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Abstract

The competitive performance of the SRPT scheduling algorithm has been open for a long
time except for being 2-competitive, where the objective is to minimize the total completion
time. Chung et al. proved that the SRPT algorithm is 1.857-competitive. In this paper
we improve their analysis and show a 1.792-competitiveness. We clearly mention that our
result is not the best so far, since Sitters recently proved the algorithm is 1.250-competitive.
Nevertheless, it is still well worth reporting our analytical method; our analysis is based on
the modern functional optimization, which can scarcely be found in the literature on the
analysis of algorithms. Our aim is to illustrate the potentiality of functional optimization
with a concrete application.
Keywords: Analysis of Algorithms; On-line Algorithms; Scheduling; Competitive Analysis;
Functional Analysis

1 Introduction

The SRPT algorithm is a simple algorithm for online job scheduling to minimize the total
completion time. Despite its simplicity, the theoretical performance has been open for a long
time, except for being 2-competitive [PSW98]. Breaking the barrier of 2, Chung et al. [CNS10]
proved that the SRPT algorithm is 1.857-competitive. The proof was done by using a proba-
bilistic method in which the choice of a probabilistic distribution influences the resulting com-
petitiveness. In this paper we obtain an optimal distribution and consequently show a 1.792-
competitiveness. More precisely, we formulate a linear program over a function space and find
a solution which satisfies the optimality condition.

We clearly mention that our result is not the best so far; Sitters [Sit10] recently proved by
a quite different argument that the SRPT algorithm is 1.250-competitive. Nevertheless, it is
still well worth reporting our analytical method. Although the analysis of algorithms by means
of functional optimization is of great potentiality, its application can scarcely be found in the
literature.

Optimization theory has played a significant role in the design and analysis of algorithms.
Polynomial-time algorithms for LP or SDP are often embedded as a subroutine. Duality theory
is comprehensively applied to performance analysis. In most of the researches, however, the
problem to be solved is an optimization over finite-dimensional vector space. To the best of
our knowledge, merely the work [FIS11] dealt with a function space, which is regarded as an
infinite-dimensional vector space, as we do in this paper.

∗This work was supported by KAKENHI (19700015, 23700014, 23500014, 19740059, and 22740057).
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2 Preliminaries for the Functional Analysis

We assume all integrals appearing in this paper to be the Lebesgue integrals. L1[0, 1] denotes
the set of Lebesgue measurable functions f : [0, 1] → R for which

∫ 1
0 |f(x)|dx < ∞. L∞[0, 1]

stands for the set of Lebesgue measurable functions f : [0, 1] → R whose image is bounded
except on a set of measure zero. Indeed, we will only handle functions whose image is simply
bounded. We denote by C[0, 1] and ND[0, 1] the set of continuous and nondecreasing functions
on [0, 1], respectively.

We also employ the Lebesgue-Stieltjes integral for dealing with a probabilistic distribution
which may not have a density function. What should be noted is just the treatment of a
discontinuous point: Let F ∈ ND[0, 1] that is discontinuous at c ∈ [0, 1] and differentiable
elsewhere, and g ∈ C[0, 1]. Denoting the derivative of F by f , we calculate∫ 1

0
g(x)dF (x) =

∫ c

0
g(x)f(x)dx+

∫ 1

c
g(x)f(x)dx+ g(c)(F (c+)− F (c−)),

where F (c+) and F (c−) stand for limϵ→+0 F (c+ ϵ) and limϵ→+0 F (c− ϵ), respectively.
The purpose of the Lebesgue integral and the above function spaces is to rigorously specify

a space to which a dual variable in an optimization problem belongs. It is well known that
dual variables that correspond to a finite set of constraints form Rn. Concerning a constraint
that holds true over a real interval, however, a more careful and involved argument is required.
Although definition of such space is rather intricate, resulting functions in this paper are all
elementary. Therefore, any integral of a function given in the explicit form may be considered
as the Riemann integral. As for the Lebesgue integral and function spaces, refer to [Roy88,
Lue69, RS90].

3 Formulation and Observation

Chung et al. [CNS10] studied the performance of the SRPT algorithm for online preemptive job
scheduling on identical parallel machines, where the objective is to minimize the total completion
time. Here, the SRPT algorithm always executes the jobs with shortest remaining processing
time. Although the SRPT algorithm schedules deterministically, the following lemma evaluates
the competitive performance based on a probabilistic argument.

Lemma 1. ([CNS10]) Let X be a random variable on the interval [0, 1]. Then the competitive
ratio of SRPT is at most

E[X] + max
0≤a≤1

1

1 + a
(Pr[0 ≤ X ≤ a] + Pr[a < X ≤ 1]E[X|a < X ≤ 1]) + 1. (1)

Chung et al. applied the specific cumulative distribution F (x) = Pr[X ≤ x] = 1− (1− x)7.

Theorem 1. ([CNS10]) The SRPT algorithm is 1.857-competitive.

We find an optimal distribution F0(x) = 1− 1
1+γ0

ln 1−x
1−γ0

for 0 ≤ x ≤ γ0 and 1 for γ0 < x ≤ 1
by the following argument, and obtain the next theorem, where γ0 ≈ 0.442.

Theorem 2. The SRPT algorithm is 1.792-competitive, which is the best possible on the basis
of Lemma 1.

As we have mentioned before, our result is not the best so far.
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Theorem 3. ([Sit10]) The SRPT algorithm is 1.250-competitive.

We begin with formulating a functional optimization problem to find a distribution which
minimizes (1). The set of cumulative distributions F (x) = Pr[X ≤ x] on [0, 1] can be identified
with ND[0, 1]. For F ∈ ND[0, 1], we define

J(F ) =E[X] =

∫ 1

0
x dF (x);

A(F ) =Pr[0 ≤ X ≤ 1] =

∫ 1

0
dF (x);

B(F )(a) =
1

1 + a
(Pr[0 ≤ X ≤ a] + Pr[a < X ≤ 1]E[X|a < X ≤ 1])

=
1

1 + a

(∫ a

0
dF (x) +

∫ 1

a
x dF (x)

)
, a ∈ [0, 1].

Then the problem is a linear functional optimization problem:

(P) minimize J(F ) + β

subject to A(F ) = 1 (2)

B(F )(a) ≤ β, a ∈ [0, 1] (3)

F ∈ ND[0, 1]. (4)

Unlike classical functional problems that can be solved by the calculus of variations, our prob-
lem involves optimization with the modern functional analysis since it includes the inequality
constraint (3) over a real interval.

It is easily seen that J : ND[0, 1] → R, A : ND[0, 1] → R are linear operators. Here we should
specify the whole set of B(F ). We first determine the image space of the linear operator B.
The mapping a 7→ B(F )(a) is measurable, since the mappings a 7→

∫ a
0 dF (x), a 7→

∫ 1
a xdF (x),

and a 7→ 1
1+a are monotonic and therefore measurable. In addition, we have

|B(F )(a)| ≤ 1

1 + a

(∣∣∣∣∫ a

0
dF (x)

∣∣∣∣+ ∣∣∣∣∫ 1

a
xdF (x)

∣∣∣∣)
≤ 1

1 + a

(∫ 1

0
dF (x) +

∫ 1

0
xdF (x)

)
.

Thus B(F ) ∈ L∞[0, 1] for each F ∈ ND[0, 1].
The rest of this paper is dedicated to solving (P). The sketch is as follows. First, we derive a

sufficient condition for optimality. Unfortunately, it is difficult to find a solution which satisfies
the condition in a straightforward manner. Thus, we next formulate a subproblem (Q) over a
narrowed solution space, with the help of the guess of a solution. (Q) is solved analytically.
Finally, we confirm that the obtained solution is also optimal for (P).
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4 Sufficient Condition for Optimality

Lemma 2. Let (F, β) be feasible to (P). Suppose that there exist λ ∈ R, µ ∈ L1[0, 1], and
ν ∈ C[0, 1] satisfying the following conditions:

− J(H)− η = λA(H) +

∫ 1

0
µ(x) {B(H)(x)− η} dx−

∫ 1

0
ν(x) dH(x), ∀η ∈ R, ∀H ∈ ND[0, 1];

(5)∫ 1

0
µ(x)

(
B(F )(x)− β

)
dx = 0; (6)∫ 1

0
ν(x) dF (x) = 0; (7)

µ(x) ≥ 0, ν(x) ≥ 0, x ∈ [0, 1]. (8)

Then (F, β) is an optimal solution to (P) .

Proof. Assume that λ, µ, and ν satisfy the conditions. Then we have

J(F ) + β̄ =− λA(F )−
∫ 1

0
µ(x)

{
B(F )(x)− β̄

}
dx+

∫ 1

0
ν(x) dF (x)

=− λ.

Let F be an arbitrary feasible solution to the problem (P). Since F satisfies the constraints of
(P) and µ(x) ≥ 0, ν(x) ≥ 0, we have

A(F ) = 1;∫ 1

0
µ(x)B(F )(x) dx ≤

∫ 1

0
µ(x)β dx;∫ 1

0
ν(x) dF (x) ≥ 0

and hence

J(F ) + β =− λA(F )−
∫ 1

0
µ(x) {B(F )(x)− β} dx+

∫ 1

0
ν(x) dF (x)

≥− λ

=J(F ) + β̄.

The above argument is similar to a proof of the optimality condition for finite-dimensional
linear programming, referred to as the complementary slackness conditions. A different point is
that a dual variable corresponding to a constraint over a real interval is a function. The inner
product of such a dual variable and a constraint is represented as an integral. Here λ, µ, and ν
are dual variables for the constraints (2), (3), and (4), respectively.

The essential difficulty is the proper choice of function spaces. In the discussion below, we
will find concrete functions µ and ν satisfying the conditions to apply the lemma. So, it is
preferable that we choose the function spaces of µ and ν as large as possible. On the other
hand, we need to restrict the function spaces of µ and ν to guarantee finiteness of the integrals
appearing in the problem;

∫
µ(x)B(F ) dx and

∫
ν(x)dF (x) have to be finite for all F ∈ ND[0, 1].
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Here we use the concept of dual function spaces which are the set of all continuous linear
functionals defined on the respective spaces.

Now B(F ) and F are contained in L∞[0, 1] and ND[0, 1] respectively. It is well known in
functional analysis [RS90] that the dual function space of L1[0, 1] is L∞[0, 1] and that of C[0, 1]
is the space of bounded variations which contains ND[0, 1]. Thus, we choose L1[0, 1] and C[0, 1]
as the spaces to which µ and ν belong, respectively. Then the function spaces are large enough
and all integrations are defined and finite. Note that then it is easier to find µ since it can
have discontinuous points. However, the lemma says that we have to find ν among continuous
functions.

5 Guess of a Solution

It seems difficult to derive a solution to the problem (P) simply by manipulating the equations
and inequalities in Lemma 2. In what follows we construct a subproblem which is easier to
handle.

We guess a candidate for a solution making some assumptions. First, let us assume that
there exists a density function f = dF

dx and that the equality sign of (3) in (P) holds for all

a ∈ [0, 1]. Then, we have a differential equation and obtain f(a) = β
1−a as a solution to it. We

see, however, that while
∫ y
0 f(a)da remains finite for 0 < y < 1,

∫ 1
0 f(a)da diverges. Therefore,

it turns out that the equality sign of (3) does not hold for an interval including the point one.
Next, suppose that F is discontinuous at a point b ∈ (0, 1) and denote l = limx→b+0 F (x)−

limx→b−0 F (x)(> 0). In the following we show that the jump can be moved to the point zero
without increasing the objective function. Set F̃ ∈ ND[0, 1] as: F̃ (x) = F (x) + l for x ∈ [0, b)
and F̃ (x) = F (x) for x ∈ [b, 1]. Then, we have J(F̃ ) = J(F ) − bl < J(F ) and A(F̃ ) = A(F ).
Also, B(F̃ )(a) = B(F )(a)− bl

1+a < B(F )(a) for a ∈ [0, b) and B(F̃ )(a) = B(F )(a) for a ∈ [b, 1].

That is to say, if F is feasible, then F̃ is also feasible. The value of the objective function
for F̃ is smaller than that for F . Hence, it suffices to consider functions which are possibly
discontinuous at the point zero and continuous elsewhere.

Through these observations we guess that: (I) There exists a density function f on (0, 1).
(II) The equality sign of (3) holds for a certain interval (0, γ]. (III) f(x) = 0 for x ∈ (γ, 1). (IV)
F is possibly discontinuous at zero.

We formulate a subproblem (Q) over the narrowed solution space. For the sake of con-
venience, we define f(0) = f(1) = 0 and limx→−0 F (x) = 0. An integral is thus calculated
as ∫ t

0
g(x)dF (x) = g(0)F (0) +

∫ t

0
g(x)f(x)dx

for 0 < t ≤ 1.

(Q) minimize

∫ γ

0
xf(x)dx+ β (9)

subject to F (0) +

∫ γ

0
f(x)dx− 1 = 0 (10)

1

1 + a

(
F (0) +

∫ a

0
f(x)dx+

∫ γ

a
xf(x)dx

)
− β = 0, a ∈ (0, γ] (11)

f(a) = 0, a ∈ (γ, 1].

An optimal solution is analytically derived. See Figure 1.
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Figure 1: An optimal distribution: The cumulative distribution F0 and the density function f0.

Lemma 3. Let γ0 be the root of the equation 1− 3γ − (1− γ) ln(1− γ) = 0 lying between zero
and one (≈ 0.442). Also let

F0(x) =

{
1− 1

1+γ0
ln 1−x

1−γ0
, x ∈ [0, γ0];

1, x ∈ (γ0, 1],

and β0 = 1/(1 + γ0). (F0, β0, γ0) is an optimal solution to (Q). The value of the objective
function is then γ0/(1− γ0) ≈ 0.792.

Proof. We will eliminate variables by using the constraints and optimize the objective function.
The constraint (11) is rewritten as

F (0) +

∫ a

0
f(x)dx+

∫ γ

a
xf(x)dx− β(1 + a) = 0. (12)

Differentiating with respect to a and solving the differential equation, we obtain

f(a) =
β

1− a
. (13)

Plugging (13) back in (12), we have

F (0)− β(1 + γ)− β ln(1− γ) = 0.

On the other hand, it follows by (10) and (13) that

F (0)− β ln(1− γ)− 1 = 0.

Eliminating F (0) yields

β =
1

1 + γ
.
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The objective function (9) is thus simplified as

1− γ − ln(1− γ)

1 + γ
. (14)

Differentiating with respect to γ, we have

−1− 3γ − (1− γ) ln(1− γ)

(1− γ)(1 + γ)2
. (15)

Solving the equation 1−3γ−(1−γ) ln(1−γ) = 0, we get a single root γ = γ0(≈ 0.442) from the
interval [0, 1]. The function (15) changes its sign from negative to positive at γ = γ0. Therefore,
(14) achieves a minimum γ0/(1− γ0) at γ0. F0 is obtained by integrating (13).

6 Confirmation of the Sufficient Condition

We confirm that the solution obtained above is an optimal solution to (P) as well.

Lemma 4. (F0, β0) given in Lemma 3 is an optimal solution to (P).

Proof. It is easy to check the feasibility of (F0, β0). We will show that for (F0, β0), one can
find λ, µ, and ν which satisfy the conditions of Lemma 2. Although it is certainly enough for
completing the proof just to present such λ, µ, and ν, we will also mention how to derive them.

We begin with deriving a sufficient condition for (5). Substituting η = 0 into (5) yields

−J(H) =λA(H) +

∫ 1

0
µ(x)B(H)(x) dx−

∫ 1

0
ν(x) dH(x), ∀H ∈ ND[0, 1].

We change the order of the integration of the second term on the right-hand side. Then we
obtain ∫ 1

0

(
x+ λ+

∫ 1

x

µ(a)

1 + a
da+ x

∫ x

0

µ(a)

1 + a
da− ν(x)

)
dH(x) = 0, ∀H ∈ ND[0, 1]. (16)

A sufficient condition for (16) is that: For all x ∈ [0, 1],

x+ λ+

∫ 1

x

µ(a)

1 + a
da+ x

∫ x

0

µ(a)

1 + a
da− ν(x) = 0 (17)

holds. On the other hand, a sufficient condition for (5) with H(x) = 0(∀x ∈ [0, 1]) and arbitrary
η is

1−
∫ 1

0
µ(x)dx = 0. (18)

Let us substitute F0 for F in (7). Please recall that f0(a) > 0 for a ∈ [0, γ0]. To satisfy (7)
and (8), we can choose ν(a) = 0 for a ∈ [0, γ0]. In turn, note that the equality sign of (3) with
(F0, β0) holds strictly for a ∈ (γ0, 1]. Similarly, it is sufficient for (6) and (8) that µ(a) = 0 for
a ∈ (γ0, 1].

Employing (17), we determine µ and ν on the remaining intervals for each. Plugging ν(a) = 0
(a ∈ [0, γ0]) into (17) yields an integral equation. By solving it, we obtain

µ(a) =
1 + a

(1− a)2
, a ∈ [0, γ0].
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Here the constant of integration is determined by (18). This also gives

λ = − γ0
1− γ0

.

again by (17). Besides, (17) for x ∈ (γ0, 1] determines

ν(a) =
a− γ0
1− γ0

, a ∈ (γ0, 1].

ν is indeed continuous even at the point a = γ0. It is confirmed that the obtained λ, µ, and ν
satisfy the conditions of Lemma 2.
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