are interpreted into the context of Dynamic Power Management

as follows: The more energy-saving states are available, the better energy saving performance
can be achieved. Nevertheless, there is a limit of improvement.

(IT) We show sup{é(r,b) | (r,b) € I(2)} = 2.47 and sup{é(r,b) | (r,b) € I(3)} =~ 2.75.
As we have already mentioned, the supremum is the matching upper and lower bound on the
competitive ratio in the ordinary sense. Our results are the first to establish a matching bound
for the competitive ratio of the problem; it has only been known that an upper bound of 4 and
a lower bound of 3.62 hold when arbitrary number of options are available [BCN00O, Dam03]. In
most studies, an upper bound and a lower bound have been separately analyzed. In contrast,
our analysis is based on a quite different technique in the sense that we seek both bounds in
the same time. The results in (I) and (IT) are illustrated in Figure 1.

(TTT) We consider two subclasses of instances I4(k) and I;(k) which consist of additive in-
stances and investment instances, respectively. For an additive instance, the player can switch
options by simply paying the difference of their initial fees. On the other hand, for an invest-
ment instance, the player always has to pay the entire initial fee of the new option. We show
sup{¢(r,b) | (r,b) € 14(k)} = 2 and inf{é(r,b) | (r,b) € I;(k)} = 2 for any k > 2. That is to
say, the best possible competitive ratio of the hardest additive instance coincides with that of
the easiest investment instance.

1.2 Related Work

We first mention studies on the deterministic model. The classical (i.e., 2-slope) ski-rental
problem was first introduced by Karlin et al. [KMRS88] in the context of snoopy caching. The
problem admits an optimal 2-competitive strategy. Various practical applications can be found
in the paper by Karlin [Kar96], such as context switching and virtual circuit management. Irani
et al. [ISG03] discussed the multislope ski-rental problem as Dynamic Power Management.
Augustine et al. [AIS08] developed an algorithm that for a given instance, outputs the best
possible strategy and its competitive ratio. (While a strategy that performs the best for arbitrary
instances is usually said to be optimal, in this paper we say one that performs the best for a
fixed instance to be best possible.) Bejerano et al. [BCNO0O] provided a 4-competitive strategy for
an arbitrary instance. Although their strategy was originally targeted at investment instances,
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the competitiveness straightforwardly applies to general instances as well. Damaschke [DamO03]
gave a lower bound of (5++/5)/2(~ 3.62) on the competitive ratio. Irani et al. [[SG03] presented
a 2-competitive strategy for an arbitrary additive instance. The Bahncard problem introduced
by Fleischer [Fle01] is another extension of the classical ski-rental problem.

Karlin et al. [ KMMOY94] provided an optimal randomized strategy for the classical ski-rental
problem with a competitive ratio of -%;. Karlin et al. [KKRO01] applied this to several problems
including TCP Acknowledgment. El-Yaniv et al. [EYKL99] studied the problem in a market
with interest rates. Fleischer [Fle01] gave an optimal randomized strategy for a 2-slope problem
with rent and lease options. For the multislope ski-rental problem, Lotker et al. [LPSRO0S]
presented an e-competitive randomized strategy for an arbitrary instance. Besides, they gave an
—“y-competitive randomized strategy for an arbitrary additive instance, and also an algorithm
that computes the best possible randomized strategy for a given additive instance.

Note. Throughout this paper, when we give a numerical value with finite precision, the round-
ing is always done to the nearest value.

2 Problem Statement and Preliminaries

2.1 Instance

For integer k > 2, an instance of the (k + 1)-slope ski-rental problem consists of a pair of two
vectors (7, b) that specifies k + 1 states which we called options in Section 1. A state is referred
to as a slope in some literature. We use the terminology of the multislope ski-rental problem for
representing the (k + 1)-slope ski-rental problem for all & collectively.

State 0 and state k stand for fo rent a ski set and to buy one, respectively. States 1,...,k—1
correspond to lease a ski set in which the player pays both of some per-time fee and some initial
fee. More specifically, the entries 7; and b; ; are the per-time cost of state ¢ and the transition



cost from state ¢ to state j, respectively. Since we are going to assume that the player starts
from state 0 and may transition to another state immediately, by ; is thought of as the cost
for starting from state j as well. We add that if one formally sets £ = 1 then one has the 2-
slope ski-rental problem, i.e., with no lease states, which is equivalent to the classical ski-rental
problem.

We define the whole set of instances of the (k+ 1)-slope ski-rental problem, denoted by I(k),
to be the whole set of (r,b) such that:

1:7’0>’F1>"'>7’k:0, (1)
0=nboo <byy <---<boy =1, (2)
bl,j_bl,i Sbi,j Sbl,j f0r0§l<7j<j§k, (3)

bo,j+1 (=11 4 75) + bo,j (rj—1 = 7j41) +boj1 (=rj +7j41) <Ofor 1 <j<k—1. (4

The inequalities (1) and (2) normalize the per-time and transition costs so that they are all
scaled down to between zero and one. Note that in competitive analysis, the absolute magnitude
of the cost itself does not matter. This normalization may look somewhat strange, but it makes
sense; the number of times of skiing will also be scaled soon. Indeed, this normalization is done
so that when a fractional number of times of skiing is allowed, the cost of renting a ski set for
“one time” coincides with that of buying one.

The inequalities (1) and (2) say also that the sequence {r;} is decreasing and the sequence
{bo,i} is non-decreasing. Consequently, per-time costs in an instance are different from each
other. The left inequality in (3) is the constraint that a direct transition from state [ to j is
equal to or cheaper than a transition via another state i. The right inequality in (3) says that a
transition from state ¢ to 7 is not more expensive than one from state [ < 7. Refer to the paper
by Augustine et al. [AISO8] for the original motivation of these restrictions in the context of
Dynamic Power Management. The condition (4) guarantees that there is no redundant state
to consider. The reason why the inequality in (4) is valid for this shall be clarified after the
introduction of cost functions in Section 2.2.

We define two subclasses of instances which will play a significant role in the later analysis.
An additive instance is such that b; ; = b;; + b;; holds for all 0 <4 <[ < j < k. We write the
whole set of additive instances with k + 1 states as I4(k). An investment instance is such that
bi; = bo; is satisfied for all 0 < ¢ < j < k. Namely, the transition cost to a state is identical
regardless of from which state the transition is made. The whole set of investment instances
with k& + 1 states is denoted by I (k).

2.2 Strategy and Cost Functions

We hereafter assume the number of times of skiing ¢ is a nonnegative real number. The purpose
for this is simply the ease of calculation. Since the cost is piecewise continuous with respect to ¢
as we will see below, one can always interpret results in our model also in terms of the discrete
model by rounding within a reasonable precision.

We mostly identify ¢ with the time, in the sense that by time ¢, the player keeps going skiing
with some fixed frequency. A per-time cost is then thought of as a cost charged per unit time.
At each time instant, the player who now stays at state ¢ either transitions to a different state
j(> 1) by paying b; ;, or keeps staying at state i.

A deterministic strategy of the player is a vector & with k£ + 1 entries. Each entry xz; stands
for the time when the player transitions to state i. The sequence {z;} is assumed to be non-
decreasing, since due to the constraints of I(k), we consider only such instances for which the
player cannot save cost by a backward transition. Without loss of generality, we assume ¢y = 0,



i.e., the player always starts from state 0; since the player can transition anytime, a strategy
of starting from state j can be described by setting x; = 0. The whole set of strategies is thus
written as S ={x |0 =y <z < --- <z}

For each 0 <14 < k — 1, if the player adopting strategy @ transitions from state i to j(> i),
then we define a relation of 4 <z 7. One should note that the player may transition from state
i directly to j(> i+ 2) by skipping the states between. For such a case, we define the transition
times for states ¢ + 1,4+ 2,...,5 — 1 as xj41 = z;42 = --- = xj_1 = z;. The subscript of < is
mostly omitted when it is clear from the context.

Consider a time ¢ with z; < t < z;11. By the time ¢, the player with strategy x will have
paid a cost of

i1
ON(z,t) :=7r; (t — x;) + Z ri (41 — @) + Z by m.-
=0 0<I<m<i s.t. I<m

The first, second, and third terms correspond to the accumulated per-time cost after the tran-
sition to state 4, that before the transition to state ¢, and the sum of transition costs so far,
respectively.

For ¢ being exactly x;, which is one of the transition times of strategy x, we define the
function as the cost immediately after the transition:

ie1
ON(z,z;) := Zﬁ (141 — 1) + Z bi,m-
=0

0<I<m<i s.t. [<m

The optimal offline player behaves optimally with ¢ known. It is observed that the optimal

strategy is to transition to some state at time 0 and then keep staying there. The cost is
OPT(t) := Orgnjlgk OF F;(t),

where OF Fj(t) := rjt 4 by ; represents the cost of staying at state j from time 0 to ¢ plus the
transition cost of starting from state j. Let us regard OF Fj(t) for each j as a function with
respect to t. Then, OPT(t) can be seen as the lower envelope of the collection of functions
OFFy(t),OF Fy(t),...,OF Fi(t).

We are ready to explain the condition (4) for I(k). This condition means that for every
j (0 < 5 < k), there exists a ¢ > 0 such that OFF;(t) = OPT(t). In other words, there is
no redundant state that the optimal offline player never uses. Or, one can consider that such
redundant states have already been dropped from the instance. More specifically, the inequality
in (4) is derived by simplifying the inequality OF F;(t*) < OF F;_(t*), where t* is the root of
the linear equation OF F;_(t) = OF Fj1(t).

A simple necessary condition to (4) is

bgngl—’r’j, fOrlSjSk—l, (5)

which will be applied in later proofs. This is confirmed as follows: One can immediately see
that (5) is equivalent to OF Fj(1) < 1for 1 < j < k—1. Since ming<;j<x OFF}(1) < OFFy(1) =
1, if OFFj(1) > 1 for some j then the line OF F;(t) can never be a part of OPT(t).

2.3 Competitiveness

For an instance (7, b), a strategy @ is said to be c-competitive if

ON(z,t) —c-OPT(t) <0
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for all ¢ > 0. We call ¢ the competitive ratio.
We further define the best possible competitive ratio for instance (r,b):

é(r,b) :=inf{c | (3z € S)(Vt > 0) ON(z,t) — c- OPT(t) < 0}.

That is to say, ¢(r,b) is the competitive ratio of the best possible strategy for (r,b). The
condition for competitiveness can be weaken by the following two arguments. The first is a
lemma that allows us to concentrate on strategies satisfying ON(x,t) = ¢- OPT(t) at every
transition time. Such a strategy is called eager in the paper by Augustine et al [AIS08].

Lemma 1 ([AIS08]). Suppose that a strategy x is c-competitive. Then, there is a c-competitive
strategy ' such that ON(2',z}) = ¢- OPT () holds for all 1 <i < k.

The second argument is on the treatment of OPT(¢). The minimum operation can be
eliminated by imposing k + 1 constraints instead. Hence, we will hereafter employ

&(r,b) = inf{c| (Jz € S)(1 < Vi < k,0 < Vj < k) ON(z, ;) — ¢ - OFFj(z;) < 0}.

The next proposition enables us to calculate the value of é(r,b) within arbitrary precision.
However, the analytical relation between (r,b) and ¢(7, b) has not been known. In subsequent
sections we analyze inf é(r, b) and sup ¢(r, b), revealing the easiest and the hardest instance.

Proposition 1 ([AIS08]). For any € > 0, there exists an algorithm that for given (r,b), com-
putes a (&(r,b) + €)-competitive strategy in O(k?log klog(1/e)) time.
2.4 An Example

Here we present the example of a ski store with four options in Section 1 as an instance in I(3).
Although the space of scaled instances may seem narrow, one can map any instance in the real



world to one in I(k) without losing its essence. In fact, that instance is now described as r =
(’f'(), r1,72, ’1"3) = (1, 0.6, 0.3, 0) and b = (b(),l, b072, b0,3, bl,g, b1,3, b2,3) = (0.2, 0.5, 1, 0.3, 0.8, 0.5).
Here we defined the transition costs as bl’g = b0’2 — bo’l, b1’3 = b0’3 — bo’l, and b2’3 = b0’3 — bo’g,
which were not specified in Section 1. The resulting instance thus belongs to I4(3). Figure 2
shows this instance as a state transition diagram.

Figure 3 illustrates cost functions for this instance and the strategy @ = (zg,z1, 22, z3) =
(0,0.3,0.7,1.4). The graph of ON(«,t) jumps at t = x1, z2, and z3 due to state transitions.
Elsewhere it increases linearly with slope r;. The graph of OPT(t) shows the cost when the
player ideally transitions to an optimal state at the beginning.

The competitive ratio of strategy « is ¢ = % ~ 1.90. This is easily confirmed; ON (x,t) —
¢ - OPT(t) is zero for ¢ = 1.4 and negative elsewhere. We remark that strategy @ is not

the best possible for (r,b). The best possible strategy for this instance is calculated as & =
(To, T1,T2,T3) = (0,0.26,0.54,1.67), whose competitive ratio is approximately 1.77. Hence, we
have that ¢(r,b) =~ 1.77 for this (r,b). Competitiveness can be explained visually in Figure 3:
If the graph of ON (z,t) is drawn below that of ¢- OPT(t), then strategy « is c-competitive.

3 Infimum of the Best Possible Competitive Ratio

3.1 Fixed k

Intuitively, the infimum of ¢(7, b) indicates to what extent the strategy can be improved when
one chooses the easiest instance for the player. We derive the infimum by solving a mathematical
program in which the strategy and instance are both formulated as variables. Note that such a
formulation is possible because the infimum is written as

inf{é(r,b) | (r,b) € I(k)}
=inf{c| (I(r,b) € I(k))(Fz € S)(1 < Vi <k,0 <Vj <k)ON(xz,z;) — c- OF Fj(z;) < 0}.

We first see that we can narrow down the space of instances to consider. The simple lemma
below implies that there is an instance in I4(k) which achieves an infimum.

Lemma 2. Let (z,7r,b,c) be such that x € S, (r,b) € I(k), and ON(z,z;) —c- OF Fj(x;) <0
foralll1 <i<kand0<j<k. Setb as b j :=bo,j —bo,; for 0 <i<j <k, and by, = bo; for
0 <4 < k. Then, also for (r,b') € I4(k), ON(z,z;) — c- OFFj(z;) <0 holds for all1 <i <k
and 0 < j < k.

Proof. The fact that (r,b’) € I4(k) directly follows from the definition of additive instance.
Fix i (1 <i <k)andj (0 <j < i) arbitrarily. For all [ < m < i, by, > bom — boy = bLm
holds. Hence, by replacing b with &', the value of ON(z,z;) decreases, or remains the same.
On the other hand, the value of OF Fj(x, z;) does not change. Consequently, we have for (r,b’),
ON(m,l‘i)—C-OFFj(J?i) SO O

We use the notation

i—1
gi,j(:c, r, b, C) = ON(:B, (L‘Z) —cC- OFF]' (:El) = Z ] ((L‘l+1 — :El) + bO,i —cC (’f'j.’L‘Z' + bo,j) . (6)
=0

for describing the condition for strategy @ to be c-competitive. Note that for an additive in-
stance, the sum of transition costs equals simply by ;. We are ready to formulate a mathematical



program.
(P) minimize ¢
subject to g; j(x,r,b,c) <O, for 1 <1<k 0<j<Ek,
x €S, (r,b) € I4(k).
In spite of its nonconvexity, we will solve the program analytically and obtain an explicit

solution. The infimum is indeed a minimum. Postponing the proof of optimality, we here
present the solution.

Theorem 1. The following (x,7,b,€) is a global optimum to (P):

Ei—% for 0 <i <k, (7)
1 7

ﬂ-:5+(1—6)(1+%> for 0 <i <k, (8)
boi=1-7; for 0 <i<k, (9)
bij = bo,j — bo,; for0<i<j <k, (10)

_ (k+ 1)k
= 7 11
T+ D)F — kP (1)
Corollary 1. It holds inf{¢(r,b) | (r,b) € I(k)} = min{é(r,b) | (r,b) € I(k)} = (k(ffgii)_kkk
That is to say, for any instance of the (k + 1)-slope ski-rental problem, no strategy achieves a

(k+1)*

competitive ratio below (S

The solution consists of the easiest instance for the player and the best possible strategy

for it. Here we give some numerical examples. For k = 2, we have ¢ = g = 1.80, (Zo,71,%2) =
(0, %,1), (70,71,72) = (1, %,0), and (bo,l,bo,g,bl,g) = (%,1, %) And for £k = 3, ¢ = % ~ 1.73,

(Zo,T1,T2,%3) = (0,3, 3,1), (To,71,72,73) = (1,32,22,0), and (bo,1,b0,2,b0,3,b1,2,b1,3,b2,3) =
(%, %, 1, %, %, %) Figures 4, 5, 6, and 7 show the easiest instances and the cost functions of
the best possible strategies.

Please recall that OPT(t) is the lower envelope of OF Fy(t), OF Fy(t),...,OF Fy(t). One
can see that in Figures 5 and 7, every OF F;(t) with 1 < j < k — 1 degenerates to a single
point. This means that for these instances, the offline player has only the choice of state 0 or
k. To use other states cannot contribute to cost-saving. On the other hand, the resulting best
possible strategy keeps transitioning to the next state at equal time intervals while exploiting
all the states available.

Our original interest was how much the online player takes advantage of the easiness of the
instance. However, the result is a bit different from what we expected: The resulting instance
is unfavorable to the offline player, rather than easy to the online player. This is seen as, in a

sense, a limit of worst-case competitive analysis.

3.2 Arbitrary £

We have
- (k""l)k — 14 1 14 I e
C_(k-i-l)k—kk_ (1_’_%)]“_1 e—1 e—1

as k — oo, which provides the following corollary in a straightforward manner. The best
possible competitive ratio can never be improved down to one. The corollary is more suggestive
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in the context of Dynamic Power Management: Even if arbitrarily many energy-saving states
are implemented, there is a limit of improvement in competitiveness.

Corollary 2. It holds inf{¢(r,b) | (r,b) € I(k),k > 2} = %5 ~ 1.58. That is to say, for any

instance of the multislope ski-rental problem, no strategy achieves a competitive ratio below -5 .

The value of the obtained infimum coincides with the competitive ratio of the optimal
randomized strategy for the classical (i.e., 2-slope) ski-rental problem [KMMO94]. This fact is
explained as follows: Fix finite & > 2. For the classical ski-rental problem, consider a randomized

strategy that buys a ski set at time % with a probability of p; for each 1 < i < k. Let FON(t)

be its expected cost incurred by time ¢. Choose {p;} so as to minimize inf;> %, that is, the
competitive ratio of the randomized strategy. Then, we can observe that FON(t) = ON (&, t)
for all £ > 0, where T is the strategy given in Theorem 1. As k — oo, the player becomes
allowed to buy a ski set at arbitrary timing and therefore the competitive ratio inf;>q ?)?37]7\5((3

approaches the optimal value —¢5. Accordingly, inf{¢(r,b) | (r,b) € I(k)} — -5 as well.

3.3 Proof of Theorem 1

The proof is sketched as follows: We first consider a parametric optimization problem (Q«)
of (P), and guess a solution to it. Although problem (Q,-) is nonconvex, the guessed solution is
proved to be indeed optimal. Then, we formulate a problem (R) whose objective function is the
optimal value function to (Q,«). By solving problem (R), we finally obtain a global optimum
to (P).

First, by regarding r in program (P) as a parameter, denoted by r*, we obtain a parametric
optimization problem (Qy-).

(Qp+) minimize ¢
subject to g; ;j(x,r",b,c) <0, for1 <i:<k,0<j<Ek,
x €S, (r",b) € Is(k).

For every ¢, denote by M/(c) the set of (x,b) such that (x,b,c) is feasible to (Qp+). We can
rewrite problem (Qy-) as
minimize ¢ subject to M(c) # 0. (12)

Here we give a lemma that provides a sufficient condition of optimality for general problems of
this form. We remark that this lemma will further be applied to the analysis of sup ¢(r,b) in
Section 4.

/

Lemma 3. Let M(c) be any set labeled by a real number c. Suppose that for any ¢ < ',
M(c) € M () holds, i.e., M(c) is a proper subset of M(c'). If there exists € such that M (T) is
a singleton, i.e., a set consisting of a single element, then inf{c | M(c) # 0} = min{c | M(c) #

0} =e.

Proof. Let A := {c | M(c) # (}. Trivially, ¢ € A. For every ¢ > ¢, we have M(c) C M(c)
by assumption. Then M (c) # 0 and therefore ¢ € A. On the other hand, for every ¢ < &,
M (c) € M(c). Since M(¢) is a singleton, M (c) = (. That is to say, ¢ ¢ A.

Therefore, for any ¢ € A, € < ¢ holds. Together with ¢ € A, we conclude ¢ = min A. O

10



Through computer experiments for some small values of k, we guess (2*, b*, ¢*) that satisfies
the following equation system to be optimal:

boy=1—r; for 1 <i <k, (13)
gio(z,r*,b,c) =0 for 1 <i <k, (14)
grk(z,r*,b,c) = 0. (15)

Let us solve this equation system. Recalling (6), we see (14) with i = 1 and ¢ = 1:
7’3(]71 - 1‘0) + bo,i - (’I“E)kﬂil + bo,g) =1+ (1 - ’I“T) — T = 1- 7’{ = 0,

which does not satisfy (1). Therefore, we can assume ¢ # 1. By taking the difference of (14)
with plugging (13), we have for each 1 <17 <k,

0= gi+1,0(mv 'I"*, b, C) - gi,()(m,”'*, b, C)
=1} (zig1 — @) + (L—rf) — (L=7)) —c(@ip1 — z)
— (i1 —xi) (=) +r] =iy -
We thus have

3
r.—r;
7 i+1

Tigl — Xy = —— . - (16)

From (14) with ¢ = 1 and z¢ = 0, it is derived that

1—r}
c—1

I =

This implies also that for the feasibility of x, ¢ > 1 is required. By repeatedly applying (16),

we get, in general for 1 <71 < k,
i—1

LTI
1=0 !
Also,
0=gpr(x,7",b,c) — gro(x,7",b,c) = —c + cxy

implies z, = 1. From (17) with i = k, we know that ¢ should be a root of

k—1

% TP~ Tig
h(’f’ ,C) :ZW—IZO (18)
=0 ?

Lemma 4. See h(r*,c) = 0 as an equation with respect to ¢ under the assumption of ¢ > 1.
The equation has a unique real root between 1 and 2.

Proof. By considering just the first term in the summation, we obtain

*
1—’)”1

c—1

h(r*,c) > ~1. (19)

Recall that r{ < 1. We know by (19) that h(r*,c) > 0 for any ¢ € (1,2 — 7). We also have

k—1
’I“ —’I“ ’I“ —’I“
h(r,2) => - S ”1— <Z 2_11“— =5 —rf—1=0.
=0

11



Furthermore, for 1 < c,
k—1 3

3h__z7"i T <0

dc i=0 (C_T;'k)2

implies that h(r*,c) decreases monotonically. These facts guarantee unique existence of a real
root between 1 and 2. O

Denote by ¢* the root of h(r*,c) = 0 greater than one. Then, using (17), we determine
x],...,x;. Set zj =0 and bai =1—r; for 1 <7 < k. Next, our guess turns out to be correct.

Lemma 5. It follows that (x*,b*,c*) is a global optimum to problem (Qp~).

Proof. First, we confirm the feasibility of (x*, b*, ¢*). It is easy to see that * € S and (r*,b*) €
I4(k). Needless to say, * and ¢* satisfy the equation system of (13), (14), and (15). We check
other constraints. By (13) and 2 < 2y = 1for 1 < i <k — 1, we have g; j(x*,r*,b",¢*) <
gio(x*,r*,b",c*) =0for1 <i <k-—1and 1l < j <k Wealso have g (z*,r*,b",c¢*) =
Gri(x*,r*,b",c*) =0 for 1 < j <k —1. The feasibility of (x*,b",c*) is thus confirmed. The
rest of the proof is to show its optimality by applying Lemma 3.

(I) Recall the problem in the form of (12). We first prove that for any ¢ < ¢/, M (c¢) C M(c)
holds. M(c) C M () is immediately proved, since for any ¢ < ¢’ and any feasible (z, b, ¢), we
have forall 1 <7< kand 0 <j <k,

1
] (x4 —x) +boi < ¢ (r;‘xz + b()’j) <d (r;wl + bo,j) )

~.
|

l

Il
o

Lemma 1 implies that if (x, b, ') is feasible, then there exists (2, b, ') such that for each
1 <i<k,gij@,r* b,) =0 holds for some 0 < j < k. For such pairs of 7 and j, and any

c<c,
1

rf (20 — =) + boi = ¢ (rfa} +boy) > ¢ (rfz +boy),

~.
|

N
Il
. o

which claims that (’,b,¢) is not in M(c'). Thus, M(c) C M(c).

(IT) We next prove that M(c*) is a singleton {(x*,b*)}. Observe that for each ¢, M(c)
is a polyhedron since with fixed »* and ¢, the constraints are all linear. Therefore, M (c) is a
connected set for fixed c. Hence, it suffices to show that any neighbor of (z*, b*), except itself, is
not contained in M (c*). Let (z,b) be a point that is arbitrarily chosen from the neighborhood
of (x*,b"). In the following we see that (x,b) violates at least one of the constraints.

The next inequalities are obtained by differentiating g; ;.

8gi,o

:r;-’;l—c*'ra:<0, fOI‘lSiSk‘,
ITi |(z+ p* o)
0 .
99k,0 =ri,—r >0, forl1 <i<k-—1,
Ozi (z*,b*,c*)
0
G9k:k =rp_; —c'rp >0.
Oy, (z*,b*,c*)

From these inequalities we have that: For 1 <4 <k — 1, if z; > ] then g; o becomes positive.
Otherwise, g; o becomes positive. If z; > z}, then g; ;. becomes positive. Otherwise, g o becomes
positive.

12



As for b, we first note that g j(*,7*,b",c*) = g r(x*,r*,b*,¢*) = 0 holds for all 0 < j <
k — 1. Then,

Gk,

=—c"<0

x*,b*,c*)

implies that if by,; < bf ; then the point is infeasible. Next, recall (13). If by ; > bf ;, we have

bo,j > 1 —rj. Then, the condition (5) is not satisfied, which means (r*,b) ¢ I(k). The entries

b;j (0 <4 < j <k) need not be considered, since we now concentrate on additive instances.
Consequently, Lemma 3 states that (z*,b*, ¢*) is a global optimum to problem (Q«). O

Finally, we regard ¢* as the optimal value function to (Q,~) and formulate a problem (R)
with r being a variable. Lemma 6 gives a solution to (R).

(R) minimize c¢*

subject to h(r,c*) =0,1<c* <2,1=r9g>r1 >+ >7rp =0.

Lemma 6. It follows that 7 in (8) is a global optimum to problem (R). The optimal value is ¢
in (11).

Proof. We derive

:k(c*cily—k—l. (20)

The inequality is known as the inequality of arithmetic and geometric means. Note that this is
applicable since ¢* — r; is positive for all 7. The equality holds when
ct—ry =y ct =y

cCT —T7 cT —T C" —Tr_1

If one solves the equation

13



then one obtains its unique root

N
S (22)

It is easily seen that the function

1 1
c* \ % 1 ®
*
=11
CH(C*—l) <+c*—1>

decreases monotonically. Since h(r,c*) = 0, we know by (20) that ¢* cannot be smaller than

(k(ffgii)_kkk. In the rest of the proof we will show that ¢* can indeed take this minimum value,
by providing rg, ..., that fulfill (21), (22), and 1 =r9 > > --- > rp =0.
We solve the equations in (21) with respect to rg, ..., 7. Let
c"—ry "=y =
c*—ro_c*—rl_ _c*—rk_l_
Then we have -
1.
ozh(r,c*):Z%—k—lzyk—k—L (23)
i=0 !

Therefore, we get v =1+ % If we fix ry = 1, the sequence {r;} is recursively determined as

1 3
T'Z':C*—i-(l—c*) <1+E>

for 1 <4 < k. We then derive

1)’“_ (k+ 1) Kk (k+1)F
- (

=+ (1-c)(1++ = : —0.
re= ¢ C)(+k PR T sy v

It also follows that for 0 <7 <k —1,

rigr =1 = (¢ = 7i) = (" —rip1) = (" =) —y(¢" —ri) = (L=9)(¢" —ri) = —%(C* — i) <0.

The obtained sequence {r;} is thus consistent with 1 =ry >r; > --- > rp, =0. O

We obtain Z and b in (7), (9), and (10) by plugging 7 into * and b*. Lemmas 5 and 6 state
that (z,7,b,¢) is a global optimum to (P).

4 Supremum of the Best Possible Competitive Ratio

We first see that sup é(r, b) is equal to the matching upper and lower bound on the competitive
ratio in the ordinary sense. In the literature on the multislope ski-rental problem, ¢, is said
to be an upper bound if for all (r,b), there exists a strategy x which is ¢,-competitive. It is
observed that the set of such ¢, is equivalent to the set of upper bounds of é(r, b) over arbitrary
instances. Hence, if one identifies sup ¢(r, b), it is equal to the least upper bound. On the other
hand, ¢ is called a lower bound if there exists (r,b) for which any strategy @ has a competitive
ratio of at least ¢;. Analogously, we have that supé(r,b) coincides with the greatest lower
bound. We add that ¢; < supé(r, b) < ¢, holds accordingly.

To seek the infimum, it is sufficient to consider only additive instances, as we discussed in
Section 3. In a similar way the following lemma guarantees that an investment instance achieves
a supremum. In the rest of this section, we deal with only investment instances. For the sake
of simpler notation, for (r,b) € I;(k), we will denote b; ; with 0 <14 < j — 1 simply by b;.

14



Lemma 7. Given (r,b) € I(k), set b} ; = bo; for all 0 < i < j <k, and by, = 0. Suppose
that for (r,b') € I;(k) and € € S, ON(z,z;) — ¢ - OFF;(z;) < 0 holds for all 1 < i < k and
0 <j <k. Then, also for (r,b), ON(z,x;) —c-OFFj(z;) <0 forall1 <i <k and0<j <k.

Proof. From the condition (3), we know b;,j = by, > b;; forall 0 <4 < j < k. The lemma
immediately follows since for each 1 < i < k, the value of ON(z, z;) for (r,b') is at least that
for (r,b). O

4.1 Fixed k

The analysis of the supremum is much more involved than that of the infimum, since one must
consider minimization with respect to strategy & and maximization with respect to instance
(r,b). We here present a supremum each for &k = 2 and k£ = 3. Refer to Sections 4.3 and 4.4
for the proofs. The resulting instance is the hardest instance for the player in the sense that
for that instance the player can never achieve a better competitive ratio than the value of the
supremum. Figures 8, 9, 10, and 11 illustrate the hardest instances and the cost functions of
the best possible strategies. As discussed at the beginning of this section, our suprema establish
a matching upper and lower bound on the competitive ratio each for the 3-slope and 4-slope
ski-rental problems in the ordinary sense.

Theorem 2. It holds that sup{¢(r,b) | (r,b) € I(2)} = ¢, where ¢ is the unique real root
of ¢ —4c? + 5¢c — 3 = 0, approzimately 2.47. The instance that achieves the supremum is
(Fo,71,72) = (1,61,0) for e1 — 0 and (by,bz) = (0.68,1), where by is the unique real root of
b3 + b —1 = 0. The best possible strategies are (To,Z1,T2) = (0,b1,b1) ~ (0,0.68,0.68) and
(%o, T1,T2) — (0, 2(v/4by + 1 — 1), 00) = (0,0.47, 00).

Corollary 3. Let ¢ be the unique real root of ¢ — 4c> + 5¢ — 3 = 0, which is approzimately
2.47. For any instance of the 3-slope ski-rental problem, there exists a strateqy which has a
competitive ratio of €. Moreover, there exists an instance of the 3-slope ski-rental problem for
which any strategy has a competitive ratio of at least €.

Theorem 3. It holds that sup{¢(r,b) | (r,b) € I(3)} = ¢, where ¢ is the unique real root of ¢* —
5¢2+8¢—5 = 0, approzimately 2.75. The instance that achieves the supremum is (Fo,T1,T2, Fz,) =
(1,e1,€9,0) for e1 = 0 and 2 — 0 with €1 > €9, and (b, by, b3) =~ (0.40,0.70,1), where by =

E;:% and by = E;:% The best possible strategies are (To,Z1,%2,Z3) — (0, E(:—ll,oo,oo) ~
(0,0.23, 00,00) and (To,T1, T2, T3) — (0, 22, 22r, 00) & (0,0.40, 0.40, 00).

Corollary 4. Let ¢ be the unique real root of ¢3 — 5¢> + 8¢ —5 = 0, which is approzimately
2.75. For any instance of the j-slope ski-rental problem, there exists a strateqy which has a
competitive ratio of ¢. Moreover, there exists an instance of the 4-slope ski-rental problem for
which any strategy has a competitive ratio of at least €.

4.2 Arbitrary k

It seems difficult to extend our analysis on fixed k to arbitrary k straightforwardly. We merely
know the interval where the supremum value lies, implied by the existing upper and lower

bounds on the competitive ratio in the standard sense. There still remains a gap between
(5+5)/2 ~ 3.62 and 4.

Theorem 4 ([Dam03]). It holds sup{é(r,b) | (r,b) € I(k),k > 2} > (54 v/5)/2 ~ 3.62.
Theorem 5 ([BCNO0]). It holds sup{é(r,b) | (r,b) € I(k),k > 2} < 4.
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state 0
(rent)

state 2
(buy)

Figure 8: Hardest instance of the 3-slope ski-
rental problem: (Fo,71,72) = (1,€1,0) and
(bl, bg) = (068, ].) with €1 — 0.

state 0
(rent)

0.40

state 1
(leasel)

state 2
(lease2)

state 3
(buy)

Figure 10: Hardest instance of the 4-
slope ski-rental problem: (7g,71,72,73) =
(1,e1,€2,0) and (b1, bo,b3) = (0.40,0.70,1)
with ey — 0 and g9 — 0.
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4.3 Proof of Theorem 2

The theorem is proved by solving a problem of the form “maximize min{---}”. Although some
subproblems which appear in this proof can be solved by simple calculus, we insist on the
technique based on the Lemma 3 for further application to larger k. Lemma 7 claims that it
suffices to consider only instances in I7(2).

(I) States 0, 1, and 2 are now available for the player. Naturally, the player has two
choices: (a) 0 < 2 (i.e., skipping state 1) and (b) 0 < 1 < 2 (i.e., with no skip). In what follows
we will refer to these as types of strategy. One should note that unlike the case of an additive
instance, here we must consider the constraint of competitiveness separately, depending on the
type of strategy. We thus denote ON(z,z;) — ¢ - OF Fj(x;) by gZ(’aj) (z,r,b,c) for x of type (a)
and by 92(3)(‘5’ r,b,c) for x of type (b). We omit the arguments of g when they are clear.

We are now going to describe the best possible competitive ratio ¢(r, b) in terms of r;’s and
b;’s. For this aim, for a given instance (r,b) € I7(2), we first need to get a strategy that is the
best possible among those of each type. This is done by solving the following problems: For

type (a),
minimize c
subject to g% =x9+1—cxe <0,
gé‘fl) =x9+1—c(riza+b1) <0,
(
2

ga2):$2+1—0§0,

Note that for type (a), it holds that ggl) = gé'f]) for 0 < j < 2. For type (b),

minimize ¢

subject to g% =214+ b —cx1 <0,
QYH =z + by —c(rizy +b1) <0,
9§I,)%:$1+b1—0<0,
gg,)()) =x1+ri(re—21)+ b1 +1—cxs <0,
o) = @1 411 (ms — 21) + by + 1 — e(r1ms + by) <0,
95’2 =z1+ri(z2—21) +b +1-c <0,
0<x1 <29

We solve these problems by applying Lemma 3. We begin with type (a). For every ¢, denote
by X(9(c) the set of feasible @, that is, {2 | (0 < Vj < 2) gé'f]) <0,0 < z2}. From the following

discussion we can see that X(®(c) C X(@(¢) for any ¢ < ¢: By definition of gl(;-),

X(@)(¢) € X(@(¢) holds for any ¢ < ¢/. Lemma 1 implies that if (x,¢) is feasible, then there

exists (', ') such that gé?]) (x’,r,b,¢) = 0 holds for some 0 < j < 2. Since gé’f}(m’,r,b, c) >

ggg(m’, r,b,¢) for ¢ < ¢/, X(@(c) does not contain 2’. Thus, X((c) C X(@)(¢).

By Lemma 3, if we find ¢ such that X (%) (¢) is a singleton {2} then @ is a solution. As a result

of the following argument we will conclude: If 1 < by, & = (0, 1@7«1’ 131”) and ¢ =1+ 1;1” are

a solution, which is a root of g% = gé‘fl) = 0. Otherwise, & = (0, =% =0y and ¢ = 1 + =2,

ry T ry
which is a root of gé?l) = gé‘g = 0.

clearly
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Let us check the case r1 < by. The solution presented above is feasible; indeed, gé‘g =

To+1—¢= 12«1 — 1;1” < 0 since by < 1 — r1. The inequalities
o (a) 1—
AN I N S )

8332 . b1
(@,¢)

a9§0L1) I—-r 81

2L e =11 =(1-rm)(1+2)>0

Dy o cry < + by >7’1 ( 7’1) < + b1> >
&,¢

imply that any neighbor of & violates either gé‘fg <0or gé?l) < 0. Together with connectivity of

X (@ (c) for any fixed ¢, X(@(¢) is a singleton. Therefore & = (0, 12«17 lbfjl) is a solution when
r1 < by.
For the case r1 > by, we know that the solution above is feasible; gé’fg =20+ 1— ¢y =

2
1+1_—bl—(1+ﬂ)ﬂ:1—<ﬂ) < 0 since 1 <1 —by. We have

1 T1 T1 1

95" 1—7r
ﬁ =l—-¢eri=1—-(1+ ! ri=>b —ry <0,
8:52 1
(2,¢)
ag(a)
22 =1>0.
Oz |
(&,6)

As the same as the case r; < by, these inequalities imply that & = (0, %, 1;—1(’1) is a solution.

We add that when r; = by, the both strategies become optimal. The problem for type (a) is

thus solved.

—1+ 1+4b1(177‘1) 1—b;
2(1—7‘1) ’ory

1 +4b;(1 —rp)), for any instance in I7(2). This is a feasible root of gﬂ)) = gé{? = géb% = 0.

The feasibility is checked by simply plugging the solution into other constraints. Let us see the

optimality. Analogously for type (a), let X®)(c) := {& | (1 < Vi < 2,0 < Vj < 2) gl(b]) <0,0 <
x1 < z9}. With the help of Lemma 3, we guarantee the optimality by showing that X(®)(¢) is
a singleton {}. Indeed, the following inequalities show that any neighbor of & violates either

b b b
g% <0, g1 <0, or g} <0

) and é = (3 +

A solution to the problem for type (b) is & = (0,

a9y 11

B Y Y

8151 B & 2 2 + 1( Tl) < 07
(®,¢)

9

92,1 =1—-7r; >0,

oxy |
(®,¢)

dg ) 11

872;1 AA:7”1—6’)”1:7”1<—§—§ 1+4b1(1—r1)><0,
(®,¢)

5a®)

ﬂ =r; > 0.

(%2 o
(&,¢)

The optimality of & to the problem for type (b) is thus guaranteed.
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As a result, we obtain the best possible competitive ratio for (r,b) € I7(2) in a closed form

1 1-b 1
6(r,b):min{1+ LS . (3+\/1+4b1(1—r1)>}.

b1 (& ’ é

(IT) We next maximize ¢(r,b) with r being a parameter r*. Namely, only by is regarded as
a variable. We formulate a parametric problem:

maximize ¢

1—r]
b

1—-5b,

x )
T

c < é3 :z%(?)—i— 1+4b1(1—ri‘)>.

subject to c < ¢ : =1+

c<éy:=1+

We solve this problem again with the help of Lemma 3. For every ¢, denote by B(c) the feasible
set of by. By easy calculation, we have that for ¢ > ¢/, B(¢) C B(¢’). Let us find a root of the
equation ¢ = ¢; = ¢3. We guess the root to be a solution to the problem. Solving the equation
with respect to each of by and ¢, we obtain

bi+b —1+rf =0, (24)
A —4c +5c—3 -1+ 2rF = 0. (25)
Basic calculus guarantees that for any r}, each of the equations (24) and (25) has a unique

real root. We denote the roots by b7 (r}) and c¢*(r}), respectively. Moreover, it is revealed that
0 <bi(r]) <1land 2 < c*(r]) < 3. We have the inequalities

861 1 —-TT
— - <0
* (k)2 ’
Otlyspy  Oi0)
% — 1_TT >0
| . JTHabirHA—r) "
bl(rl)

Hence, no neighbor of bf(r}) is contained in B(c*(r})). Together with connectivity of B(c) for
any ¢, B(c*(r])) turns out to be a singleton. Therefore b}(r}) is a solution.

(III) Our final task is to maximize ¢*(r]) with regarding r} as a variable. By investigating
the equation (25), we know that ¢*(r]) increases as r} decreases. This means that ¢*(r}) achieves
a supremum as ;7 — 0. The value is the unique real root ¢ of the equation

A —4c® +5¢-3=0,

which is approximately 2.47. Tt is also derived that as r§ — 0, b%(r}) approaches b; = 0.68,
which is the unique real root of the equation

b} +b—1=0.

Going back to the solutions to the problems in (I), we get the best possible strategies. For
type (a), since it has turned out that the supremum is achieved when 1 < by, the strategy for
the case r; < by achieves the supremum. We have (Zg,T1,Z2) = (0,b1,b1) =~ (0,0.68,0.68). For
type (b), we have (T, Z1,Z2) — (0, 3(—1 4+ V/4b; + 1),00) = (0,0.47, 00).

Thus, we have proved sup{¢(r,b) | (r,b) € I;(2)} =¢. Together with Lemma 7, we conclude
sup{¢(r,b) | (r,b) € I(2)} =C.
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4.4 Proof of Theorem 3

The proof is done in the same way as Theorem 2. Thus, here we give a sketch. Lemma 7 claims
that it is sufficient to consider investment instances. We will omit expressions of solutions to
subproblems; if we try to describe the solutions in a closed form then even one of them will
require large space. Therefore, instead of writing a solution explicitly, we will give an equation
system that has a root of that value.

(I) We describe the best possible competitive ratio ¢(r,b) for an arbitrarily given (r,b) €
I7(3), by solving the best possible strategy belonging to each type. The types of strategy that
should be considered here are: Type (a) 0 < 3, type (b) 0 < 1 < 3, type (¢) 0 < 2 < 3, and
type (d) 0 < 1 <2 < 3. We will denote g; j(z,7,b,c) := ON(x,z;) — ¢c- OF Fj(x;) according to
these types as gga-), g(b-), g(C-), and g(d-).

g0 Jig o iy 0.

For each type, the best possible competitive ratio over strategies belonging to that type is

given as a solution of the problem with & being a variable in the form

minimize c

subject to g\ < 0, for 1 <i<3,0<j<3.
The candidate of a solution is the real roots of equation systems consisting of: For every (I, m)
satisfying 0 <[ < m < 3, 91(]) = 0 and gfﬁ)’ , = 0 with some 0 < j < 5/ < 3. Although some
system may include an irrelevant real root that never becomes the best possible, this does not
matter here; we get the best possible competitive ratio by taking the minimum over all the
candidates and all the types. Such a root will vanish then.

We here present three real roots of ¢ which play an important role soon. Note that each
root is obtained by eliminating & from the equation system.

e (B): The real root of g% = g§’2 = g§’3 =0.
e (C): The real root of gg()) = géﬁ = g§72 =0.

e (D): The real root of g&ig = 95,0 = g§72 = g§73 = 0.

(IT) Let r, and ry be parameters. We consider the maximization of &(r, b) with variables b;
and by. With the help of Lemma 3, it turns out that the optimal value ¢* of that maximization
problem is equal to a real root of the equations stating that the three real roots (B), (C), and (D)
take the same value. By eliminating by and bo, we obtain an equation that consists of only ¢*,
r1, and 9.

(ITT) The final step is to maximize ¢* with respect to variables 1 and ry. By differentiating
implicitly the equation which we have got as a result of (IT), we know that ¢* grows, as r; and ro
decrease. We take r; — 0 and ro — 0 with keeping r; > r2. Then, after eliminating irrelevant
factors, we have the equation

A —52+8—-5=0,

whose unique real root ¢ is approximately 2.75. Going back to the equations of (B), (C), and (D)
and taking ro — 0 followed by r; — 0, we derive

_ ¢ —-3¢+3
by = — "2 ~0.40
=2 1
and )
_ @2 -2%4+2
by = S C 2 ~ 070,
cc—c+1
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From the equation system of (B), we have the best possible strategy of type (b): (To, 71,72, T3) —
(0, Eb_—ll,oo,oo) ~ (0,0._23,053,00). From (C), we have the best possible strategy of type (c):
(To, T1,T2,T3) — (0,6(1—21,511—‘21,00) ~ (0,0.40,0.40,00). From (D), we have the best possible
strategy of type (d): (Zo, %1, To, T3) — (0, 2, 00,00) ~ (0,0.23, 00, 0).
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5 Subclasses of the Multislope Ski-Rental Problem

In this section we consider the infimum and supremum of the best possible competitive ratio
over subclasses of instances, that is, additive instances and investment instances. We will see
that the best possible competitive ratio of the hardest additive instance coincides with that of
the easiest investment instance, which equals to two.

5.1 Additive Instance

Theorem 1 and Corollary 2 provide the infimum of ¢(r,b) over I4(k) as well. Recall that the
infimum is achieved by an additive instance.

Corollary 5. It holds inf{¢(r,b) | (r,b) € I14(k)} = min{é(r,b) | (r,b) € I4(k)} = (k(fj)i,?fkk

Corollary 6. It holds inf{¢(r,b) | (r,b) € I4(k),k > 2} = 5.

e

We establish a supremum of ¢(r, b) for I4(k) with the help of an existing result. In the next
theorem we present an instance for which any strategy cannot exceed (2 — €)-competitive. Irani
et al. [ISG03] provided the Lower Envelope strategy that is 2-competitive. Note that unlike the
case of general instances, the resulting supremum value is constant regardless of k.

Theorem 6. Fiz k > 2. For any ¢ € (0,1), there is an additive instance (r,b) € I(k) for
which no strategy is better than (2 — €)-competitive.

Proof. Given ¢, we construct an additive instance (r,b) € I4(k) by setting 1 =rp >r > -+ >
rp.1=1—¢,rp, =0, bO,i =1-—r;for0<i¢ <k, and bi,j :bo,j—bgﬂ' for 0 <14 < g <k. This
instance simulates the classical (i.e., 2-slope) ski-rental problem.

Fix a strategy & € S arbitrarily. By comparison of the online and offline costs immediately
before the transition to state k, it follows that

ON(:U,:Ek) — bkfl,k Z OPT(mk)

Otherwise, the offline optimality fails.
If x, > 1, we have

ON(z,x) > OPT (xy) + bp—11 = OF Fi(xp) + (1 —€) = (2 — €) OF Fi(wy,),

since OPT(zy) = OFFy(xr) = 1. On the other hand, if z; < 1, similarly by OPT(zy) =
OFFy(zy) = x, we have

ON(z,zr) > OPT(zx) + by—1k = OF Fy(zr) + (1 —€) > (2 — €) OF Fy(wg).
Thus, strategy @ is shown to be no better than (2 — €)-competitive. O

Theorem 7 ([ISGO03]). Fiz k > 2. For any additive instance (r,b) € I4(k), there is a 2-
competitive strategy.

Corollary 7. For any k > 2, sup{¢(r,b) | (r,b) € I4(k)} = 2.

21



5.2 Investment Instance

The next theorem states that the value of the infimum of é(r, b) over I7(k) is independent of k.

Theorem 8. For any k > 2, inf{é(r,b) | (r,b) € I;(k)} = min{é(r,db) | (r,b) € I;(k)} = 2.
The strategy and the instance that achieve the_ minimum are: To =0 and T1 =Ty = -+ =T} =
1;74s such that 1 =79 >71 > --->7Tp, =0; b, ; =1 -7 for 0 <i<j <k.

Proof. With a simple calculation we confirm that £ € S and (¥,b) € I;(k), and that T is
2-competitive for (7,b).

The remainder is to prove that for any instance, the competitive ratio of any strategy is no
smaller than 2. Fix a strategy € S and an instance (r,b) € I7(k) arbitrarily. Observe that
even immediately before the transition time zj, the optimal offline cost does not exceed the
cost of . That is to say, ON(z,z) — 1 > OPT(xj) holds. Note here that the transition cost
to the last state k is one, regardless of the previous state. In addition, the optimal offline player
never incurs more than a cost of unity. Therefore,

ON(z,z) > OPT (z) + 1 > 20PT (),
which implies that strategy @ cannot be better than 2-competitive. O

We remark that all of the suprema given by Theorems 2, 3, 4, and 5 are originally proved
for investment instances.

Corollary 8. It holds that sup{¢(r,b) | (r,b) € I1(2)} =€, where T is the unique real root of
3 —4c¢® + 5¢ — 3 =0, approzimately 2.47.

Corollary 9. It holds that sup{¢(r,b) | (r,b) € I;(3)} = ¢, where T is the unique real root of
3 —5¢% +8c— 5 =0, approzimately 2.75.

Corollary 10 ([Dam03]). It holds sup{é(r,b) | (r,b) € I;(k),k > 2} > (5 +/5)/2 ~ 3.62.
Corollary 11 ([BCNO00]). It holds sup{é(r,b) | (r,b) € I1(k),k > 2} < 4.

6 Concluding Remarks

In this paper we have settled the problem of finding the infimum of the best possible competitive
ratio. As in Corollary 1, the infimum value is explicitly presented in terms of the number of
states. If it is allowed to freely design both a strategy and an instance, one can enjoy a
competitive ratio of that value.

In contrast, many problems concerning the supremum of the best possible competitive ratio
are left open. Although we have presented suprema for the two problems where there are three
or four states, our current technique does not seem powerful enough for finding a supremum
for each of the 5-or-more-state problems in general. It is also interesting to bound or obtain
the supremum for the problem where arbitrary number of states are available, which is so far
known to lie between (5 + 1/5)/2 = 3.62 and 4.
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