
On the Huffman and Alphabetic Tree Problem

with General Cost Functions

Hiroshi Fujiwara∗ Tobias Jacobs†

Abstract

We address generalized versions of the Huffman and Alphabetic Tree Problem where the
cost caused by each individual leaf i, instead of being linear, depends on its depth in the tree
by an arbitrary function. The objective is to minimize either the total cost or the maximum
cost among all leaves. We review and extend the known results in this direction and devise
a number of new algorithms and hardness proofs.

It turns out that the Dynamic Programming approach for the Alphabetic Tree Problem
can be extended to arbitrary cost functions, resulting in a time O(n4) optimal algorithm
using space O(n3). We identify classes of cost functions where the well-known trick to reduce
the runtime by a factor of n via a “monotonicity” property can be applied.

For the generalized Huffman Tree Problem we show that even the k-ary version can be
solved by a generalized version of the Coin Collector Algorithm of Larmore and Hirschberg [LH90]
when the cost functions are nondecreasing and convex. Furthermore, we give an O(n2 log n)
algorithm for the worst case minimization variants of both the Huffman and Alphabetic
Tree Problem with nondecreasing cost functions.

Investigating the limits of computational tractability, we show that the Huffman Tree
Problem in its full generality is inapproximable unless P=NP, no matter if the objective
function is the sum of leaf costs or their maximum. The alphabetic version becomes NP-
hard when the leaf costs are interdependent.

1 Introduction

Computing minimum cost binary trees is a classic combinatorial problem having applications
in various areas of informatics. Given a set {ℓ1, . . . , ℓn} of leaves having weights {w1, . . . , wn},
the famous Huffman Tree Problem describes the task to compute a binary tree T with leaf
set {ℓ1, . . . , ℓn}, such that the weighted total distance between the tree root and the leaves is
minimized. The Alphabetic Tree Problem differs from the Huffman Problem by the additional
constraint that the left-to-right order of the leaves in the solution tree must be exactly ℓ1, . . . , ℓn.
The objective function of both versions is given as

n∑
i=1

wi · dist(root(T), ℓi).

In the above model it is assumed that the access cost of a leaf is proportional to its depth in
the tree. The two most important applications of optimal (alphabetic or non-alphabetic) trees

∗This work was supported by KAKENHI (19700015, 23700014, and 23500014).
†This work was supported by a fellowship within the Postdoc-Programme of the German Academic Exchange

Service (DAAD).
0A preliminary version of this paper has appeared in the proceedings of the 18th Annual European Symposium

on Algorithms, 2010. The final publication is available at www.springerlink.com.

1

are coding and the construction of search indices. In the context of coding, each ℓi represents
a letter from the source alphabet, and from a binary tree one obtains a binary encoding by
labeling the left and right outgoing edge of each internal tree node with a 0 and 1, respectively,
so the path from the tree root to ℓi becomes associated with a unique bit string. As one typically
wants to minimize the expected length of encoded texts, it is natural to give each leaf a weight
proportional to its expected frequency and solve the corresponding Huffman or Alphabetic Tree
Problem. In the second main application, the construction of search indices, the optimization
criterion is less obvious. It might be reasonable to minimize the expected search depth here
as well, but keeping the longest possible search path as short as possible is another reasonable
goal. A tradeoff between those two extremes would be to penalize outliers superlinearly, e.g.
by using a quadratic cost function. This cost function could also be combined with a bound
on the maximum search depth any leaf is allowed to have. Another scenario with nonlinear
cost functions occurs when the top part of the search index is stored in main memory and the
bottom part is stored on a disk.

Motivated by those kind of applications, we focus on a model where the cost of leaf ℓi having
distance di from the root is determined by fi(di), where fi : N0 → R+

0 is an arbitrary function.
Instances of our generalized problem are determined by the n cost functions f1, . . . , fn, one for
each leaf. The corresponding optimization problems can be formulated as follows.

General Cost Huffman Tree Problem, GHT. Given n arbitrary functions f1, . . . , fn :
N0 → R+

0 , the objective of GHT is to determine a binary tree T having n leaves and a
bijection g : {1, . . . , n} → leaves(T) such that

∑n
i=1 fi(depth(g(i), T)) is minimized, where

depth(g(i), T) is the distance (number of arcs) between the root of T and the leaf g(i).

General Cost Alphabetic Tree Problem, GAT.Given n arbitrary functions f1, . . . , fn :
N0 → R+

0 , the objective of GAT is to determine a binary tree T whose leaves in left-to-right
order are ℓ1, . . . , ℓn, such that

∑n
i=1 fi(depth(ℓi, T)) is minimized.

We also investigate problems max-GHT and max-GAT, where the objective function is
maxni=1 fi(depth(g(i), T)) and maxni=1 fi(depth(ℓi, T)), respectively, and we also consider the
∆-ary tree versions of these problems, denoted e.g. ∆-GAT.

The runtime of any reasonable algorithm for these problems clearly depends on the time
required to evaluate the functions fi. In this article we assume that evaluating the cost functions
is done by an oracle in constant time. It is however not hard to recalculate the runtime of the
algorithms taking non-constant evaluation time into account.

Throughout the paper we assume that n is the number of leaves, rather than the size of the
input. Our aim is to compare the runtime over various settings, including the classical Huffman
and Alphabetic Tree Problems, based on the same criterion. We remark that encoding the n
cost functions might require Θ(n2) space in the extreme case where the input is simply given
by all values of fi. In this case the runtime of a t(n) time algorithm with regard to input size
m is t(m1/2). However, we believe that in most applications the cost functions are determined
by a constant number of parameters and can therefore be encoded using only constant space.

Related work

The Huffman Tree Problem is named after D. A. Huffman [Huf52], who gave an algorithm
solving it in time O(n log n), which is the fastest possible. For the Alphabetic Tree Problem,
the first polynomial time algorithm was a Dynamic Programming approach having a runtime of
O(n3), proposed by Gilbert and Moore [GM59]. Knuth [Knu71] identified a property of optimal
alphabetic trees that admits a speedup of the DP algorithm. The resulting runtime is O(n2).
The O(n log n) time method discovered by Hu and Tucker [HT71] uses a bottom-up approach

2

which resembles the Huffman Algorithm. An alternative but similar time O(n log n) algorithm
has been given by Garsia and Wachs [GW77] (see [KLR97] for an instructive correctness proof
of both algorithms).

Up to today it is unknown whether the Alphabetic Tree Problem can be solved in time
o(n log n). For certain classes of algorithms Θ(n log n) was shown to be a lower bound for the
runtime [KM93]. Linear time algorithms have been given for the case of weights differing only
by a constant factor [KM93, Hu73], exponentially separated weights [KM93], and weights from
domains sortable in linear time [HLM05].

Efforts to solve the Alphabetic Tree Problem with non-linear costs were made by Hu et al.
in [HKT79]. The authors identified a class of cost functions where the Hu-Tucker Algorithm is
applicable, including power summations of the type cost(T) =

∑
iwit

di for any constant t ≥ 1.
Baer [Bae10] recently showed that for t < 1 neither the Hu-Tucker algorithm nor the approach
of Knuth leads to optimal solutions, and he proposes to use the O(n3) algorithm by Gilbert and
Moore instead.

A well studied special case of nonlinear cost functions are the height limited versions of
the Huffman and Alphabetic Tree Problem. Here the objective is to compute an optimal tree
subject to the constraint that each leaf must be reachable from the tree root in a given number
of at most L steps, which can be reinterpreted as the cost being infinite whenever the depth of
a leaf becomes longer than L. For the non-alphabetic (Huffman) version, an O(n2 log n) time
algorithm has been given in [Gar74], which has been improved to O(nL) by Larmore [LH90]
using the so called packet merge approach. In the same paper a version for the alphabetic
tree problem is also given, but its correctness has been proved in a later article [LP94]. That
alphabetic version has a runtime of O(nL log n), which improves upon the previous O(n3 log n),
O(n2 logn), and O(n3/2L log1/2 n) time methods for the problem that were proposed in [Gar74],
[Ita76, Wes76], and [Lar87], respectively. The proof given in [LP94] also shows the correctness
of the alphabetic packet merge algorithm in a much more general setting, namely, GAT with
nondecreasing and convex cost functions.

Nonlinear cost functions can be regarded as a tradeoff between worst and average case
optimization. In a recent paper [BD10], Bose and Doüıeb study the relation between the worst
and average case search tree problem. An interesting result with respect to the alphabetic tree
problem is that any k-ary alphabetic tree can be restructured such that the new tree has height
logk n+ 1, and during the restructuring process the level of most one leaf increases by two, all
other leaves drop by at most one level, and one quarter of all leaves do not drop at all.

Another direction of generalization is to impose additional constraints on the structure of
the output tree. The Alphabetic Tree Problem can be interpreted as the task to determine an
optimal binary search strategy for a totally ordered set. A considerable number of papers about
search in partially ordered sets have been published, see e.g. [CDKL04, MOW08, JCLM10].
In the even more general Binary Identification Problem, the input is a number of subset-
s S1, . . . , Sm ⊂ [1, n] of leaves, and the goal is to compute a minimum cost search strategy
using queries of the type “is leaf ℓi in set Sj or not?”. Recent results from this area can be
found in e.g. [CPR+07, AH08, CPRS09].

Our results

We investigate the generalized Huffman and Alphabetic Tree Problem, including the ∆-ary
and worst case minimization variants. We show that in many cases existing algorithms can be
modified to solve more general versions, and we devise alternative solution methods. We also
present hardness results and give counterexamples demonstrating the limits of applicability of
many algorithms. See Table 1 for a summary of the results.

3

problem class of cost functions time complexity

GAT subtree optimality widi O(n3) [GM59], O(n2) [Knu71],
and monotonicity O(n log n) [HKT79]

wit
di (t ≥ 1) O(n log n) [HKT79]

general O(n2) [this paper]
subtree optimality O(n3) [this paper]
monotonicity nondecreasing O(n2 log n) [LP94]

and convex
general O(n3) [this paper]

general O(n4) [this paper]

GHT widi O(n log n) [Huf52]
nondecreasing and convex O(n2 log n) [this paper]
general NP-hard [this paper]

max-GAT nondecreasing O(n2 log n) [this paper]
general O(n4) [this paper]

max-GHT nondecreasing O(n2 log n) [this paper]
general NP-hard [this paper]

Table 1: Summary of previous and new results.

We start in Section 2 with the Dynamic Programming approach for the Alphabetic Tree
Problem. It turns out that there is an extension to the O(n3)-time algorithm by Gilbert and
Moore [GM59] that optimally solves problem GAT, including max-GAT and the ∆-ary versions.
This comes at the price of an extra factor of n · ∆ in the runtime and n in the memory
requirements. There are two basic methods to reduce the resource requirements by factors of n
again, each method being applicable for a certain subclass of cost functions. These classes are
overlapping, and in case of the classic linear cost model they lead to the time and space O(n2)
algorithm by Knuth [Knu71].

In Section 3 we turn our attention towards the special class of nondecreasing and convex
cost functions. Under this assumption the (binary) Alphabetic Tree Problem is known to be
efficiently solved by an algorithm by Larmore and Przytycka [LP94]. We give an extension of
the algorithm proposed in [LH90] for the height limited Huffman problem that works for ∆-
GHT with nondecreasing and convex costs. Then, in Section 4 we investigate ∆-max-GAT and
∆-max-GHT under the assumption that the cost functions are nondecreasing. Both problems
turn out to be solvable in time O(n2 log n) using a new binary search approach.

In Section 5 we present a number of hardness results that hold under the P ̸= NP assump-
tion. While all versions of GAT are solvable in polynomial time via the Dynamic Programming
method from Section 2, both GHT and max-GHT are shown to be inapproximable when the
cost functions are unrestricted. In the case of GAT, a further generalization turns out to be
computationally intractable, namely, when the leaves on each tree level contribute to the cost
via a set function 2{ℓ1,...,ℓn} → R. The hardness is established via reduction from a submodular
optimization problem. Section 6 concludes the paper.

Although the maximum depth of any full binary tree with n leaves clearly is n − 1, we
assume for simplicity throughout the paper a maximum depth of n. This assumption does not
change the asymptotics of the runtime and space analyses.

4

2 The Dynamic Programming approach

In this section we discuss Dynamic Programming algorithms for the generalized Alphabetic Tree
Problem. Our starting point is a recapitulation of the Gilbert-Moore algorithm for the classic
linear cost version. All other algorithms in this section are generalizations of that method,
often combined with speed-up techniques. One of those techniques is the exploitation of the
well-known monotonicity property, and we will see for which problem versions that property
holds.

2.1 The Gilbert-Moore algorithm and subtree optimality

The algorithm by Gilbert and Moore uses Dynamic Programming to solve the classic Alphabetic
Tree Problem with fi(x) = wix for i = 1, . . . , n. The basic idea is to exploit the fact that any
optimal alphabetic tree T for leaves ℓ1, . . . , ℓn can be decomposed into the two subtrees T1 and
T2, where T1 is an optimal alphabetic tree for ℓ1, . . . , ℓj for some j < n and T2 is optimal for
ℓj+1, . . . , ℓn. It holds that cost(T) = cost(T1) + cost(T2) +

∑n
k=1wk, because the level of each

leaf in T is by exactly one deeper than it is in T1 or T2.
Subproblems of the DP algorithm are determined by two integer parameters (l, r) with

1 ≤ l ≤ r ≤ n. A subproblem (l, r) asks about an optimal alphabetic tree for ℓl, . . . , ℓr. The
value c̃(l, r) of an optimal solution to that subproblem is calculated recursively as

c̃(l, r) = min
l≤i<r

(

r∑
k=l

wk + c̃(l, i) + c̃(i+ 1, r)),

and the optimal search tree is obtained by making the optimal solution tree to (l, j) and (j+1, r)
the left and right subtree of the root, respectively, where j is the value of i for which the minimum
is reached in the above formula. In the basic case of l = r, the optimal tree only consists of one
leaf.

There are O(n2) different subproblems, and each of them requires computation time O(n), so
the overall runtime is O(n3), while the space requirements are O(n2). The algorithm successively
merges optimal alphabetic trees for subsequences of terminals into optimal trees for larger
subsequences.

The reason why the algorithm is correct is because an optimal tree for f1, . . . , fn is always
the combination of optimal trees for the leaf sequences f1, . . . , fi and fi+1, . . . , fn, for some
i ∈ {1, . . . , n}. If T ′ is the optimal tree for f1, . . . , fi, the depth of each terminal in it is by
one smaller than it is in T . In order to guarantee that the structure of T ′ is also the optimal
structure as a part of T , it is sufficient that the costs are related via a monotone function. In
general, if for each 1 ≤ l ≤ r ≤ n there is a monotone function hlr : R → R with

∑
l≤i≤r

fi(depth(ℓi, T) + 1) = hlr

 ∑
l≤i≤r

fi(depth(ℓi, T))

 ,

then the algorithm by Gilbert and Moore is applicable. When the above formula is satisfied, we
say that the cost function is subtree optimal. In the worst-case minimization problem variant
the sums in the formula must be replaced with max.

Note that in the linear cost model, hlr is calculated by adding the total weight of ℓl, . . . , ℓr
to the cost. In the exponential cost model investigated in [HKT79] where cost(T) =

∑
iwit

di

for a constant t, we have hlr : x 7→ tx for each l, r, and also the maximization variant cost(T) =
maxiwit

di addressed in that paper satisfies subtree optimality with the same function hlr.

5

ℓ4 ℓ2 ℓ3 ℓ4ℓ1 ℓ2 ℓ3

Figure 1: Counterexample to subtree optimality. Assume that the weights of ℓ1, ℓ2, ℓ3, ℓ4 are
4, 1, 1, 2 and the linear cost function is used, with the exception that the cost of ℓ2 in depth
greater than 2 makes a jump to 10. Then the subtree containing ℓ2, ℓ3, ℓ4 of the optimal tree on
the left hand side differs from the optimal tree for that subsequence shown on the right hand
side.

The general recursive formula for the calculation of c̃(l, r) becomes

c̃(l, r) = min
l≤i<r

hlr(c̃(l, i) + c̃(i+ 1, r)),

and in the worst case problem variant one has to use

c̃(l, r) = min
l≤i<r

hlr(max{c̃(l, i), c̃(i+ 1, r)}).

2.2 DP algorithm for GAT

The simple counterexample in Figure 1 shows that GAT is not subtree-optimal in general,
i.e. the left and right subtree under the root of an optimal alphabetic tree are not necessarily
optimal alphabetic trees.

In order to handle an instance that does not satisfy subtree optimality, we introduce the idea
of an offset as follows, which has not appeared in previous work. For some problem instance
(f1, . . . , fn), assume that i is such that the leaves ℓ1, . . . , ℓi and the leaves ℓi+1, . . . , ℓn are in the
left and right subtree T1 and T2 under the root of an optimal alphabetic tree T , respectively.
We have that

cost(T) =
∑

1≤j≤i

fj(depth(ℓj , T)) +
∑

i<j≤n

fj(depth(ℓj , T))

=
∑

1≤j≤i

fj(depth(ℓj , T1) + 1) +
∑

i<j≤n

fj(depth(ℓj , T2) + 1).

The optimality of T implies that the structure of say T1 must be such that the term
∑

1≤j≤i fj(depth(ℓj , T1)+
1) is minimized. This differs from the optimization term for problem instance (f1, . . . , fi) only
by the offset of 1 that is added to each depth value. By the same argument, the two subtrees
under the root of T1 are optimal alphabetic trees with respect to the cost function where an
offset of 2 is added to the depth values before applying the fj ’s, and so on.

We make this offset an additional parameter of the description of subproblems, so subprob-
lem (l, r, k) is to determine an alphabetic tree T ′ having leaves ℓl, . . . , ℓr so as to minimize∑r

i=l fi(depth(ℓi, T
′) + k). It can also be interpreted as the task to compute a tree T ′ which

minimizes the sum of access costs under the assumption that the root of T ′ is appended to a
path of length k.

The cost c̃ of an optimal solution to a subproblem is calculated as

c̃(l, r, k) =

{
fr(k) if l = r

minr−1
i=l {c̃(l, i, k + 1) + c̃(i+ 1, r, k + 1)} otherwise.

(1)

6

For solving max-GAT instead of GAT, all we have to do is replace the sum with a maxi-
mization symbol, obtaining

c̃(l, r, k) =

{
fr(k) if l = r

minr−1
i=l {max{c̃(l, i, k + 1), c̃(i+ 1, r, k + 1)}} otherwise.

In both cases the original problem instance I is given as subproblem (1, n, 0). Each time
a new subproblem with k incremented by one is generated, the difference between l and r
decreases by at least one, which implies that k never grows larger than n. Consequently, we
have no more than O(n3) different subproblems. Each subproblem requires an effort of O(n),
so the runtime of this algorithm is O(n4).

Equation 1 shows that for solving some subproblem whose third parameter is k, it is sufficient
to know the solution values of all subproblems with offset k+1. Therefore we can first solve all
subproblems with offset n, then continue with offset n− 1, until we reach offset 0. After having
computed all solutions with offset k, solutions with offset k − 1 can be discarded. This way,
we never store solution values to more than Θ(n2) different subproblems at once, i.e., we can
compute the cost of the optimal solution to the initial problem in quadratic space. However,
for determining the alphabetic tree achieving that optimal cost, we need to explicitly store the
corresponding tree together with each solution value, which adds another factor of n to the
space requirements. Alternatively, the optimal tree can be reconstructed from the complete
Θ(n3) size Dynamic Programming table. In both cases the memory requirements are Θ(n3).

2.3 Monotonicity

The property of monotonicity was proven by Knuth [Knu71] to hold for the classic Alphabetic
Tree Problem. It roughly states that the root of an optimal alphabetic tree can only move left
when the terminal sequence under consideration is extended to the left. For making this more
precise, recall that the root of an alphabetic tree divides the sequence of leaves into a left and
a right subsequence, ℓ1, . . . , ℓi and ℓi+1, . . . , ℓn. We say that i is the position of the root. Now
assume that i is the position of the root of an optimal tree for subsequence ℓl, . . . , ℓr. Then the
property of monotonicity guarantees that there is an optimal alphabetic tree for subsequence
ℓl−1, . . . , ℓr where the root is at a position smaller than or equal to i. Symmetrically, for
ℓl, . . . , ℓr+1, there is an optimal solution where the index of the root’s position is not smaller
than i.

Monotonicity yields an improved algorithm for the GAT problem. This algorithm computes
optimal solutions to the subproblems in the following order: for k = 0, . . . , n, for a = 0, . . . , n−1,
compute the solutions to all subproblems (l, r, k) with r − l = a. It is not hard to see that this
order of computation guarantees that each solution to a subproblem is computed before it is
needed during the computation of another subproblem’s optimal solution.

We reason about the behavior of the algorithm during some fixed assignment of k and a.
Denote the choice of i in Equation 1 as i[l, r, k]. For j = 1, . . . , n − a, the optimal solution to
(j, j+a, k) is computed. The monotonicity property implies that i[j, j+a−1, k] ≤ i[j, j+a, k] ≤
i[j+1, j+a, k]. The values of i[j, j+a−1, k] and i[j+1, j+a, k] have already been determined
due to the order of computation. There are only i[j + 1, j + a, k]− i[j, j + a− 1, k] + 1 possible
values for i[j, j + a, k] to be considered by the algorithm. Summing them up for i[j, j + a, k],
j = 1, . . . , n− a, results in a telescope sum which evaluates to O(n). There are O(n2) different
configurations of a and k, so the improved runtime is O(n3).

If both subtree optimality and monotonicity hold, the Gilbert-Moore algorithm can modified
in a similar manner to obtain runtime O(n2), details can be found in [Knu71]. The resource
requirements of the Dynamic Programming approach are visualized in Figure 2.

7

monotonicity

general fi n4, n3

n3, n3

n3, n2subtree optimality

n2, n2

Figure 2: Runtime and space requirements of the DP approach for GAT. Whenever the space
requirements are n3 they can be reduced to n2 at the price of only determining the optimal
solution’s cost.

ℓ4 ℓ1 ℓ2 ℓ3 ℓ4ℓ2 ℓ3

ℓ1 ℓ2 ℓ3 ℓ4
depth 1 0 5 1 1
depth 2 0 10 2 2
depth 3 0 10 3 3

Figure 3: A GAT instance not satisfying the monotonicity property. The depicted trees are
optimal for their respective terminal sequences.

2.4 Cost functions satisfying monotonicity

In the preceding subsection we have seen that there are two different subclasses of cost functions
that allow to speed up the Dynamic Programming algorithm. In Figure 1 it is demonstrated
that not all cost functions are subtree optimal. Note that all cost functions in that example are
nondecreasing and convex, which means that the monotonicity property holds for that instance
(see discussion below). Cost functions satisfying monotonicity also form a true subclass of all
cost functions, as shown in Figure 2.

Classes of cost functions satisfying subtree optimality have been given in Section 2.1. We
now discuss cost functions satisfying the monotonicity property. For max-GAT, monotonicity
is guaranteed by any nondecreasing cost function, which is stated in Theorem 2. Concerning
GAT, the appropriate function class is more restricted, as demonstrated in Figure 3. In addition
to being nondecreasing, we also need convexity here, i.e. 0 ≤ fi(x)−fi(x−1) ≤ fi(x+1)−fi(x)
for each i and x ≥ 1. The monotonicity property for GAT is due to a slightly more general
result by Larmore and Przytycka [LP94].

Theorem 1 (Proved in [LP94], Section 8). Let (f1, . . . , fn) be an instance of GAT where the
cost functions are nondecreasing and convex, i.e. 0 ≤ fi(x)− fi(x− 1) ≤ fi(x+ 1)− fi(x) for
each i = 1, . . . , n and x ≥ 1. Then the instance satisfies the monotonicity property.

Theorem 2. Let (f1, . . . , fn) be an instance of max-GAT where the cost functions are nonde-
creasing, i.e. fi(x) ≥ fi(x− 1) for each i = 1, . . . , n and x > 1. Then the instance satisfies the
monotonicity property.

The proof of Theorem 2 is based on a simple observation about the cost c̃(l, r, k) of the
optimal solution to subproblem (l, r, k), whose correctness is established by the fact that any
solution to (l − 1, r, k) can easily be transformed into a cheaper solution to (l, r, k) when the
cost functions are nondecreasing.

Observation 1. For any instance of max-GAT with nondecreasing cost functions and any
subproblem (l, r, k) of it, it holds that c̃(l, r, k) ≤ c̃(l − 1, r, k) and c̃(l, r, k) ≤ c̃(l, r + 1, k).

8

Proof of Theorem 2. Let i be the position of the root in an optimal solution T to subproblem
(l, r, k). Assume that for some j > i there exists an optimal solution T ′ to subproblem (l−1, r, k)
with the root’s position at j. We show that the tree T ′′, which is defined as the best solution to
(l− 1, r, k) subject to the constraint that the root must be at position i, is not more expensive
than T ′. The cost of T ′′ is given as cost(T ′′) = max{c̃(l − 1, i, k + 1), c̃(i+ 1, r, k + 1)}.

Let us first assume that the maximum in the formula for cost(T ′′) is defined by the first
term, i.e. cost(T ′′) = c̃(l− 1, i, k + 1) ≥ c̃(i+ 1, r, k + 1). Multiple application of Observation 1
gives

cost(T ′) ≥ c̃(l − 1, j, k + 1) ≥ c̃(l − 1, i, k + 1) = cost(T ′′).

Now we assume that the second term establishes the maximum, i.e. c̃(l − 1, i, k + 1) ≤
c̃(i + 1, r, k + 1). By Observation 1, c̃(l, i, k + 1) ≤ c̃(l − 1, i, k + 1) ≤ c̃(i + 1, r, k + 1), which
means that c̃(i + 1, r, k + 1) is the maximum in the cost term for T as well. In other words,
cost(T) = cost(T ′′). Observation 1 states that no solution to (l − 1, r, k + 1), including T ′, can
be cheaper than T . Therefore, T ′′ is optimal.

2.5 Multi-ary GAT

We finally examine to which extent the results from this section can be generalized to the ∆-ary
Alphabetic Tree Problem.

Assume that for some offset value k we have already computed the solutions to all subprob-
lems (l′, r′, k+1). For solving some subproblem (l, r, k), we have to enumerate all possibilities to
divide the ℓl, . . . , ℓr into ∆ subsequences. This enumeration itself can be efficiently implemented
by Dynamic Programming. For even ∆, the optimal division into ∆ subsequences is equal to
the best division into 2 subsequences, each of which is then recursively divided into ∆/2 subse-
quences. For odd ∆, we first enumerate all possibilities for where the first subsequence ends. To
integrate this strategy into the algorithm, we introduce a fourth parameter to the subproblem
description: subproblem (l, r, k, δ) now asks for a ∆-ary alphabetic tree for ℓl, . . . , ℓr that is
optimal under offset k and the restriction that the root has at most δ children. The recursive
formula for the cost of the optimal solution now is as follows:

c̃(l, r, k, δ) =

fl(k) if r = l
c̃(l, r, k + 1,∆) δ = 1

minr−1
i=l {c̃(l, i, k, 1) + c̃(i+ 1, r, k, δ − 1)} δ ̸= 1 is odd

minr−1
i=l {c̃(l, i, k, δ/2) + c̃(i+ 1, r, k, δ/2)} δ is even.

(2)

The original problem is described by configuration (1, n, 0,∆). At most 2 log∆ different values
of δ do actually appear during the computation, namely, a subset of {∆,∆− 1, ⌊∆/2⌋, ⌊∆/2⌋−
1, ⌊∆/4⌋, . . . , 1}. For example, for ∆ = 14 the appearing values of δ are 14, 7, 6, 3, 2, 1.

Furthermore, the extra space requirements are within a constant factor if we do the compu-
tations in the right order and discard all values not needed anymore. The order is as follows:
for decreasing k, for increasing δ (but restricted to the O(2 log∆) relevant values), for all l, r
compute c̃(l, r, k, δ). Whenever we have computed some value of c̃(l, r, k, δ) for δ /∈ {1,∆}, we
are only going to need that value for the computation of either c̃(·, ·, k, 2δ) or c̃(·, ·, k, δ+1), and
after the latter values have been computed we can discard the c̃(l, r, k, δ).

We obtain overall runtime of O(n4 log∆) and the space requirements remain O(n3) (or
O(n2) if we are only interested in the cost of the optimal solution).

If subtree optimality holds, the resource requirements are by a factor of n lower like in the
binary case, and the definition of subtree optimality is independent from ∆. In contrast, even
the multi-ary version of the classic alphabetic tree problem with linear costs does not satisfy
the monotonicity property, counterexamples can be found in [Got81].

9

For solving the ∆-ary version of max-GAT, we just have to replace all cost sums by maxi-
mization symbols in Formula 2. Furthermore, for the class of nondecreasing cost functions the
proof of Theorem 2 directly generalizes, i.e. monotonicity is satisfied and thus the Dynamic Pro-
gramming algorithm takes time O(n3 log∆) and space O(n3) (or space O(n2) for the minimum
cost value).

3 Packet-merge algorithms

As mentioned in the previous section, it has been shown by Larmore and Przytycka in [LP94]
that problem GAT satisfies the monotonicity property when the cost functions are nondecreas-
ing and convex. Therefore, the Dynamic Programming approach can be made to run in time
O(n3). However, instead of proposing Dynamic Programming, the authors use monotonicity
as an argument in the correctness proof of their so-called Packet-Merge algorithm. The lat-
ter algorithm runs in time O(n2 log n) and therefore outperforms the Dynamic Programming
method. Although the algorithm itself is very simple, it turns out that its correctness is very
difficult to prove. Also, as the monotonicity property only holds for the case of binary trees, it
is not likely that there is a version for constructing multi-ary alphabetic trees.

3.1 Multi-ary Huffman trees

There is a simpler version of the Packet-Merge algorithm for the construction of height-limited
Huffman trees that appeared in [LH90]. This version also is much easier to analyze. In the
following we show a two-fold generalization of it, namely, to multi-ary Huffman trees with
arbitrary nondecreasing and convex cost functions.

We assume here that fi(0) = 0 for each cost function fi. This assumption is without loss
of generality, because otherwise we can obtain an equivalent problem instance g1, . . . , gn by
defining gi(j) = fi(j) − fi(0). The transformation preserves nondecreasingness and convexity
of the cost functions, and any optimal solution for the transformed instance is also optimal for
the original one.

Furthermore, we assume that n ≥ 2 and that n − 1 is a multiple of ∆ − 1. To see why
the latter assumption also comes without loss of generality, let I be a problem instance not
satisfying that assumption and let I ′ be I enhanced by the minimum number x of nodes such
that n + x − 1 becomes a multiple of ∆ − 1. The cost function of the additional nodes is the
constant zero function. Any solution to I ′ can be transformed into a solution to I having the
same cost simply by removing those x terminals. Conversely, for any full ∆-ary tree with m
leaves it holds that m − 1 is a multiple of ∆ − 1, and therefore no solution to I can be a full
∆-ary tree, i.e., there always is some internal node v having less than ∆ children. One can
append a subtree containing the x extra nodes to v, obtaining a solution to I ′ having the same
cost.

We are given the terminals ℓ1, . . . , ℓn, and we want to construct a ∆-ary Huffman tree for
them. For positive integers d1, . . . , dn, Kraft’s Inequality [Kra49] tells us that there is a tree
with each ℓi having depth di or less if and only if

∑n
i=1∆

−di ≤ 1. This sufficient and necessary
condition is equivalent to

n∑
i=1

(1−∆−di) ≥ n− 1.

In the formula, each leaf having depth di contributes an amount of 1 −∆−di to the sum. We
distribute that contribution among the levels from 1 to di, such that ℓi contributes for each tree

10

level 1 ≤ j ≤ di an amount of ∆−1
∆j ; note that

∑di
j=1

∆−1
∆j = 1−∆−di . This contribution is what

will be defined as the width of the corresponding packet in the following.
We introduce a packet pij for each terminal ℓi and each level j, i.e., the total number of

packets is n2. The width of a packet pij only depends on its level j, as mentioned above it
is defined as wj = ∆−1

∆j . Furthermore, each packet has a cost cij , which is defined as the
cost difference between terminal i at level j − 1 and the same terminal at level j, so cij =
fi(j)− fi(j − 1). Note that there are no packets defined for the root level 0, and for any i and
j, the costs of packets pi1, . . . , pij sum up to fi(j).

Any Huffman tree can be represented by a collection of packets as follows: For each i =
1, . . . , n choose packets pi1, . . . , pidi , where di is the depth of leaf ℓi in the Huffman tree. By the
above considerations of Kraft’s Inequality, the total width of the packet collection is at least
n − 1. The above assumption of n ≥ 2 has the effect that any leaf ℓi in any Huffman tree is
represented by at least the packet pi1. By the definition of the packets’ costs, the total cost of
the packet collection equals the cost of the Huffman tree.

As an example, consider an instance of the 3-ary alphabetic tree problem (∆ = 3) with 5
weighted terminals (n = 5), where the cost of terminal ℓi being in level j is wi · j2. There
are 52 = 25 packets, one for each terminal ℓ1, . . . , ℓ5 and each level 1, . . . , 5. For instance,
packet pi2 corresponds to level 2, and its width is 2

32
= 2

9 . Its cost is the difference between
the level 1 and the level 2 cost of ℓi , i.e., wi · 4 − wi · 1 = 3wi. Let T be the 3-ary tree where
ℓ1, ℓ2 are on level 1 and ℓ3, ℓ4, ℓ5 are on level 2. This tree corresponds to the packet subset
{p11, p21, p31, p32, p41, p42, p51, p52}. The three level 2 packets have a total width of 2

3 , and there
are five level 1 packets each having a width of 2

3 . The total width of T is 2
3 + 5 · 2

3 = 4 = n− 1.
In general, the monotonicity of the cost function effectuates that each packet has a positive

cost, and the convexity implies that the cost of pij is nondecreasing in j, that is, cij ≥ cij′

for j > j′. Any Huffman tree can be represented as a packet collection having total width at
least n − 1, but not every such collection represents a tree. In order for a packet collection to
represent a tree, one needs in addition that for each i there is a j such that all packets pi1, . . . , pij
are members of the collection and no packet pik with k > j belongs to it. We will see shortly
that the monotonicity of the packet cost guarantees that the latter constraint is automatically
satisfied some cost-optimal set of packets.

We define a collection of packets to be optimal if it has minimum total cost under the
constraint that its total width is at least n− 1.

Lemma 1. Let U be the set of packets obtained from an instance of the Huffman Tree Problem
with convex cost functions by the procedure described above. From any optimal collection M of
packets from U an optimal Huffman Tree T can be computed in time O(n2). Furthermore, the
cost of T equals the cost of M .

Proof. Let M be an optimal collection of packets as described in the lemma. Let i and j be such
that packet pij is not a member of M , but some pik (k > j) is. If there are no such indices, the
packet collection already represents a Huffman tree having the same cost. Otherwise, pik can
be replaced with pij in M . By this operation, the total width of M increases, and due to the
convexity of the cost functions the total cost of M cannot increase. As the cost cannot decrease
as well due to the optimality assumption, it must remain the same. After a finite number of
applications of this operation, M represents a Huffman tree having the same cost as the original
packet collection M .

This Huffman tree must be optimal, because any better Huffman tree T ∗ could be trans-
formed into a cheaper packet collection: let the terminals ℓ1, . . . , ℓn have depth d1, . . . , dn, select
each packet pij with j ≤ di. The cost of this collection is equal to the cost of T ∗, and the width
is above the threshold n− 1, as shown by the above discussion using Kraft’s Inequality.

11

To see that the transformation of M can be done in time O(n2), consider the following
implementation: For each i = 1, . . . , n, count yi := |{j | pij ∈ M}| and then replace the subset
{pij ∈ M} with {pi1, . . . , piyi}.

Lemma 1 reduces the Huffman problem to the problem of determining an optimal packet
collection. Two more structural insights about solutions to the latter problem will lead to an
efficient algorithm for it. Here it becomes crucial that n− 1 is a multiple of ∆− 1.

We remark that the following lemmas do not require the monotonicity of the packet costs
that has been the central argument in the proof of the preceding lemma. This means that
optimal packet collections can be computed efficiently, as we will see below, even without this
monotonicity. However, only monotonous packet costs (or, equivalently, convex cost functions
for the Huffman tree problem) guarantee the close relationship between optimal packet collec-
tions and optimal Huffman trees shown above.

Lemma 2. Let U be a set of packets each having a width wj =
∆−1
∆j for some j > 1 and a cost,

and let n−1 be a multiple of ∆−1. There is an optimal collection M of packets from U having
the following property:

If m is the largest index such that M contains some width wm packet and m > 1, then the
number k of such packets in M is k = a ·∆ for some integer a.

Proof. Let M be an optimal collection of packets from U such that among all optimal packet
collections it has minimum cardinality.

We first show that the total width of M must be exactly n − 1. As n − 1 is a multiple of
∆− 1, n− 1 also is a multiple of any packet width wj =

∆−1
∆j . In particular, n− 1 is a multiple

of wm. Furthermore, the width of any packet wider than wm in M is a multiple of wm, and
therefore the total width of M must be a multiple of wm. Thus, the difference between n − 1
and the total width of M must be either zero or at least wm. In the latter case we can drop
some width wm packet from M and obtain a feasible packet collection at least as cheap as M
and of smaller cardinality, which contradicts the minimality assumption.

Let M ′ be the packet collection obtained by removing all width wm packets from M . By
the structure of the packet widths, the total width of M ′ is a multiple of wm−1. As also n− 1,
the total width of M , is a multiple of wm−1, the width difference between M and M ′ must
be multiple of wm−1 as well. This width difference is exactly the total width of all width wm

packets in M . As k is the number of these packets, it holds that k∆−1
∆m = a ∆−1

∆m−1 for some
integer a, which implies that k = ∆ · a.

Lemma 3. Let U be a set of packets each having a width wj = ∆−1
∆j for some j > 1 and a

cost, and let n− 1 be a multiple of ∆− 1. Let m > 1 be the largest index such that there are at
least ∆ packets of width wm in U , and let P be the group consisting of the ∆ width wm packets
having the smallest cost (breaking ties arbitrarily).

There is an optimal collection of packets from U that either contains no or all packets from
P .

Proof. Let M be an optimal collection of packets from U . Due to Lemma 2, M does not contain
any packet of width smaller than wm. From Lemma 2 also follows that M either contains zero
or at least ∆ width wm packets. In the further case, we are done. Otherwise we can remove the
∆ minimum cost packets of width wm from M and insert the packets from P instead, which
cannot increase the cost of M due to the definition of P . We obtain an optimal packet collection
having the desired property.

In the first round, the Packet-Merge algorithm greedily selects ∆ width wn packets having
smallest cost and groups them into a meta packet P , breaking ties arbitrarily. The lemma

12

just proven implies that the solution space can be restricted to packet collections that either
completely contain P or contain no single member of P . P has a total width of wn−1, so from
now on it can as well be treated as a single width wn−1 packet whose cost is

∑
pin∈P cin.

This grouping procedure is repeated with the next ∆ minimum cost width wn packets, until
we have less than ∆ of such packets left. Those leftover packets can be dropped due to Lemma 3,
which marks the end of the first round. We now have an instance of the packet selection problem
where the smallest packet width is wn−1. We continue with the next round, and after n − 1

rounds we arrive at an instance which consists only of width w1 = ∆−1
∆ packets. The (n−1)∆

∆−1
of them having the smallest cost give an optimal solution; note that the latter expression is an
integer due to the assumption that ∆− 1 is a multiple of n− 1.

For the runtime and space analysis, we first reason about the maximum number of meta
packets that are generated during one round, when the width wm packets are eliminated for
some m ∈ {n, n − 1, . . . , 2}. We claim that this number is at most n. By induction we can
assume that at the beginning of the round the total number of width wm packets is at most 2n.
As each new width wm−1 meta packet consists of ∆ ≥ 2 such packets, the claim follows.

In the round where the width wm packets are eliminated, assume that we are given the meta
packets that have been generated in the previous round. We generate the n additional non-meta
width wm packets from the cost functions, then sort the set of all width wm packets by cost, and
finally generate the width wm−1 meta packets by grouping. The runtime is dominated by the
sorting time O(n log n). As there are n rounds, the overall runtime is O(n2 log n). The space
requirements are O(n2) if we keep all information about which packet is contained in which
meta packet. This is not necessary if we are rather interested in the cost of an optimal solution
than in its structure; then we can discard all information about a (meta-) packet once it has
become part of a meta packet, and the space requirements are only linear.

4 Worst case optimization

In this section we give an algorithm that computes optimal solutions to problem instances of
both max-GHT and max-GAT when the cost functions are nondecreasing.

The approach is based on the simple observation that there are only n2 possible values for
the worst case cost of a tree, namely, fi(j) for each 1 ≤ i, j ≤ n. In a preprocessing step, our
algorithm sorts those n2 cost values. Then it performs binary search to determine the smallest
possible cost achievable by a feasible solution.

The feasibility test asks whether there is a solution tree whose cost is not larger than
some given rational number c. For each terminal ℓi, the upper bound c induces an upper
bound di := max{j | fi(j) ≤ c} on the tree depth of the terminal, which can be found in
time n log n, again using binary search. After having determined d1, . . . , dn we need to check
whether there is a solution where these depth bounds are satisfied. The method of doing this
depends on whether we want to solve max-GHT or max-GAT, but in both cases it takes linear
time and space, as shown below. The overall runtime for determining the optimal solution
cost is therefore O(n2 log n), while the space requirements are linear. For constructing the
corresponding solution, we need a method to construct a tree from the optimal depth sequence
d1, . . . , dn. This is also accomplishable in linear space, and the runtime is in O(n2 log n), as we
show below.

The approach can be straightforwardly generalized to solve the ∆-ary problem versions
within the same asymptotic runtime and space bounds.

13

4.1 Huffman trees

In the case of max-GHT, we simply apply Kraft’s Inequality as the feasibility test, i.e. we check
whether

n∑
i=1

2−di ≤ 1.

Once the optimal solution cost is found, one method to construct the solution tree is to sort the
terminals by nondecreasing level and then apply the method given below for constructing an
alphabetic tree from the depth sequence. This works out because for any tree T there is a tree
T ′ where the leaf levels from left to right are nonincreasing, and each leaf has the same level in
T and T ′.

4.2 Alphabetic trees

There is an equivalent formula to Kraft’s Inequality, discovered by Yeung [Yeu91], for deter-
mining whether there is an alphabetic tree with the terminals in depth d1, . . . , dn or less. Given
d1, . . . , dn, define

h0 = 0 and hi = (⌈hi−1 · 2di⌉+ 1) · 2−di , i = 1, . . . , n.

There is an alphabetic tree (possibly including internal nodes having only one child) where the
terminals have depth d1, . . . , dn if and only if hn ≤ 1.

In the following we give a proof of Yeung’s formula that induces an efficient method to
construct a corresponding alphabetic tree whenever the condition for its existence is satisfied.
Note that when we remove the ⌈·⌉-operator from the above formula we obtain exactly the left
side Kraft’s Inequality. This implies the only if part, because hn is never smaller than this left
side.

For proving the if -part, we associate each node position in an alphabetic tree with a rational
number from the semi-open interval (0, 1] and show how to construct an alphabetic tree where
each terminal ℓi is at a position associated with hi. Let v be a tree node at level d, and let
b1, . . . , bd ∈ {0, 1}d be a bit vector such that for j = 1, . . . , d the component bj is 1 if and only
if the level j node on the path from the tree root to v is the left child of its parent. Note that
this definition deviates from the standard notion of the left child being associated with 0. The
rational number q(v) ∈ (0, 1] associated with v is defined as

q(v) := 1− (0.b1 · · · bd)2 = 1−
d∑

j=1

bj2
−j .

In particular, the tree root and each other node on the rightmost path of a full binary tree is
associated with 1. See Figure 4 for an example.

Assuming that Yeung’s formula is satisfied, we show how to construct an alphabetic tree
with q(ℓi) = hi for i = 1, . . . , n from left to right, with the terminals being at level d1, . . . , dn.
First, create a left path (i.e., a path where each node is the left child of its parent) from the
tree root to ℓ1 in level d1. We obtain that q(ℓ1) = 1−

∑d1
j=1 2

−j = 2−d1 = h1.
For i = 2, . . . , n, assume that the partial tree for ℓ1, . . . , ℓi−1 has already been constructed,

in particular q(ℓi−1) = hi−1 and ℓi−1 is in level di−1. Let also be b1, . . . , bdi−1
be the bit vector

corresponding to the path from the root to ℓi−1. That vector must contain at least one 1,
because otherwise we would have q(ℓi−1) = hi−1 = 1 and as hi > hi−1 the inequality hn ≤ 1
could not be satisfied. Let j be the largest index with bj = 1, and let vj be the corresponding
tree node. We know that node vj is the left child of its parent vj−1 (observe that this parent

14

.0111

.001

.10

.1 1.0

.010

.01
1.00

.011

.100

.101

.1001 .1010

.110

.11

1

.1000

Figure 4: A binary tree and the binary representation of q(v) at each node v. Note that q(v)
remains constant as long as we traverse a right path, and it becomes by 2−d smaller whenever
we traverse an edge leading to a left child at level d.

could be the tree root), and from the definition of q we have that q(vj) = q(ℓi−1). We now
distinguish between two cases.

Case 1: di ≥ j, i.e., the level of ℓi is deeper than the level of vj−1. This implies that

hi−1 = q(ℓi−1) = q(vj) = 1−
∑j

j′=1 bj′2
−j′ is a multiple of 2−di , and we have hi = hi−1 + 2−di .

We create a new left path of length j − di whose last node is ℓi, and this path is appended
as the right subtree to vj−1. Now the characteristic bit vector of the overall path to ℓi is

b1, . . . , bj−1, 0, 1, . . . , 1, and we obtain that q(ℓi) = q(vj)+2j −
∑di

j′=j+1 2
−j′ = hi−1+2−di = hi.

As ℓi−1 is in the left subtree under vj−1 and ℓi is in the right subtree under vj−1, our placement
also satisfies the alphabetic restriction.

Case 2: di < j, i.e., ℓi is on a tree level less deep than vj . On the path from the tree root to
vj , consider the node vdi that has level di. The characteristic bit vector of the path from the root

to vdi is b1, . . . , bdi , so q(vdi) = 1−
∑di

j′=1 bj′2
−j′ is a multiple of 2−di , and at the same time q(vdi)

is by no more than 2−di larger than q(vj) = q(ℓi−1) = hi−1. Therefore ⌈hi−12
di⌉ = q(vdi)2

di ,
which implies that q(vdi) = ⌈hi−12

di⌉2−di . We now do the same construction as in Case 1,
but here we place ℓi in relation to vdi instead of ℓi−1, resulting in q(ℓi) = q(vdi) + 2−di =
⌈hi−12

di⌉2−di + 2−di = hi. The resulting placement of ℓi in the tree is right of vdi , and as the
latter node is an ancestor of ℓi−1 the alphabetic restriction is satisfied between ℓi−1 and ℓi.

The above argumentation shows the correctness of Yeung’s inequality, and it describes a
way to construct a corresponding tree T ′ where the terminals are exactly in depth d1, . . . , dn.
This tree T ′ possibly contains unary nodes with only one child. We obtain the full binary tree
T from T ′ by deleting those unary nodes, it is trivial to see that this only decreases the depth
of any terminal.

In order to make the construction efficient, we need to solve the issue that T ′ might be
large due to a great number of unary nodes. The idea is to represent T ′ by a full binary edge-
weighted tree, where a weight k edge represents a path of length k. The construction of T ′

can be completely done within this representation. The transition from T ′ to T now becomes
particularly easy, because we just have to remove the edge weights.

The space requirement of the representation of T ′ is O(n logn) as any full binary tree has
O(n) edges and each of them represents a path of length at most n. However, we can immediately
forget the weight of any edge as soon as it is not contained by the path leading to the actual
ℓi. The latter path has a (weighted) length of at most n, so the whole construction can be done
within linear space.

15

5 Hardness results

In the previous section we have seen that both the Huffman and Alphabetic Tree Problems
admit polynomial time algorithms for rather general classes of cost functions. This section
is devoted to the limits of computational tractability regarding these problems. It turns out
that the Huffman Problem becomes NP-hard if we drop that constraint that the cost function
must be monotonic. This holds for both GHT and max-GHT. As for GAT and max-GAT, the
existence of a polynomial time algorithm for any cost function has been shown in Section 2.2.
We prove in this section that a further generalization makes the problem NP-hard.

5.1 Complexity of GHT

The computational complexity of GHT and max-GHT will both be settled by one reduction
from the 3-Set Cover Problem, which is well-known to be NP-hard [Kar72].

Exact Cover by 3-Sets, X3C. Given some set C with |C| = 3k, k ∈ N, and a collection
D of 3-element subsets of C, the problem X3C is to decide whether there is a sub-collection
D′ ⊆ D, such that each element of C occurs in exactly one member of D′.

Let (C,D) be an instance of X3C with |D| = m and |C| = n. In the following, we show how
to construct an equivalent instance I of GHT consisting of 2k + 3m leaves. We consider the
solution tree for instance I to be partitioned into layers, each consisting of three levels. In order
to simplify notation, let liq = 3(i−1)+ q denote the qth level of the ith layer for i = 1, 2, . . . and
q ∈ {1, 2, 3}. The tree root level 0 is not considered to be in one of the layers. In other words,
the infinite sequence of integers (1, 2, 3, 4, 5, . . .) equals the sequence (l11, l

1
2, l

1
3, l

2
1, l

2
2, . . .). Only

the layers i = 1, . . . ,m, each of which corresponds to a 3-element subset, will play a role in our
proof.

In instance I there are three different types of cost functions. Each of the 2k + 3m cost
functions formally defined below is associated with exactly one leaf in instance I. Intuitively,
the f -type functions will force the optimal tree to have a path to level 3m − 1. This path has
m “holes”, one for each subset in D. There also is an h-type function for each element of C,
which is defined such that the respective leaf fits into the holes corresponding to the subsets
the element of C appears in. In addition, each hole has room for no more than three h-type
leaves. The third category of cost functions, the g-type functions, has the purpose to “fill” the
holes not populated by h-type leaves.

Firstly, there are functions f i
2 and f i

3 for i = 1, . . . ,m. For i < m, f i
q is defined as f i

q(l
i
q) = 0

and f i
q(x) = 1 for any x ̸= liq. The mth pair is defined as fm

2 (x) = fm
3 (x) = 0 for x = lm2 , and

fm
2 (x) = fm

3 (x) = 1 otherwise. Note that there are no functions f i
1.

Secondly, we introduce m− k functions g1, . . . , gm−k. These functions are all identical. For
t = 1, . . . ,m − k they are defined as gt(l

i
1) = 0 for i = 1, . . . ,m, and gt(x) = 1 for all other

values of x.
Finally, I contains n different functions h1, . . . , hn, one for each element of C = {c1, . . . , cn}.

Let D = {D1, . . . , Dm}. For each i = 1, . . . ,m, select one element di ∈ Di arbitrarily. Now, for
j = 1, . . . , n, define

hj(x) =

0 if x = li2 for some i with cj = di
0 if x = li3 for some i with cj ∈ Di \ {di}
1 otherwise.

Lemma 4. There is a solution to instance I having cost 0 if and only if instance (C,D) admits
an exact cover.

16

Proof. “⇒” Assume that there is a solution T to instance I having cost 0. Then the leaf
associated with function f i

q must be on level liq for q = 1, 2 and i = 1, . . . ,m− 1, and the leaves
associated with fm

2 and fm
3 must be on level lm2 . Because of the leaves on level lm2 , there must

be a path v11, v
1
2, v

1
3, v

2
1, . . . , v

m
2 starting in the root v11 of T , such that viq is on level liq − 1, and

vm2 is the parent of the leaves associated with fm
2 .

We can assume that in T , for 1 ≤ i ≤ m− 1, the internal nodes vi2 and vi3 are the parents of
the leaves associated with f i

2 and f i
3, respectively. If this property does not hold, then the tree

T can be modified in order to satisfy it: simply interchange children between vit and the parent
of the leaf associated with f i

t appropriately. This does not change the level of any leaf, so the
cost of T remains zero. Similarly, we can assume that vm2 is the parent of the leaves associated
with fm

2 and fm
3 , since we can interchange children between the parent of the leaf associated

with fm
2 and that of fm

3 .
Now consider the subtrees T1, . . . , Tm, where Ti is defined as the subtree under vi1 which

does not contain vi2. The set of leaves associated with the g-type and h-type functions is exactly
the set of leaves being in those subtrees. The root of Ti is at level l

i
1. For 0 ≤ i ≤ m, the unique

hj with cj = di is the only function besides f i
2 which evaluates to 0 for input li2. Furthermore,

only the g-type functions evaluate to 0 for input li1. Therefore, if some Ti does not contain any
g-type leaf, then it has at least three leaves which are associated with h-type functions.

As there are only m − k functions of type g, k of the m subtrees Ti must contain at least
three h-type leaves. As the total number of h-type leaves is n = 3k, each of those subtrees must
contain exactly three of them.

Let Ti be such a subtree. Function hj with cj = di is the only function besides f i
2 which

evaluates to 0 for input li2, and hj′ , hj′′ with {cj′ , cj′′} = Di \ {di} are the only two functions
besides f i

3 evaluating to 0 for input li3. Therefore, the three h-type cost functions in Ti must be
exactly the cost functions corresponding to the elements of Di.

As the number of subtrees Ti of this kind is k, and each h-type function can only occur in
one of them, the corresponding selection of Di’s must be an exact cover of U .

“⇐” If D′ ⊂ D is an exact cover, then one can construct a zero cost solution tree T from it
which has the structure just described.

We have given a reduction showing that it is NP-hard to decide whether a GHT instance
admits a zero cost solution. This establishes the following theorem.

Theorem 3. GHT and max-GHT are inapproximable unless P=NP.

5.2 Set function alphabetic tree problem

We prove NP-hardness of a further extension of GAT. Let g1, . . . , gn : 2L → R+
0 be real-valued

set functions on the set L = {ℓ1, . . . , ℓn} of leaves. Each gi contributes gi(Si(T)) to the cost,
where Si(T) denotes the subset of leaves that are located at depth i in the alphabetic tree T .
We hereafter assume that the value of a set function is provided as an oracle. The extended
problem is described as follows.

Set Function Alphabetic Tree Problem, SFAT. Given a sequence of leaves ℓ1, . . . , ℓn
and n set functions g1, . . . , gn : 2{ℓ1,...,ℓn} → R+

0 , the objective of SFAT is to determine a
binary tree T whose leaves in left-to-right order are ℓ1, . . . , ℓn, such that

∑n
i=1 gi(Si(T))

is minimized.

One can easily see that if each of the set functions is modular, that is, its value is the
sum of the contributions of each leaf, then the problem is equivalent to GAT. Contrary to the
polynomial-time complexity of GAT, SFAT turns out to be NP-hard, even if the set functions

17

are all submodular. We will show that a special case of the Multiway Partition Problem [ZNI05]
is reducible to SFAT.

Multiway Partition Problem, MP. Given a submodular system (V, f), a target set
U ⊆ V , and an integer k with 2 ≤ k ≤ |U |, minimize

∑k
i=1 f(Vi) subject to

∪k
i=1 Vi = V ,

Vi ∩ Vj = ∅ for i ̸= j, and Vi ∩ U ̸= ∅ for 1 ≤ i ≤ k.

In what follows we give a construction of an instance of SFAT from a given instance of MP
with k = |U |. MP is known to be NP-hard even with k = |U | (cf. [ZNI05]).

Let m := |V |, V =: {v1, . . . , vm}, and U =: {u1, . . . , uk}. Each element of V will be
associated with a leaf in the SFAT instance we are about to construct. For simplicity of notation
we do not distinguish between elements of V and the corresponding leaves. The cost functions
will be such that each element ui of U will be forced to be on a certain tree level denoted λi.
These |U | levels are pairwise distinct. Furthermore, the cost functions will enforce that the
elements of V \U are only allowed to be on the levels {λ1, . . . , λk}. Therefore, the distribution
of the elements of V \U among these m levels represents a feasible solution to the MP instance.
We also need that the alphabetic tree has the same cost as the corresponding partition. This is
achieved by defining the cost function of λi as

gλi
(S) =

{
f(S \D) if ui ∈ S,
∞ otherwise,

where D stands for the set of dummy leaves defined below. It is not hard to see that the
submodularity of f implies the submodularity of the level cost functions. To avoid that leaves
from V appear on other levels than λ1, . . . , λk, the cost functions gj with j /∈ {λ1, . . . , λk} are
defined to be zero for the empty set and infinity otherwise.

We have already achieved that each alphabetic tree with finite cost represents an MP solution
having the same cost. For making the reduction complete, we need to ensure that the level of
each element of V in an alphabetic tree can be chosen freely among λ1, . . . , λk. We are going
to use a certain number of dummy leaves. The dummy leaves do not influence the level set
functions, i.e., adding or removing dummy leaves never changes a function value. This clearly
preserves submodularity.

Assume that we have a leaf sequence qi := vi, z1, . . . , zk, where all leaves but vi are dummy
leaves. For each j = 1, . . . , k there exists an alphabetic tree T vi:j for the sequence where vi is
on level j. The tree can be implemented as follows: The path to vi is a pure left path, and for
h = 1, . . . , j − 1 the right child of the level h node on that path is leaf zj−h. The level 0 node
of the path is the tree root, and its right subtree is some alphabetic tree for zj , . . . , zk.

Let Tstub be the smallest complete binary tree with m′ ≥ m leaves. In other words, the depth
of Tstub is d := ⌈log2m⌉, and it has m′ := 2d leaves. We now determine the levels associated
with ui ∈ U as

λi := d+ i, i = 1, . . . , k.

With this definition we now have completely determined the level cost functions. The leaf
sequence of the SFAT instance is constructed as

q1, . . . , qm, ym+1, . . . , ym′ ,

with qi being the sequences defined as above and dummy leaves ym+1, . . . , ym′ . We achieve
that any feasible solution to the MP instance can indeed be represented as an alphabetic tree,
because the level of each vi ∈ V can be freely chosen among λ1, . . . , λm: Simply replace the
ith leftmost leaf of Tstub with T vi:j , where λj is the desired level of vi. The remaining m′ −m

18

rightmost leaves of Tstub are replaced with ym+1, . . . , ym′ , and we obtain a feasible solution to
the SFAT instance.

We have proven the following theorem.

Theorem 4. SFAT is NP-hard, even if the set functions are all submodular.

6 Conclusion

In this work we have considered the Huffman and Alphabetic Tree Problem with general cost
functions. It has turned out that the most general problem versions are NP-hard, but opti-
mal solutions can be computed in polynomial time under realistic assumptions about the cost
functions. One interesting open problem that remains is the computational complexity of the
Huffman tree problem with nondecreasing but not necessarily convex cost functions.

As for the problem cases that have turned out to be computationally tractable, a natural
question for future research is about tight bounds for the runtime. To our knowledge the only
known lower runtime bounds are a reduction to the classic Huffman problem from sorting, and
the Ω(n log n) lower bound for the classic Alphabetic Tree Problem under a certain model of
computation [KM93].

Acknowledgment: We wish to thank Sebastian Kamprath for a helpful comment regarding
the presentation of Section 2.1.

References

[AH08] M. Adler and B. Heeringa. Approximating optimal binary decision trees. In Proc.
APPROX-RANDOM ’08, volume 5171 of LNCS, pages 1–9. Springer, 2008.

[Bae10] M. B. Baer. Alphabetic coding with exponential costs. Information Processing
Letters, 110(4):139–142, 2010.

[BD10] P. Bose and K. Doüıeb. Should static search trees ever be unbalanced? In Proc.
ISAAC ’10, volume 6506 of LNCS, pages 109–120. Springer, 2010.

[CDKL04] R. Carmo, J. Donadelli, Y. Kohayakawa, and E. Sany Laber. Searching in random
partially ordered sets. Theoret. Comput. Sci., 321(1):41–57, 2004.

[CPR+07] V. T. Chakaravarthy, V. Pandit, S. Roy, P. Awasthi, and M. K. Mohania. Decision
trees for entity identification: approximation algorithms and hardness results. In
Proc. PODS ’07, pages 53–62, 2007.

[CPRS09] V. T. Chakaravarthy, V. Pandit, S. Roy, and Y. Sabharwal. Approximating decision
trees with multiway branches. In Proc. ICALP ’09, volume 5555 of LNCS, pages
210–221. Springer, 2009.

[Gar74] M. R. Garey. Optimal binary search trees with restricted maximal depth. SIAM
Journal on Computing, 3(2):101–110, 1974.

[GM59] E. N. Gilbert and E. F. Moore. Variable-length binary encodings. Bell System
Technical Journal, 38:933–966, 1959.

[Got81] L. Gotlieb. Optimal multi-way search trees. SIAM Journal on Computing, 10(3):422–
433, 1981.

19

[GW77] A. M. Garsia and M. L. Wachs. A new algorithm for minimum cost binary trees.
SIAM Journal on Computing, 6(4):622–642, 1977.

[HKT79] T. C. Hu, D. J. Kleitman, and J. K. Tamaki. Binary trees optimum under various
criteria. SIAM Journal on Applied Mathematics, 37(2):246–256, 1979.

[HLM05] T. C. Hu, L. L. Larmore, and J. D. Morgenthaler. Optimal integer alphabetic trees
in linear time. In Proc. ESA ’05, volume 3669 of LNCS, pages 226–237. Springer,
2005.

[HT71] T. C. Hu and A. C. Tucker. Optimal Computer Search Trees and Variable-Length
Alphabetical Codes. SIAM Journal on Applied Mathematics, 21(4):514–532, 1971.

[Hu73] T. C. Hu. A new proof of the T-C algorithm. SIAM Journal on Applied Mathematics,
25(1):83–94, 1973.

[Huf52] D. A. Huffman. A method for the construction of minimum-redundancy codes. In
Proc. the Institute of Radio Engineers, volume 40, pages 1098–1101, 1952.

[Ita76] A. Itai. Optimal alphabetic trees. SIAM Journal on Computing, 5(1):9–18, 1976.

[JCLM10] T. Jacobs, F. Cicalese, E. Laber, and M. Molinaro. On the complexity of searching
in trees: average-case minimization. In Proc. ICALP ’10, volume 6198 of LNCS,
pages 527–539. Springer, 2010.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and T. W.
Thatcher (eds.), Complexity of Computer Computations. Plenum Press, New York,
1972.

[KLR97] M. Karpinski, L. L. Larmore, and W. Rytter. Correctness of constructing optimal
alphabetic trees revisited. Theoretical Computing Science, 180:309–324, 1997.

[KM93] M. Klawe and B. Mumey. Upper and lower bounds on constructing alphabetic binary
trees. In Proc. SODA ’93, pages 185–193, 1993.

[Knu71] D. E. Knuth. Optimum binary search trees. Acta Informatica, 1:14–25, 1971.

[Kra49] L. G. Kraft. A device for quantizing, grouping, and coding amplitude modulated
pulses. Master’s thesis, Massachusetts Institute of Technology, 1949.

[Lar87] L. L. Larmore. Height restricted optimal binary trees. SIAM Journal on Computing,
16(6):1115–1123, 1987.

[LH90] L. L. Larmore and D. S. Hirschberg. Length-limited coding. In Proc. SODA ’90,
pages 310–318, 1990.

[LP94] L. L. Larmore and T. M. Przytycka. A fast algorithm for optimum height-limited
alphabetic binary trees. SIAM Journal on Computing, 23:1283–1312, 1994.

[MOW08] S. Mozes, K. Onak, and O. Weimann. Finding an optimal tree searching strategy in
linear time. In Proc. SODA ’08, pages 1096–1105, 2008.

[Wes76] R. L. Wessner. Optimal alphabetic search trees with restricted maximal height.
Information Processing Letters, 4(4):90–94, 1976.

20

[Yeu91] R. W. Yeung. Alphabetic codes revisited. IEEE Transactions on Information Theory,
37(3):564–572, 1991.

[ZNI05] L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for approximat-
ing multiway partition problems. Mathematical Programming, 102:167–183, 2005.

21

