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ABSTRACT

We analyze the three-dimensional anisotropy of the galactic cosmic ray (GCR) intensities observed independently
with a muon detector at Nagoya in Japan and neutron monitors over four solar activity cycles. We clearly see the
phase of the free-space diurnal anisotropy shifting toward earlier hours around solar activity minima in A > 0
epochs, due to the reduced anisotropy component parallel to the mean magnetic field. This component is consistent
with a rigidity-independent spectrum, while the perpendicular anisotropy component increases with GCR rigidity.
We suggest that this harder spectrum of the perpendicular component is due to contribution from the drift streaming.
We find that the bi-directional latitudinal density gradient is positive in the A > 0 epoch, while it is negative in the
A < 0 epoch, in agreement with the drift model prediction. The radial density gradient of GCRs, on the other hand,
varies with a ∼11 yr cycle with maxima (minima) in solar maximum (minimum) periods, but we find no significant
difference between the radial gradients in the A > 0 and A < 0 epochs. The corresponding parallel mean free
path is larger in A < 0 than in A > 0. We also find, however, that the parallel mean free path (radial gradient)
appears to persistently increase (decrease) in the last three cycles of weakening solar activity. We suggest that
simple differences between these parameters in A > 0 and A < 0 epochs are seriously biased by these long-term
trends.
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1. INTRODUCTION

The solar wind is a supersonic plasma blowing radially
outward from the Sun toward a vast space filled by cold and
thin interstellar plasma. The global structure of the region called
the “heliosphere,” which is a region dominated by solar wind
plasma and the solar magnetic field, is of great interest for
both solar- and astrophysicists. The interplanetary magnetic
field (IMF) is the term representing the solar magnetic field
carried outward by solar wind into the heliosphere as magnetic
field lines from the Sun are dragged along by the highly
conductive solar wind plasma (Parker 1958). Because of the
dominant dipole component of the solar magnetic field, the IMF
is divided into two magnetic sectors in the northern and southern
hemisphere separated by the heliospheric current sheet (HCS),
which develops into a “wavy” three-dimensional (3D) structure.
The inclination of the magnetic dipole from the rotation axis
increases with increasing solar activity and reverses during the
solar activity maximum epoch when the inclination reaches
its maximum. The Sun has a strong and complex magnetic
field, and the physical properties of the heliosphere are directly
connected to the properties of the magnetic field, varying with
a period of about 11 yr.

Temporal variations in the inner heliosphere can be deduced
from the ground-based observations of the high-energy galactic
cosmic rays (GCRs). GCRs are high-energy nuclei (mostly
protons) accelerated in our Galaxy and continuously arriving at
the Earth after traveling through the heliosphere. After entering
the heliosphere, GCRs interact with the IMF being carried
outward by solar wind. The interaction with the large-scale
ordered field causes the gradient- and curvature-drift motions of
GCRs in the heliosphere, while the interaction with the irregular
(or disordered) field component results in the pitch angle
scattering of GCRs. Scattering by the magnetic irregularities
embedded in the expanding solar wind causes the deceleration

(called the adiabatic cooling) and also causes an outward
convection, which leads to lower GCR intensities closer to the
Sun. The resulting positive radial gradient of GCRs produces an
inward diffusion, flowing preferentially along the ordered IMF
lines. A steady-state distribution is realized when the inward
diffusion is balanced with the outward convection. The GCR
intensity measured at the Earth changes with various timescales.
The solar cycle variation of the solar wind parameters, such as
the solar wind velocity, the magnitude and orientation of the
IMF, the tilt angle of the HCS, and the mean free path of the pitch
angle scattering of GCRs in the turbulent magnetic field, alters
the spatial distribution of GCR density in the heliosphere. The
drift model of GCR transport predicts a bi-directional latitudinal
gradient pointing in opposite directions on opposite sides of the
HCS if the HCS is flat (Jokipii & Kopriva 1979). The predicted
spatial distribution of the GCR density has a minimum along
the HCS in the “positive” polarity period of the solar polar
magnetic field (also referred as the A > 0 epoch) when the IMF
directs away from (toward) the Sun in the northern (southern)
hemisphere, while the distribution has a local maximum on the
HCS in the “negative” period (A < 0 epoch) with opposite field
orientation in each hemisphere. The field orientation reverses
every 11 yr around the maximum period of solar activity. A
tilted current sheet introduces modifications around the wavy
HCS. For example, the intensity minimum (for A > 0) will not
be right at the HCS, but the general tendencies in the sense of the
latitudinal gradient remain the same as outlined above (Jokipii
& Kóta 1982).

The variation of the spatial distribution of GCR density causes
the variation in the directional anisotropy of the GCR inten-
sity measured at the Earth. One such variation is the 22 yr
variation of the solar diurnal anisotropy in which the phase (or
the local solar time of maximum intensity) of the anisotropy
shifts toward earlier hours around every A > 0 solar mini-
mum (Thambyahpillai & Elliot 1953; Forbush 1967; Ahluwalia
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1988; Bieber & Chen 1991, and references therein). By ana-
lyzing the anisotropy observed with neutron monitors (NMs) in
1968–1988, Chen & Bieber (1993, hereafter referred as Paper I)
revealed that the observed phase shift of the diurnal anisotropy
is due to the decrease in the diffusion streaming parallel to the
IMF in A > 0 solar minima. The parallel diffusion streaming
is proportional to the radial gradient (Gr ) of the GCR density
multiplied by the parallel mean free path (λ‖) of the pitch angle
scattering. The simple drift model predicts smaller Gr in the
A > 0 epoch than in the A < 0 epoch if the diffusion coeffi-
cients are same in both epochs (Kóta & Jokipii 1983). Finding
a significant 11 yr solar cycle variation but no clear 22 yr vari-
ation in the observed Gr , however, Paper I suggested that the
smaller parallel streaming in the A > 0 solar minimum period
was caused by the smaller λ‖, possibly due to the magnetic he-
licity effect in the turbulent magnetic field (Paper I; Bieber &
Pomerantz 1986; Bieber et al. 1987).

The GCR anisotropy (or the streaming) vector in three
dimensions consists of three components, two lying in the
ecliptic plane and the other pointing normal to the ecliptic plane.
The two ecliptic components parallel and perpendicular to the
IMF are derived from the amplitude and phase of the solar
diurnal anisotropy corrected for the contribution from the radial
solar wind convection. Paper I analyzed the diurnal anisotropy
in free space, corrected for the geomagnetic deflection of GCR
orbits, by assuming a power law type (∝pγ ) dependence of the
anisotropy amplitude on the GCR rigidity (p), with the spectral
index (γ ) and the upper limiting rigidity (Pu) fixed at 0 and
100 GV, respectively. The zero spectral index of the diurnal
anisotropy has been assumed in many analyses based on the
original convection–diffusion picture of the GCR transport in
which the stationary GCR distribution in the heliosphere results
from inward diffusion balancing with outward convection by the
solar wind, which is independent of the rigidity (Parker 1965;
Gleeson & Axford 1967; Gleeson 1969). The upper limiting
rigidity (Pu) set at 100 GV was also a reasonable assumption
for the analysis of NM data alone, because Pu representing
the break-down rigidity of the diffusion picture is expected to
be much higher than the median primary rigidity to which the
NMs used in Paper I respond. Munakata et al. (1997) assumed
γ = 0, but treated Pu as a free parameter in their analyses
of the diurnal anisotropy observed with multi-directional muon
detectors (MDs), which have median responses to GCRs with
higher rigidity than NMs. They found Pu changing between
100 and 300 GV in a clear correlation with the solar activity
(Munakata et al. 2002). Hall et al. (1997) treated both γ and
Pu as free parameters in their analyses of the NM and MD data
and reported the temporal variation of each parameter in solar
activity and solar magnetic cycles.

All of these works take into account the rigidity dependence
of the amplitude varying as a function of time, but they still
assume that the phase is independent of rigidity. In other words,
they assumed a common rigidity spectrum for two ecliptic
components parallel and perpendicular to the IMF. Bieber
& Chen (1991, hereafter referred as Paper II), on the other
hand, also reported that the magnitude of the observed phase
variation in the A > 0 solar minimum increases with GCR
rigidity (Agrawal 1983). This rigidity-dependent feature of the
observed phase variation cannot be reproduced properly as long
as a rigidity spectrum common to two ecliptic components is
assumed. This observed feature has been confirmed by other
papers (e.g., Oh et al. 2010), but its physical origin is still
unknown.

The third component of the anisotropy, that is, the north–south
(NS) anisotropy normal to the ecliptic plane, has been derived
also from NM and MD data in a couple of different ways. Bieber
& Pomerantz (1986) and Paper I derived this anisotropy from
the difference between count rates in a pair of NMs located
near the north and south geomagnetic poles and observing
intensities of GCRs arriving from the north and south pole
orientations, respectively. They found a ∼10 yr cycle variation
in this component anisotropy, which implies that the radial
gradient (Gr ) of the GCR density changes with the solar
activity, but they found no significant difference in Gr in the
A > 0 and A < 0 epochs, contradicting the simple drift model
prediction. Due to a 23.◦4 inclination of Earth’s rotation axis
from the ecliptic normal, the NS anisotropy normal to the
ecliptic plane can be also observed as a diurnal variation of
the count rate in the sidereal time with the maximum phase at
∼06:00 or ∼18:00 local sidereal time (Swinson 1969; Hall et al.
1996). Yasue (1980) analyzed this sidereal diurnal variation
observed by NMs and MDs during 5 yr between 1969 and
1973 and found that observations were reproduced best by the
average rigidity spectrum with γ = 0.3 and Pu = 200 GV.
This was the first experimental indication that the rigidity
spectrum of the anisotropy has a positive spectral index. Hall
et al. (1994) also applied the same method to NM and MD
data observed between 1957 and 1985 and found an average
spectrum with γ = 0.5 and Pu = 400 GV, again with a
positive γ . This suggested that both of the ecliptic components
may also have a spectrum with non-zero γ .

A possible drawback of deriving the NS anisotropy from the
sidereal diurnal variation is that the expected amplitude of the
sidereal diurnal variation (∼0.03%) is approximately an order of
magnitude smaller than the solar diurnal variation (∼0.3%). The
small signal in the sidereal time can be easily influenced by the
solar diurnal anisotropy change over a year. Another difficulty
is that one can obtain only the yearly mean anisotropy. This
is because of the fact that the influence from the solar diurnal
variation, even if it is stationary through a year, can be eliminated
in the sidereal time only when the diurnal variation is averaged
over an integral year(s). This makes it difficult to deduce reliable
errors of the yearly mean anisotropy. Mori & Nagashima (1979)
proposed another way to derive the NS anisotropy from the
“GG component” of a multi-directional MD at Nagoya in
Japan. The GG component is a difference combination between
intensities recorded in the north- and south-viewing directional
channels designed to measure the NS anisotropy free from
the atmospheric temperature effect (Nagashima et al. 1972).
Laurenza et al. (2003) showed that the GG component can
be used to derive reliable sector polarity of the IMF. Using
a global network of four multi-directional MDs that are capable
of observing the NS anisotropy on an hourly basis, Okazaki
et al. (2008) confirmed that the NS anisotropy deduced from the
GG component is consistent with the anisotropy observed with
the global network.

In this paper, we extend the analysis of Paper I to the
most recent period and derive the long-term variation of the
modulation parameters from the 3D anisotropy observed over
44 yr by the Nagoya multi-directional MD, which has a median
rigidity of 60 GV for primary GCRs. We also analyze the
anisotropy observed during the same period by NMs that
have a median response to 17 GV primary GCRs. We derive
the NS anisotropy from the GG component of the Nagoya
MD. We particularly examine the rigidity dependences of each
component of the anisotropy and each modulation parameter by
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Figure 1. Nagoya multi-directional muon detector. This figure is supplied from
a document available at the Web site (see the text). The Nagoya muon detector
(MD) consists of two horizontal 6 × 6 arrays of 1 m2 unit detectors, vertically
separated by 1.73 m, with an intermediate 5 cm layer of lead to absorb the
soft component radiation in the air. Each unit detector has a 1 m × 1 m plastic
scintillator viewed by a photomultiplier tube of 12.7 cm diameter. By counting
the pulses of the twofold coincidences between a pair of detectors on the
upper and lower layers, the Nagoya MD records the rate of muons from the
corresponding incident direction, as shown in this figure. The multi-directional
MD comprises various combinations between the upper and lower detectors.
The directional channels named “30◦W,” “49◦W,” and “64◦W” in this figure
correspond to “W,” “W2,” and “W3” in Table 1, respectively. The geomagnetic
cutoff rigidity (Pc) and median primary rigidity (Pm) in GV are listed in Table 1.

comparing them as derived from MD and NM data at 60 GV and
17 GV, respectively. We do not intend to determine each rigidity
spectrum quantitatively by, for instance, calculating both γ and
Pu as free parameters in the best-fit calculation as a function
of time. In such best-fit calculations, we often see a significant
anti-correlation between the best-fit γ and Pu (Hall et al. 1994,
1997). A large Pu with a small (or negative) γ often returns a
χ2 value similar to that of a small Pu with a large (or positive)
γ , increasing the systematic error of each best-fit value. We
instead examine the rigidity spectrum qualitatively based on the
ratio between parameters derived from NM and MD data with a
common assumption of the spectrum with fixed values of γ = 0
and Pu = 100 GV, respectively, as in Paper I. If the ratio is close
to 1, the spectrum is consistent with the assumption. If the ratio
is significantly larger (smaller) than 1, on the other hand, we
can conclude that the spectrum is harder (softer) than assumed.
In this way, we can make a qualitative but reliable examination
of the rigidity dependence of each parameter. We will present
quantitative analyses of the rigidity dependence elsewhere. We
will show in this paper that three components of the anisotropy
have different rigidity dependences. This naturally explains
the rigidity-dependent feature of the observed phase variation
mentioned above. We will also suggest that the different rigidity
dependences of the three anisotropy components are possibly
due to the relative contribution from the drift (diamagnetic drift),
which is different in each component.

The outline of this paper is as follows. In Section 2, we
describe the data analysis and results in detail. The conclusions
and discussions are given in Section 3. For references, we also
present our results in a numerical data table in Appendix A. In
Appendix B, we show how the obtained results depend on the
assumed value of Pu.

2. DATA ANALYSES AND RESULTS

We derive the cosmic ray anisotropy in three dimensions by
analyzing the pressure-corrected hourly count rates recorded
by an MD at Nagoya in Japan over 44 yr between 1970 and
2013. The Nagoya MD is multi-directional and capable of
simultaneously monitoring intensities in 17 directional channels
of viewing (see Figure 1). It has been in operation since 1970,
producing a continuous record of cosmic ray intensity over four

decades and allowing us to analyze the long-term variation of
the anisotropy.3 Based on our own experience with long-term
observations using plastic scintillators and PMTs similar to the
Nagoya MD, we estimate that the absolute muon count rate by
the Nagoya MD has decreased ∼10% or less in four decades due
to the deterioration of detectors. The effect of this deterioration,
however, should be negligibly small for the GCR anisotropy
analyzed in this paper, because our analysis does not use the
absolute count rate but the fractional deviation of the count
rate from the daily or monthly mean, as shown later in this
section. The median rigidity (Pm) of primary GCRs, calculated
utilizing the response function of the atmospheric muons to the
primary particles (Murakami et al. 1979), ranges from 59.4 to
113.7 GV, and the statistical error of the hourly count rate ranges
between 0.06% and 0.28% (Okazaki et al. 2008). In this paper,
we use 60 GV for the representative Pm of the Nagoya MD.
The response function has been first calculated for each element
in the GCRs and then averaged with a weight according to the
observed elemental abundance of GCRs (Murakami et al. 1979).

We also derive the anisotropy by analyzing the data recorded
during the same period by NMs, Swarthmore/Newark, Alert/
Thule, and McMurdo, each of which have a Pm of 17 GV (Yasue
et al. 1982). We use the data from Swarthmore/Newark to derive
the diurnal anisotropy, while we derive the NS anisotropy from a
pair of polar NMs at Thule in Greenland (or Alert in Canada) and
McMurdo in Antarctica.4 By comparing anisotropies derived
from MDs and NMs whose Pm differ by a factor of about
3.5 from each other, we discuss the rigidity dependence of the
anisotropy and its long-term variation. Table 1 summarizes the
cosmic ray data analyzed in this paper.

In this section, we describe our analyses of the Nagoya MD
data, while we derive the anisotropy in free space from NMs
in Table 1 following the analyses in Paper I and Paper II. For
our analyses of NM data, therefore, readers can refer to those
papers.

2.1. Elimination of Short-term Events and Derivation
of the Observed Diurnal Variation

We begin our analyses by calculating the fractional deviation
ΔIj (t) of the pressure-corrected hourly muon count rate Ij (t) in
the jth directional channel of the Nagoya MD (j = 1, 2, . . . , 17)
at the universal time t from the 24 hr central moving average
Ī 24h
j (t), as

ΔIj (t) = (
Ij (t) − Ī 24h

j (t)
)/

Ī 24h
j (t), (1)

where

Ī 24h
j (t) = 1

24

t+11∑
t−12

Ij (t). (2)

For the following analyses of the diurnal anisotropy, we use
ΔIj (t) in Equation (1) instead of Ij (t) itself to avoid the
influence of the gradual intensity variation, such as the day-
to-day variation, on the diurnal variation. We then check the
difference between the maximum and minimum values of
ΔINM(t) for the McMurdo NM data in each day and exclude any
days with a difference exceeding 2.0% from further analyses

3 A description and data of the Nagoya MD are available at
http://www.stelab.nagoya-u.ac.jp/ste-www1/div3/muon/muon1.html.
4 A description and data of the NMs are available at
http://neutronm.bartol.udel.edu/ and
http://center.stelab.nagoya-u.ac.jp/WDCCR/.
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Table 1
Neutron Monitors (NMs) and Muon Detectors (MD) Used in This Paper

DetectorType Station (Geographic Lat., Long.) Pc Pm

(GV) (GV)

Swarthmore/Newark (39.◦70, −75.◦70) 2.0 GV 17.0 GV
NMa Thule (76.◦60, −68.◦80) 0.0 GV 17.0 GV

Alert (82.◦50, −62.◦30) 0.0 GV 17.0 GV
McMurdo (−77.◦95, 166.◦60) 0.0 GV 17.0 GV

Nagoya (35.◦15, 139.◦97)

Directional channel

V 10.1 GV 59.4 GV
N 10.8 GV 64.6 GV
S 10.0 GV 62.6 GV
E 12.8 GV 66.7 GV
W 9.7 GV 61.8 GV
NE 12.9 GV 72.0 GV

MD NW 9.1 GV 66.6 GV
SE 11.5 GV 69.3 GV
SW 9.5 GV 65.6 GV
N2 8.6 GV 83.0 GV
S2 9.5 GV 80.5 GV
E2 13.2 GV 88.3 GV
W2 8.7 GV 79.3 GV
N3 8.7 GV 105.0 GV
S3 9.5 GV 103.7 GV
E3 17.1 GV 113.7 GV
W3 8.6 GV 103.0 GV

Notes. The geomagnetic cut-off rigidity (Pc) and median primary rigidity (Pm)
in GV are listed for each directional channel together with the geographic
latitude and longitude of the location of the detector in degrees. The Nagoya
MD has 17 directional channels, while each NM measures only omni-directional
intensity which is regarded as the vertical intensity on average.
a For deriving the diurnal anisotropy at 17 GV, we use Swarthmore NM data for
a period between 1970 and 1978, while we use Newark NM data for a period
between 1979 and 2013. For deriving the north–south anisotropy at 17 GV, we
use Thule and McMurdo NMs for two periods, one between 1970 and 1975
and the other between 1979 and 2013, while we use Alert and McMurdo for a
period between 1976 and 1978.

to avoid the influence of large cosmic ray events such as the
Forbush decreases. A total of 777 days are excluded out of
16,071 days in 44 yr between 1970 and 2013 in our analyses
of MD and NM data. We confirmed that these excluded days
include the majority of cosmic ray events reported so far (Cane
et al. 1996; Jordan et al. 2011). From ΔIj (t) in the remaining
days, we obtain the monthly mean diurnal distribution, dj (tk), of
ΔIj (t) as a function of the local solar time tk(k = 1, 2, . . . , 24)
at the observation site, Nagoya, in Japan.

We then deduce the diurnal variation of GCR intensity from
the Fourier analysis of dj (tk) described above, as

a
1,obs
1,j = 1

π

24∑
k=1

dj (tk) cos(ωtk) (3a)

b
1,obs
1,j = 1

π

24∑
k=1

dj (tk) sin(ωtk), (3b)

where a
1,obs
1,j and b

1,obs
1,j are the observed harmonic components of

the monthly average diurnal variation and ω is π/12. In the fol-
lowing subsections, we use a

1,obs
1,j and b

1,obs
1,j to derive the diurnal

anisotropy at 60 GV in free space corrected for the geomag-
netic effects by accounting for the energy response of each

directional channel. We use a
1,obs
1,j and b

1,obs
1,j observed by the

Newark/Swarthmore NM during the same period to derive the
free space diurnal anisotropy at 17 GeV (see Paper II).

2.2. Correction for the Compton–Getting Effect Arising from
the Earth’s Orbital Motion Around the Sun

The Earth’s orbital motion around the Sun causes an apparent
anisotropy due to the Compton–Getting (CG) effect (Compton
& Getting 1935; Cutler & Groom 1986; Amenomori et al.
2004). The amplitude and phase of this apparent anisotropy
in space are known to be independent of the particle’s rigidity
p. Space harmonic components of this anisotropy, ξCG

x and ξCG
y

in the Geocentric Solar Ecliptic Coordinate System (GSE), are
given as

ξCG
x = 0, (4a)

ξCG
y = −(2 + Γ)vE/c, (4b)

where Γ is the power law index of the energy spectrum of GCRs,
vE is the Earth’s velocity, and c is the speed of light. We set Γ
and vE to be 2.7 and 30 km s−1, respectively. Note that we
define the anisotropy vector throughout this paper as a vector
pointing toward the direction from which the highest GCR flux
is measured; i.e., the anisotropy vector is directed opposite to
the GCR streaming vector.

The harmonic components of the diurnal variation expected
from this effect for the jth directional channel of the MD are
then given as

a
1,CG
1,j = c

1,CG
1,j ξCG(GEO)

x + s
1,CG
1,j ξCG(GEO)

y (5a)

b
1,CG
1,j = −s

1,CG
1,j ξCG(GEO)

x + c
1,CG
1,j ξCG(GEO)

y , (5b)

where ξCG(GEO)
x and ξCG(GEO)

y are the space harmonic compo-
nents of the CG anisotropy transformed to the Geographic Co-
ordinate System (GEO) and c

1,CG
1,j and s

1,CG
1,j are the so-called

coupling coefficients relating the observed harmonic vector with
the space harmonic vector, and are calculated (Fujimoto et al.
1984) as

c
1,CG
1,j = 1

Īj

∫ ∞

pcj

∫
Ωj

∫
Sj

Y · GCG(p) · P 1
1 (cos θor)

· cos(φor − φst)dSdΩdp (6a)

s
1,CG
1,j = 1

Īj

∫ ∞

pcj

∫
Ωj

∫
Sj

Y · GCG(p) · P 1
1 (cos θor)

· sin(φor − φst)dSdΩdp. (6b)

In Equations (6a) and (6b), Īj is the average count rate in the
jth directional channel of the MD, Y is the response function of
the atmospheric muons to primary GCRs, and pcj is the cutoff
rigidity below which Y is insignificant (Murakami et al. 1979).
The response function Y gives the number of muons produced by
primary particles of rigidity p and arriving at the jth directional
channel with zenith angle θ and azimuth angle φ. P 1

1 (x) is the
semi-normalized spherical function P m

n (x) with n = m = 1
(Chapman & Bartels 1940). Sj and Ωj are, respectively, the total
area and solid angle of the jth directional channel and dS and
dΩ are those elements. φst is the geographic longitude of the
detector site and θor and φor are, respectively, the geographic co-
latitude and longitude defining the asymptotic direction outside
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the geomagnetic field of primary particles with p, which produce
muons with the incident direction (θ , φ), as determined using
a particle trajectory code (Lin et al. 1995). The integrals in
Equations (6a) and (6b) are higher than all rigidity values
for which primary particles produce detectable muons and all
incident directions (θ , φ) for which muons can enter the jth
directional channel. In Equations (6a) and (6b), GCG is the
rigidity spectrum of the CG anisotropy and is independent of
p, as

GCG(p) = 1. (7)

Using Equations (5a) and (5b) as an example, we briefly
describe a physical implication of the coupling coefficients. The
phase of the CG anisotropy in space given in Equations (4a)
and (4b) is 270◦ in the GSE longitude, or 06:00 hr in local
solar time. With the coupling coefficients c

1,CG
1,j and s

1,CG
1,j

in Equations (6a) and (6b), which are both positive for the
vertical channel of the Nagoya MD, we get a

1,CG
1,j and b

1,CG
1,j

in Equations (5a) and (5b), both positive for this channel,
representing the phase of the observed anisotropy shifted to
earlier hours from 06:00 hr in space due to the deflection of
orbits of positively charged GCRs in the geomagnetic field. In
case of a1

1,j and b1
1,j , due to the unknown anisotropy, we can

use the coupling coefficients to correct the observed anisotropy
for the geomagnetic deflection by solving equations like (5a)
and (5b) for the unknown anisotropy (ξx, ξy) in space.

As described below, we correct the observed diurnal vari-
ation for the CG effect by subtracting the expected harmonic
components a

1,CG
1,j and b

1,CG
1,j in Equations (5a) and (5b) from

the observed components a
1,obs
1,j and b

1,obs
1,j in Equations (3a)

and (3b), respectively.

2.3. Derivation of the 3D Anisotropy in Free Space

The 3D anisotropy of the GCR intensity consists of three
components, two lying in the ecliptic plane and the third
pointing normal to the ecliptic plane. The ecliptic components
are observed as the diurnal variation in solar time of the GCR
intensity recorded with a ground-based detector, while the
normal component is observed as the NS anisotropy. In the
following subsections, we deduce the diurnal anisotropy and
the NS anisotropy at 60 GV from Nagoya MD data, while we
derive the anisotropy at 17 GV from NM data in Table 1.

2.3.1. Modeling Harmonic Components of the Diurnal Variation

The harmonic components a
1,obs
1,j and b

1,obs
1,j of the diurnal

anisotropy observed using the Nagoya MD are expressed in
terms of the unknown harmonic components ξGEO

x and ξGEO
y ,

representing the diurnal anisotropy in free space in GEO as

a1
1,j = a

1,CG
1,j + c1

1,j ξ
GEO
x + s1

1,j ξ
GEO
y + acom (8a)

b1
1,j = b

1,CG
1,j − s1

1,j ξ
GEO
x + c1

1,j ξ
GEO
y + bcom, (8b)

where c1
1,j and s1

1,j are the coupling coefficients given by
Equations (6a) and (6b) with GCG(p) replaced with G(p) for
the unknown rigidity spectrum of the diurnal anisotropy. In
Equations (8a) and (8b), acom and bcom are harmonic components
of the diurnal variation arising from the atmospheric temperature
effect on muon intensity, which is assumed in this paper

to be common for all directional channels as the first-order
approximation. For G(p), we assume in this paper

G(p) = 1 for p � Pu

= 0 for p > Pu, (9)

where Pu is the upper limiting rigidity of the anisotropy and is
set to be constant at 100 GV. This spectrum is used in Paper II
for the analysis of NM data, and we use the same spectrum for
MD data as well. Results derived with different Pu are shown
and discussed in Appendix B.

2.3.2. Deriving the Diurnal Anisotropy in Free Space

We deduce the best-fit parameters ξGEO
x , ξGEO

y , acom, and
bcom in Equations (8a) and (8b) that minimize the residual S,
defined as

S =
17∑

j=1

{(
a

1,obs
1,j − a1

1,j

)2/
σ 2

a,j +
(
b

1,obs
1,j − b1

1,j

)2/
σ 2

b,j

}
, (10)

where σa,j and σb,j are errors of a
1,obs
1,j and b

1,obs
1,j , respectively,

and are deduced from the dispersion of ΔIj (t) used for calculat-
ing the monthly mean dj (tk) at the local time tk in Equations (3a)
and (3b). We perform this calculation for every month and calcu-
late yearly mean values and errors of ξGEO

x , ξGEO
y , acom, and bcom

from means and dispersions of 12 monthly values, respectively.
Figure 2 displays sample comparisons between the best-fit and
the observed yearly mean harmonic vectors for the Nagoya MD
in 2002 and 1976 when the solar activity was close to the max-
imum and minimum, respectively. It is clear that the amplitude
of the derived space harmonic vector indicated in each panel is
significantly larger in 2002 than that in 1976, causing an “ex-
pansion” of the pattern drawn by lines connecting the heads of
harmonic vectors observed by 17 directional channels during
the solar maximum period. It is also clear that the phase of the
derived space harmonic vector is about 4 hr earlier in 1976 than
in 2002, due to the 22 yr variation of the diurnal anisotropy.

2.3.3. Identification of IMF Sector and Solar Dipole
Magnetic Field Polarities

In order to calculate the diurnal anisotropy in each IMF sector,
we identify the sector polarity (toward or away) of each day,
referring to the polarity of the Stanford Mean Magnetic Field of
the Sun (see the WSO Web site at http://wso.stanford.edu/) with
the date shifted 5 days later for a rough correction of the solar
wind transit time between the Sun and the Earth. For the period
prior to 1975 when the data are not available on the WSO Web
site, we identify the polarity using the IMF data in the National
Space Science Data Center’s “omnitape” (King & Papitashvili
2005) following the analysis in Paper II. Because of serious
gaps in the “omnitape” data, particularly in 1980s and 1990s,
we do not use the “omnitape” IMF data for an entire period
in this analysis. By analyzing a period when both the Stanford
Mean Magnetic Field and the “omnitape” data are available, we
confirmed that the daily sector polarities identified by these two
methods are quite consistent with each other, giving essentially
the same results from our cosmic ray data analyses.

We then calculate the average diurnal distribution, dT
j (tk)

(dA
j (tk)), for toward (away) days in each month. Using dT

j (tk)
(dA

j (tk)) for dj (tk) in Equations (3a) and (3b) and for the best-
fit calculation described above, we obtain ξGEO(T )

x , ξGEO(T )
y ,

5
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Figure 2. Yearly mean harmonic dials of the diurnal anisotropy observed by the Nagoya multi-directional muon detector in 1976 (left) around the A > 0 solar activity
minimum and in 2002 (right) in the A < 0 epoch. Solid circles display the harmonic vector (a1,obs

1,j , b
1,obs
1,j ) observed by the jth directional channel with a

1,obs
1,j and

b
1,obs
1,j plotted on the vertical (GEO-x) and horizontal (GEO-y) axes, respectively, while open circles display the best-fit vectors. The phases of the diurnal anisotropy

with x > 0 and y = 0; x = 0 and y > 0; x < 0 and y = 0; and x = 0 and y < 0 are 00:00, 06:00, 12:00, and 18:00 hr in the local solar time, respectively. To
demonstrate the relative configuration of the observed (best-fit) harmonic vectors in 17 directional channels, the head of each vector is connected with each other
by solid (dotted) thin lines (see directional channels indicated in the right panel). An open square with an error cross in each panel displays the common vector
representing the atmospheric temperature effect. The amplitude and phase of the best-fit harmonic vector in free space are indicated in each panel. For reference, the
cross in the bottom right corner in each panel represents errors of a

1,obs
1,j and b

1,obs
1,j in the vertical (V) channel, deduced from the dispersion of monthly values.
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Figure 3. Diurnal anisotropy in free space. The yearly mean amplitude in % and the phase (denoted by the local solar time of the maximum intensity in hours) of
the diurnal anisotropy are displayed in the upper and lower panels, respectively, each as a function of year on the horizontal axis. The solid and open circles display
the anisotropy obtained from the MD data at 60 GV and from the NM data at 17 GV, respectively (see Table 2 in Appendix A for numerical data from the MD). The
diurnal anisotropy in this figure is corrected for the Compton–Getting effect arising from the Earth’s orbital motion around the Sun (see the text). The yearly mean
and error are deduced from the means and dispersions of the monthly values, respectively. The solar maximum and minimum periods are indicated by black and gray
arrows above the upper panel, respectively.

aT
com, and bT

com (ξGEO(A)
x , ξGEO(A)

y , aA
com, and bA

com) in the toward
(away) sector in each month. Monthly mean parameters are then
calculated by taking the mean of toward and away values.

For the following discussions of yearly mean parameters, we
also assign the polarity of the large-scale solar magnetic field for
each year, referring to the “Solar Polar Field Strength” available
at the WSO Web site where the average polar field strength is
given in every Carrington rotation. We assign the polarity of
a year as A > 0 (A < 0) when the average polar field in the
year is positive and pointing away from the Sun in the northern

(southern) hemisphere. We regard a year as a period of the
polarity reversal in progress when the year contains Carrington
rotations with the polar field pointing away or toward in both
hemispheres. For a period prior to 1975 when the WSO data are
unavailable, we follow the assignment in Paper I. The polarity of
each year assigned by us is indicated in Table 2 in Appendix A.

Figure 3 displays temporal variations of the amplitude (upper
panel) and phase (lower panel) of the yearly mean harmonic
vector in free space. Clearly seen in this figure is a phase in the
lower panel showing a prominent 22 yr variation, with minima

6
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occurring in 1976 and 1997 around A > 0 solar minima. This
phase variation is ∼2 hr in the NM data (open circles), and
it is almost double (∼4 hr) in the MD data (solid circles).
The amplitude of the diurnal anisotropy in the upper panel is
smaller (larger) around the solar minimum (maximum) period
in both the NM and MD data. Table 2 in Appendix A lists
numerical data of best-fit parameters obtained for each year.
As shown in Figure 9 in Appendix A, the mean amplitude of
the common vector (acom, bcom) in Equations (8a) and (8b),
which is introduced to represent the atmospheric temperature
effect, is small (0.039% ± 0.002%), while the phase is almost
stable around ∼06:00 local time, in agreement with the average
temperature effect reported from muon observations (e.g., Mori
et al. 1998). It is also seen in Figure 9 that the common vector
shows no notable long-term variations in correlation with the
solar activity or magnetic cycle.

2.3.4. Derivation of the North–South Anisotropy

We derive the NS anisotropy perpendicular to the ecliptic
plane at 60 GV from the Nagoya GG component (see Paper II
for the derivation of the NS anisotropy from NM data). The
GG component is a difference combination between intensities
recorded in the north- and south-viewing channels designed
to represent the NS anisotropy free from the atmospheric
temperature effect (Nagashima et al. 1972; Mori & Nagashima
1979). The GG component is defined as

GG(t) = {rN2(t) − rS2(t)} + {rN2(t) − rE2(t)}, (11)

where rXX(t) is the percent deviation of the pressure-corrected
muon rate IXX(t) in the directional channel XX(= N2, S2,
E2) from the monthly mean. We calculate GGT and GGA

by averaging GG(t) over toward and away days, respectively,
according to the IMF sector polarity in every month and
calculate the difference, ΔGG, as

ΔGG = (GGT − GGA)/2. (12)

The NS anisotropy ξGEO(T )
z in space in the toward sector is

calculated in every month from ΔGG as

ξGEO(T )
z = ΔGG

/(
2c0

1,N2 − c0
1,S2 − c0

1,E2

)
, (13)

where c0
1,XX is the coupling coefficient for the directional

channel XX, given as

c0
1,XX = 1

ĪXX

∫ ∞

pcXX

∫
ΩXX

∫
SXX

Y · G(p) · P 0
1 (cos θor)dSdΩdp

(14)
with the rigidity spectrum G(p) in Equation (9). We deduce
ξGEO
z from the difference between GG components in toward and

away days (ΔGG) in Equation (12) because of the assumption
that the anisotropy vector, when averaged over one month, is
symmetric with respect to the HCS and the NS anisotropy lies
in an opposite direction with the same magnitude above and
below the HCS, as

ξGEO(A)
z = −ξGEO(T )

z . (15)

2.4. Derivation of Modulation Parameters

2.4.1. Anisotropy Components in the Solar Wind Frame

Three components (ξGEO(T/A)
x , ξ

GEO(T/A)
y , ξ

GEO(T/A)
z ) of the

space anisotropy vector obtained above are first converted

to components (ξ (T/A)
x , ξ

(T/A)
y , ξ

(T/A)
z ) in the GSE and then

transformed to the solar wind frame to derive the modulation
parameters. We obtain the anisotropy components (ξSW

x , ξSW
y ,

ξSW
z ) in the solar wind frame by subtracting the contribution

from the solar wind convection as

ξSW(T/A)
x = ξ (T/A)

x − (2 + Γ)V (T/A)
SW /c (16a)

ξSW(T/A)
y = ξ (T/A)

y (16b)

ξSW(T/A)
z = ξ (T/A)

z , (16c)

where V
(T/A)

SW is the radial component of the solar wind velocity
in the omnitape data (King & Papitashvili 2005). We then calcu-
late parallel and perpendicular components of the anisotropy as

ξ
(T/A)
‖ = ξSW(T/A)

x b(T/A)
x + ξSW(T/A)

y b(T/A)
y (17a)

ξ
(T/A)
⊥ = −ξSW(T/A)

x b(T/A)
y + ξSW(T/A)

y b(T/A)
x , (17b)

where b
(T/A)
x and b

(T/A)
y are GSE components of a unit vector

pointing away from the Sun along the IMF and calculated from
the mean IMF in the omnitape data. Note that positive ξ

(T/A)
‖

and ξ
(T/A)
⊥ correspond to the GCR streaming inward to the inner

heliosphere parallel and perpendicular to the IMF, respectively.
We finally obtain monthly average components of the anisotropy
in the solar wind frame as

ξ‖ = (
ξ

(T )
‖ + ξ

(A)
‖

)/
2 (18a)

ξ⊥ = (
ξ

(T )
⊥ + ξ

(A)
⊥

)/
2 (18b)

ξz = (
ξ (T )
z − ξ (A)

z

)/
2. (18c)

This definition of ξz is again from the assumption of symmetry
above and below the HCS. Note that a positive ξz corresponds
to the southward GCR streaming perpendicular to the ecliptic
plane in the toward IMF sector. We perform calculations of ξ‖,
ξ⊥, ξz described above in each month and deduce the yearly
mean value and its error for each anisotropy component from
the mean and dispersion of 12 monthly values, respectively.
Figure 4 shows ξ‖, ξ⊥, ξz each as a function of year. It is seen
that three components of the anisotropy derived from MD data
(solid circles) are all positive throughout the entire period in
this figure. A clear 22 yr variation seen in ξ‖ in Figure 4(a)
indicates that this component anisotropy is responsible for the
phase variation in Figure 3, as discovered in Papers I and II. No
such clear signature of 22 yr variation is seen in either ξ⊥ or ξz,
displayed in Figures 4(b) and (c).

There is a close correlation between the variation of the ξ‖
values obtained for NMs at 17 GV and for the MD at 60 GV
(open and solid circles in Figure 4(a), respectively), indicating
a weak rigidity dependence of this anisotropy component. A
scatter plot of ξ‖ for NMs and for the MD on the x and y
axes, respectively, yields a correlation coefficient r = 0.92 and
a slope (ratio) of y/x = β = 0.89 ± 0.05, which suggests that
ξ‖ remains nearly constant despite the factor of 3.5 difference
between the rigidity ranges monitored by the NM and MD. On
the other hand, we find β = 0.77 ± 0.07 for A > 0, which is
significantly smaller than the value of β = 0.94 ± 0.05 found
for the A < 0 epochs, showing that the rigidity spectrum of
ξ‖ is softer in the A > 0 epochs. We also see a remarkable
correlation between ξ⊥ for NMs and for the MD with r = 0.75,

7
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(a)

(b)

(c)

Figure 4. Three components of the anisotropy in the solar wind frame. Each panel from top to bottom displays the yearly mean ξ‖, ξ⊥, and ξz in percentages as a
function of year. Solid circles display the anisotropy components derived from the MD data at 60 GV, while open circles show the anisotropy derived from the NM
data at 17 GV (see Table 2 in Appendix A for numerical data from the MD). The yearly mean and error are deduced from the means and dispersions of the monthly
values, respectively. The solar maximum and minimum periods are indicated by black and gray arrows on the horizontal axis of the top panel, respectively.

while the β values turn out to be 1.65 ± 0.35 (1.26 ± 0.14) in
A > 0 (A < 0) epochs, which indicates that ξ⊥ increases with
increasing Pm. The most significant difference between NM and
MD data is seen in the magnitude of ξz shown in Figure 4(c). For
this component, we obtain β = 4.45 ± 0.61 (6.08 ± 0.96) for
the A > 0 (A < 0) epochs, which implies that ξz increases with
increasing rigidity. The correlation between NM and MD data
is, however, quite poor (r = 0.20) for this component. These
features appearing in Figure 4 are qualitatively consistent with
ξ⊥ and ξz increasing with rigidity. The ratios β for the three
anisotropy components are listed in the column “Pu = 100 GV”
in Table 3 in Appendix B.

We cannot derive any quantitative conclusions about the
rigidity spectrum of the anisotropy from the present analysis,
which assumes a priori a flat spectrum with the upper limiting
rigidity Pu fixed at 100 GV as denoted in Equation (9). Each
value of the ratios (βs) described above, for instance, changes
for a different value of Pu. The rigidity dependences of ξ‖, ξ⊥,
and ξz relative to each other, however, remain unchanged even
for different values of Pu (see Appendix B). We will discuss
the physical origin of these rigidity dependences in the next
subsection.

2.4.2. Modulation Parameters

Three components (ξ‖, ξ⊥, ξz) of the anisotropy vector in the
solar wind frame obtained above are related to the modulation
parameters, i.e., the spatial gradients of GCR density and mean
free paths of the pitch angle scattering of GCRs in the turbulent
magnetic field, as

ξ‖ = λ‖Gr cos ψ (19a)

ξ⊥ = λ⊥Gr sin ψ − RLGz (19b)

ξz = RLGr sin ψ + λ⊥Gz, (19c)

where λ‖ and λ⊥ are mean free paths of the pitch angle scattering
parallel and perpendicular to the IMF, respectively, RL is the
Larmor radius of GCRs in the IMF, and ψ is the IMF spiral
angle between the radial direction and a unit vector b in
Equations (17a) and (17b) pointing away from the Sun along
the IMF. Gr and Gz are the radial and latitudinal components of
the fractional density gradient vector, defined as

G = ∇U/U, (20)

where U is the GCR density (or omnidirectional intensity) given
as a function of the position in the heliosphere, time, and GCR
rigidity. We assume that the longitudinal gradient is zero in
our analyses based on the anisotropy averaged over one month,
which is longer than the solar rotation period. Note that Gz

represents the latitudinal density gradient in the toward sector,
as it is positive when U increases with increasing latitude, and
changes its sign in the away sector due to the assumed symmetry
above and below the HCS. The bi-directional latitudinal density
gradient G|z|, which is defined to be positive (negative) when U
increases away from (toward) the HCS, is given by Gz as

G|z| = −sgn(A)Gz, (21)

where A represents the polarity of the solar dipole magnetic
moment and

sgn(A) = +1, for A > 0 epoch,

= −1, for A < 0 epoch.

Equations (19a)–(19c) include four unknown modulation pa-
rameters, λ‖, λ⊥, Gr, and Gz, while we have only three com-
ponents (ξ‖, ξ⊥, ξz) of the observed anisotropy. We therefore
assume in this paper

λ⊥/λ‖ = α = 0.01 (22)

8
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(a)

(b)

(c)

Figure 5. Modulation parameters derived from the 3D anisotropy. Each panel from top to bottom displays the yearly mean G|z|, Gr , and λ‖, each as a function of
year. Solid circles display parameters derived from the MD data at 60 GV, while open circles show parameters derived from the NM data at 17 GV (see Table 2 in
Appendix A for numerical data from the MD). Note that the bi-directional latitudinal density gradient (G|z|) in the top panel is defined to be positive (negative) when
the spatial distribution of the GCR density has a local minimum (maximum) on the HCS. G|z| and Gr in the top and middle panels are plotted on the vertical axis in
linear scales, while λ‖ in the bottom panel is plotted in a logarithmic scale. The yearly mean and error are deduced from the means and dispersions of the monthly
values, respectively. Because of the definition in Equation (21), G|z| is not available in a year when the polarity reversal is in progress. The solar maximum and
minimum periods are indicated by black and gray arrows on the horizontal axis of the bottom panel, respectively.

and derive three remaining parameters, λ‖, Gr, and Gz. Papers I
and II also adopted the same constant value of α based
on empirical determinations of λ‖ ≈ 0.5 AU by Bieber &
Pomerantz (1983) and λ⊥ ≈ 0.007 AU by Palmer (1982) for
∼10 GV GCRs. From Equation (19a), we get

Gr = ξ‖
/(

λ‖ cos ψ
)
. (23)

Introducing this into Equation (19b), we get

Gz = (
αξ‖ tan ψ − ξ⊥

)/
RL. (24)

From Equation (19a), on the other hand, we also get

λ‖ = ξ‖/ (Gr cos ψ) . (25)

Introducing Equations (24) and (25) into Equation (19c), we get
a quadratic equation for Gr:

RL sin ψG2
r − ξzGr − αξ‖(ξ⊥ − αξ‖ tan ψ)/(RL cos ψ) = 0,

(26)
which has a solution for positive Gr of

Gr = {ξz +
√

ξ 2
z + 4αξ‖ tan ψ(ξ⊥ − αξ‖ tan ψ)}/(2RL sin ψ).

(27)

We first calculate G|z| and Gr from Equations (24) and (27),
respectively, for every month. We then deduce the yearly mean
and its error for each parameter from the means and dispersions
of 12 monthly values, respectively. We do not use Equation (25)
to calculate the monthly value of λ‖ because Gr, particularly as
derived from NM data, becomes close to zero in some months,

resulting in an extremely large λ‖ and large error of the yearly
mean λ‖. We instead derive the yearly mean λ‖ from the yearly
mean Gr and cos ψ in Equation (25) and deduce the error by
propagating from the errors of the yearly mean Gr and cos ψ .
For RL in the MD and NM data, we use gyro-radii of 60 GV and
17 GV GCRs, respectively, in the monthly mean IMF with the
magnitude calculated from the omnitape data.

Figure 5 shows the temporal variations of the calculated
modulation parameters, G|z|, Gr, and λ‖. We can clearly see
in Figure 5(a) that the bi-directional latitudinal density gradient
(G|z|) is positive (indicating the local density minimum on the
HCS) in the A > 0 epoch, while it is negative (indicating the
local density maximum on the HCS) in the A < 0 epoch,
in agreement with the drift model prediction (Kóta & Jokipii
1983). There is no clear signature of an 11 yr variation in G|z|.
The 22 yr variation of G|z| appears cleaner and statistically more
significant with relatively smaller errors in the MD data than in
the NM data. The mean G|z| derived from the MD (NM) data
is 0.42 ± 0.05 (0.86 ± 0.14)% AU−1 in A > 0, while it is
−0.52 ± 0.04 (−1.47 ± 0.15)% AU−1 in A < 0, indicating that
the magnitude of G|z| is larger in A < 0 than in A > 0 in both
the MD and NM data.

The radial density gradient (Gr) in Figure 5(b), on the other
hand, varies with a ∼11 yr solar activity cycle with maxima
(minima) in solar maximum (minimum) periods (Papers I and II;
Bieber & Pomerantz 1986), but there is no significant difference
seen between mean Gr in A > 0 and A < 0 epochs. The mean
Gr deduced from the MD (NM) data is 0.89 ± 0.11 (1.04 ±
0.08)% AU−1 in the A > 0 epoch, while it is 0.99 ± 0.12
(1.13 ± 0.10)% AU−1 in the A < 0 epoch. It is noted that we
find a poor correlation between temporal variations of G|z| and
Gr in both the NM and muon data.
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Figure 6. Correlation plots between modulation parameters derived from the NM data at 17 GV and the MD data at 60 GV. The left, middle, and right panels show
correlations of G|z|, Gr , and λ‖, respectively. Each panel displays the parameter in Figure 5 derived from the MD data at 60 GV on the vertical axis as a function of
the parameter derived from the NM data at 17 GV in the same year on the horizontal axis. Solid and open circles in each panel display parameters in the A > 0 and
A < 0 epochs, respectively. Data points in years when the polarity reversal is in progress are omitted in this figure.

The parallel mean free path (λ‖) in Figure 5(c) also changes
with the solar activity cycle with minima (maxima) in solar
maximum (minimum) periods. The mean λ‖ deduced from the
MD (NM) data is 0.90 ± 0.10 (0.89 ± 0.06) AU in A > 0, while
it is 1.32 ± 0.13 (1.14 ± 0.10) AU in A < 0. This indicates that
the mean λ‖ is systematically larger in A < 0 than in A > 0
at the 2 or 3 sigma level. It is also interesting that λ‖ in the
NM and MD data appear to be persistently increasing toward
maxima in 2008 and 2009 during the last three solar activity
cycles, while Gr appear to be decreasing. The parallel mean
free path (λ‖) deduced from the NM data (open circles) shows
peaks in 1985 and 2008 in A < 0 solar minimum epochs, while it
shows smaller peaks in 1974 and 1997 in A > 0 solar minimum
epochs. This is qualitatively consistent with results reported in
Paper I. In λ‖ deduced from the MD data (solid circles), on the
other hand, the 11 yr variation is more prominent with maxima
in every solar minimum in 1976, 1987, 1997, and 2009, but no
clear 22 yr variation is visible in this figure. We will discuss
long-term variations of Gr and λ‖ in more detail in the next
section.

We now discuss the rigidity dependence of each modulation
parameter. Figure 6 shows the correlation between the parame-
ters derived from the NM data at 17 GV and from the MD data
at 60 GV. In the A > 0 (A < 0) epoch, G|z| from the NM and
MD data in the left panel shows a good correlation with r of
0.63 (0.86), while the mean ratio (β = y/x) of G|z| from the
MD data to that from the NM data is 0.48 ± 0.10 (0.35 ± 0.05)
in the A > 0 (A < 0) epoch, indicating that G|z| decreases with
increasing Pm. Similar but weaker correlations are also seen in
Gr and λ‖ in the middle and right panels, with an average r of
0.53 (0.58) and 0.21 (0.54), respectively, while the mean β of Gr
and λ‖ are 0.85 ± 0.12 (0.87 ± 0.13) and 1.00 ± 0.13 (1.16 ±
0.15), respectively, indicating that these parameters are almost
independent of Pm. Note that β of G|z| is significantly smaller
than β of Gr indicating the softer rigidity dependence of G|z|
than that of Gr when Pu is fixed at 100 GV. The ratios β derived
from different Pu are listed in Table 3 in Appendix B.

We finally discuss the physical origin of the rigidity depen-
dence of each anisotropy component presented in the preceding
subsection. As expressed in Equations (19a)–(19c), ξ⊥ and ξz

include contributions from the drift (i.e., the diamagnetic drift)
added to the perpendicular diffusion, while ξ‖ results solely from

the parallel diffusion. Using Gr, G|z|, and λ‖ with an assumption
of λ⊥ = αλ‖ = 0.01λ‖, we calculate individual contributions
from the diffusion and drift to each of ξ⊥ and ξz. We find that the
mean diffusion contribution (λ⊥Gr sin ψ) to ξ⊥ is significantly
smaller than the mean drift contribution (−RLGz) in both the
NM and MD data, hence ξ⊥ is mainly arising from the drift
effect. The mean ratio of |λ⊥Gr sin ψ | to | − RLGz| contribut-
ing to ξ⊥ is 0.08 ± 0.02 in the NM data, while the ratio is
0.07 ± 0.02 in the MD data, indicating that the mean contribu-
tion from the diffusion to ξ⊥ is less than 10% in both the NM and
MD data, independent of Pm. The mean ratio of the diffusion
(|λ⊥Gz|) to the drift (|RLGr sin ψ |) contributing to ξz is also
small in the MD data, 0.03 ± 0.01. The ratio in the NM data,
on the other hand, is 0.19 ± 0.03 and significantly larger than
the ratio in the MD data, indicating that the relative contribution
of the diffusion to ξz increases with decreasing Pm. This is due
to the rigidity dependence of G|z|, which is softer than that of
Gr, as discussed above. Since there is only a poor correlation
between temporal variations of G|z| and Gr in Figure 5, this may
explain the poor correlation between ξz in the NM and MD data,
which is shown in the bottom panel of Figure 4 and discussed
in the preceding subsection.

3. SUMMARY AND DISCUSSIONS

We examined the energy dependence of long-term variations
in the 3D anisotropy of GCR intensity by analyzing the data
recorded in 1970–2013 by NMs (Swarthmore/Newark, Alert/
Thule, and McMurdo) that have median responses to ∼17 GV
primary GCRs and the Nagoya MD that has the median response
to ∼60 GV GCRs. The derived free-space harmonic vector of
the diurnal anisotropy changes its phase to earlier hours in A > 0
solar minima from the ∼18:00 local time known as the phase
of the “corotation” anisotropy, while the amplitude changes in
an 11 yr cycle, decreasing to a small value in the years around
every solar minimum. We note that the magnitude of the phase
change is significantly larger in the MD data than in the NM data,
indicating a marked rigidity dependence of the phase change.
A clear 22 yr variation is seen in the parallel component (ξ‖) of
the anisotropy, confirming the conclusion of Paper II that ξ‖ is
primarily responsible for the phase change. The NS anisotropy
(ξz) derived from the GG component of the Nagoya MD also
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Figure 7. Temporal variation of λ‖Gr and the correlation between Gr and λ‖. The upper two panels display yearly mean λ‖Gr calculated from ξ‖/ cos ψ , each as a
function of year. The top panel shows λ‖Gr deduced from the MD data, while the middle panel shows λ‖Gr deduced from the NM data. Yearly mean values in the
A > 0 (A < 0) epoch are displayed as solid (open) circles, each with an error deduced from the dispersion of monthly values in each year. Data points in years when
the polarity reversal is in progress are omitted in this figure. The solar maximum and minimum periods are indicated by black and gray arrows on the horizontal axis
of the middle panel, respectively. The bottom two panels are scatter plots between Gr and λ‖ in logarithmic scales derived from the MD data (left) and the NM data
(right). In each panel, the yearly mean Gr on the vertical (y) axis is plotted as a function of λ‖ on the horizontal (x) axis. Solid and dashed straight lines display the
functions y = c/x with a constant parameter c best-fit to data in the A > 0 and A < 0 epochs, respectively.

shows an 11 yr cycle with minima in the years around every
solar minimum.

The ecliptic anisotropy components (ξ‖ and ξ⊥) derived from
the NM and MD data vary in close correlation with each other,
while no such correlation is seen in the variation of ξz. The
mean ratio between ξ‖ in the MD and that in the NM data is
roughly consistent with a rigidity-independent spectrum, while
the rigidity spectrum of ξ‖ is systematically softer in A > 0
than in A < 0. On the other hand, ξ⊥ and ξz derived from the
MD data are significantly larger than those from the NM data,
indicating that these components increase with Pm. According
to Equations (19a)–(19c), ξ⊥ and ξz include contributions from
the gyration of particles (connected to diamagnetic drift) added
to perpendicular diffusion, while ξ‖ is caused by the parallel
diffusion alone. It is reasonable, therefore, to expect that the
observed harder rigidity spectra of ξ⊥ and ξz are due to
effects from drift. Based on numerical simulations of particle
propagation in the turbulent magnetic field, Minnie et al. (2007)
has shown that drifts are suppressed by magnetic turbulence,
but the suppression sets in at lower turbulence amplitudes for
low-energy cosmic rays than for high-energy cosmic rays. This
may give a possible explanation for why the contribution of
drift streaming results in a harder rigidity spectrum. If this is
the case, we may well need two different spectra, representing
diffusion and drift, combined in ξ⊥ and ξz, to reproduce the

correct rigidity dependence of the diurnal anisotropy in space.
We will present such analyses elsewhere.

Equations (19a)–(19c) also imply that the drift contribution
to ξ⊥ is proportional to G|z|, while the drift contribution to ξz

is proportional to Gr. By comparing Gr and G|z| derived from
the NM and MD data, we find that the rigidity dependences of
Gr and ξz are harder than those of G|z| and ξ⊥. Yasue (1980)
and Hall et al. (1994) analyzed the NS anisotropy observed with
NMs and MDs monitoring a wide range of Pm and found ξz

increasing with the rigidity up to several hundred GV. This is in
qualitative agreement with this paper.

We finally discuss the long-term variations of the modulation
parameters. Figure 7 shows the temporal variation of λ‖Gr =
ξ‖/ cos ψ (see Equation (19a)). We can clearly see that the
mean magnitude of λ‖Gr is significantly smaller in A > 0
(solid circles) than in A < 0 periods (open circles). The mean
magnitudes of λ‖Gr derived from the MD data and that from
the NM data in the A < 0 epoch are 1.07% ± 0.03% and 1.14%
± 0.02%, respectively, which are fairly consistent with each
other. The mean magnitudes in A > 0 periods are 0.68% ±
0.04% and 0.89% ± 0.05%, respectively. Combined with the
solar wind convection, this reduction of λ‖Gr results in the
observed phase shift of the diurnal anisotropy to earlier hours
in A > 0, as suggested by Paper I. We also note that the ratio
of λ‖Gr for the MD to that for NM data is smaller in A > 0
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Figure 8. Long-term trends of mean Gr and λ‖ in each solar magnetic polarity epoch. The left (right) two panels display means derived from the MD (NM) data.
Means in the A > 0 and A < 0 epochs are plotted as solid and open circles, respectively, at the central year of each epoch. The vertical error is deduced from the
dispersion of yearly means in each epoch, while the horizontal bar indicates the period included in each epoch. The solid straight line in each panel displays the linear
long-term trend best fit to four data points.

than in A < 0 periods, indicating a softer rigidity spectrum of
this component for A > 0 than for A < 0 (see the discussion
of Figure 4 in the preceding section). This decrease in λ‖Gr in
the A > 0 epoch, which is larger in the MD data than in the
NM data, is responsible for the larger phase shift of the diurnal
anisotropy in the A > 0 solar minimum epoch in the MD data.
The rigidity spectrum of ξ⊥, which is harder than that of ξ‖
mentioned above, is also partly responsible for the larger phase
shift in the MD data in A > 0 minimum epochs. Hall et al. (1997)
used the NM and MD data to analyze the rigidity spectrum of the
diurnal anisotropy and obtained the average G(p) proportional
to p−0.1±0.2 with Pu = 100 ± 25 GV. Although their spectrum
seems to be consistent with the G(p) assumed in this paper,
such a common spectrum for ξ‖ and ξ⊥ cannot reproduce the
observed feature that the phase shift observed by MD in the
A > 0 solar minimum epoch is significantly larger than that
by NM.

The 11 and 22 yr variations are also apparent in the modula-
tion parameters shown in Figure 5. The bi-directional latitudinal
density gradient (G|z|) in the top panel is positive (negative) in
the A > 0 (A < 0) epoch in agreement with the drift model
prediction of the local minimum (maximum) of GCR density
around the HCS. This 22 yr variation looks more significant in
the MD data than in the NM data, with a smaller error for each
data point. The mean magnitude of G|z| is larger in A < 0 than
in A > 0 in both the MD and NM data. The 11 yr variation is
evident in the radial density gradient (Gr) in the middle panel
of Figure 5, while we cannot identify a clear 22 yr variation, as
reported by Bieber & Pomerantz (1986). The mean Gr deduced
from the MD (NM) data is 0.89 ± 0.11 (1.04 ± 0.08)% AU−1 in
the A > 0 epoch, while it is 0.99 ± 0.12 (1.13 ± 0.10)% AU−1

in the A < 0 epoch. Note that we find a poor correlation be-
tween temporal variations of G|z| and Gr in both the MD and
NM data.

The mean parallel mean free path (λ‖), on the other hand,
turns out to be significantly larger in the A < 0 than in the
A > 0 epoch, in both the MD and NM data. We find that
the mean λ‖ deduced from the MD (NM) data is 0.90 ± 0.10
(0.89 ± 0.06) AU in A > 0, while it is 1.32 ± 0.13 (1.14 ±

0.10) AU in A < 0. Paper I suggested that the 22 yr variation
of λ‖ is responsible for the reduction of λ‖Gr in A > 0 and for
the 22 yr variation of the diurnal anisotropy. The two bottom
panels of Figure 7 show the correlation between Gr and λ‖
(both in logarithmic scale) on the vertical (y) and horizontal
(x) axes, respectively. Since λ‖ on the x-axis is deduced from
λ‖Gr divided by Gr on the y-axis, data points in this scatter
plot align on a straight line when λ‖Gr is constant during the
analysis period. Solid and dashed straight lines in each panel
display functions of y = c/x best-fit to data in the A > 0 and
A < 0 epochs, respectively, each with the intercept c as a best-fit
parameter. It is seen that, for the MD data (left panel), the best-
fit c for the A > 0 data (solid circles) is about 64% of that for
the A < 0 data (open circles). This is consistent with the lower
λ‖ value derived from the MD data for A > 0 epochs, which is
68% (=0.90/1.32) of that in the A < 0 epoch, indicating that
the 22 yr variation of λ‖Gr in the left panel is due to the 22 yr
variation of λ‖ on the horizontal axis.

However, as mentioned in connection with Figure 5 in the
preceding section, we also find that λ‖s (Grs) from the NM and
MD data appear to persistently increase (decrease) during the
last three solar activity cycles, reaching maximum (minimum)
in 2008–2009. Figure 8 displays the mean Gr and λ‖ in the
A > 0 and A < 0 epochs, each as a function of time. It is clear
particularly in the MD data (left panels) that there is a long-term
trend indicated by a best-fit solid line in each panel. This trend
enhances the difference between the A > 0 and A < 0 means
of λ‖, while it reduces the difference between the means of Gr.
The simple means of Gr or λ‖ in all A > 0 and A < 0 epochs
are, therefore, seriously biased by these long-term trends. If we
look at the deviation of each data point from the solid line in
the MD data, on the other hand, we find that Gr and λ‖ are both
larger (smaller) in the A < 0 (A > 0) epoch, although only at
the 1σ level.

The phase shift of the diurnal anisotropy toward earlier hours
in the A > 0 epochs is a robust consequence of particle drifts
in the inhomogeneous large-scale heliospheric magnetic fields
(HMFs). The observed phase shift in the A > 0 epoch arises nat-
urally in various drift models employing different approaches
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Table 2
Anisotropy Components and Modulation Parameters Derived from the Nagoya MD Data

year sgn(A)a Amplitude Phase ξ‖ ξ⊥ ξz G|z| Gr λ‖
(%) (hr) (%) (%) (%) (%/AU) (%/AU) (AU)

1970 ∗ 0.39 ± 0.07 17.1 ± 0.4 0.63 ± 0.01 0.15 ± 0.01 0.33 ± 0.02 ∗ 1.03 ± 0.05 1.02 ± 0.14
1971 ∗ 0.42 ± 0.04 15.9 ± 0.3 0.60 ± 0.04 0.08 ± 0.03 0.26 ± 0.04 ∗ 1.03 ± 0.21 0.89 ± 0.19
1972 + 0.34 ± 0.02 15.9 ± 0.3 0.49 ± 0.03 0.12 ± 0.04 0.26 ± 0.03 0.32 ± 0.09 1.00 ± 0.09 0.76 ± 0.08
1973 + 0.41 ± 0.03 15.3 ± 0.3 0.55 ± 0.04 0.06 ± 0.03 0.27 ± 0.05 0.17 ± 0.08 1.28 ± 0.22 0.57 ± 0.11
1974 + 0.42 ± 0.03 16.3 ± 0.3 0.70 ± 0.04 0.13 ± 0.03 0.32 ± 0.05 0.43 ± 0.09 1.58 ± 0.23 0.61 ± 0.10
1975 + 0.34 ± 0.03 14.6 ± 0.3 0.45 ± 0.02 0.11 ± 0.05 0.20 ± 0.03 0.27 ± 0.15 0.71 ± 0.08 0.86 ± 0.11
1976 + 0.21 ± 0.03 13.9 ± 0.5 0.42 ± 0.04 0.24 ± 0.02 0.12 ± 0.02 0.61 ± 0.05 0.52 ± 0.06 1.10 ± 0.15
1977 + 0.24 ± 0.04 14.5 ± 0.5 0.38 ± 0.03 0.22 ± 0.05 0.22 ± 0.04 0.59 ± 0.13 0.86 ± 0.15 0.67 ± 0.13
1978 + 0.44 ± 0.04 15.5 ± 0.4 0.50 ± 0.04 0.06 ± 0.04 0.28 ± 0.06 0.20 ± 0.13 1.30 ± 0.28 0.62 ± 0.14
1979 ∗ 0.48 ± 0.03 16.3 ± 0.2 0.61 ± 0.03 0.02 ± 0.03 0.27 ± 0.04 ∗ 1.38 ± 0.22 0.68 ± 0.12
1980 ∗ 0.43 ± 0.03 17.3 ± 0.4 0.64 ± 0.03 0.13 ± 0.04 0.23 ± 0.03 ∗ 0.99 ± 0.11 1.06 ± 0.12
1981 − 0.47 ± 0.03 17.4 ± 0.2 0.73 ± 0.04 0.12 ± 0.03 0.27 ± 0.03 −0.44 ± 0.10 1.38 ± 0.17 0.80 ± 0.10
1982 − 0.45 ± 0.05 17.5 ± 0.3 0.76 ± 0.06 0.13 ± 0.04 0.29 ± 0.05 −0.50 ± 0.15 2.01 ± 0.33 0.54 ± 0.10
1983 − 0.47 ± 0.05 17.9 ± 0.4 0.84 ± 0.05 0.17 ± 0.03 0.28 ± 0.05 −0.60 ± 0.11 1.72 ± 0.22 0.69 ± 0.10
1984 − 0.56 ± 0.04 18.0 ± 0.2 0.92 ± 0.04 0.07 ± 0.02 0.28 ± 0.04 −0.27 ± 0.07 1.92 ± 0.20 0.64 ± 0.08
1985 − 0.48 ± 0.04 18.1 ± 0.3 0.82 ± 0.04 0.13 ± 0.05 0.18 ± 0.03 −0.36 ± 0.13 0.85 ± 0.11 1.35 ± 0.17
1986 − 0.25 ± 0.04 16.8 ± 0.5 0.58 ± 0.04 0.20 ± 0.04 0.10 ± 0.02 −0.50 ± 0.11 0.50 ± 0.07 1.62 ± 0.24
1987 − 0.33 ± 0.05 18.3 ± 0.4 0.70 ± 0.06 0.24 ± 0.03 0.05 ± 0.04 −0.72 ± 0.13 0.46 ± 0.08 2.22 ± 0.39
1988 − 0.40 ± 0.04 18.0 ± 0.3 0.71 ± 0.05 0.24 ± 0.03 0.21 ± 0.03 −0.82 ± 0.07 0.97 ± 0.13 1.17 ± 0.18
1989 − 0.46 ± 0.04 18.3 ± 0.3 0.81 ± 0.05 0.19 ± 0.05 0.15 ± 0.04 −0.65 ± 0.18 0.94 ± 0.19 1.23 ± 0.25
1990 ∗ 0.51 ± 0.05 17.9 ± 0.2 0.82 ± 0.04 0.04 ± 0.05 0.28 ± 0.03 ∗ 1.49 ± 0.14 0.73 ± 0.08
1991 ∗ 0.52 ± 0.05 18.3 ± 0.3 0.87 ± 0.05 0.18 ± 0.04 0.14 ± 0.05 ∗ 1.02 ± 0.28 1.25 ± 0.35
1992 + 0.45 ± 0.04 15.4 ± 0.4 0.48 ± 0.04 0.06 ± 0.06 0.21 ± 0.03 0.22 ± 0.22 1.12 ± 0.19 0.67 ± 0.13
1993 + 0.37 ± 0.04 15.2 ± 0.4 0.50 ± 0.04 0.08 ± 0.04 0.18 ± 0.04 0.25 ± 0.14 0.86 ± 0.14 0.81 ± 0.15
1994 + 0.36 ± 0.03 15.1 ± 0.4 0.57 ± 0.05 0.15 ± 0.03 0.24 ± 0.05 0.45 ± 0.09 1.20 ± 0.21 0.63 ± 0.12
1995 + 0.24 ± 0.03 14.1 ± 0.4 0.36 ± 0.04 0.23 ± 0.03 0.20 ± 0.04 0.60 ± 0.08 0.73 ± 0.16 0.77 ± 0.18
1996 + 0.16 ± 0.03 13.6 ± 0.9 0.40 ± 0.05 0.27 ± 0.04 0.10 ± 0.02 0.61 ± 0.08 0.37 ± 0.07 1.47 ± 0.28
1997 + 0.19 ± 0.02 13.1 ± 0.3 0.28 ± 0.03 0.26 ± 0.02 0.06 ± 0.03 0.65 ± 0.04 0.25 ± 0.05 1.84 ± 0.35
1998 + 0.32 ± 0.04 15.3 ± 0.5 0.46 ± 0.06 0.16 ± 0.05 0.13 ± 0.07 0.49 ± 0.15 0.62 ± 0.17 1.16 ± 0.33
1999 ∗ 0.48 ± 0.02 16.4 ± 0.2 0.63 ± 0.03 0.07 ± 0.03 0.15 ± 0.04 ∗ 0.78 ± 0.15 1.27 ± 0.25
2000 ∗ 0.44 ± 0.03 17.4 ± 0.3 0.72 ± 0.03 0.16 ± 0.03 0.21 ± 0.06 ∗ 1.01 ± 0.22 1.11 ± 0.24
2001 − 0.45 ± 0.04 16.9 ± 0.4 0.65 ± 0.05 0.12 ± 0.04 0.19 ± 0.05 −0.33 ± 0.12 0.89 ± 0.22 1.18 ± 0.30
2002 − 0.47 ± 0.05 17.8 ± 0.4 0.77 ± 0.06 0.15 ± 0.04 0.21 ± 0.04 −0.57 ± 0.13 1.16 ± 0.18 1.02 ± 0.18
2003 − 0.45 ± 0.04 18.2 ± 0.3 0.92 ± 0.03 0.25 ± 0.05 0.23 ± 0.04 −0.88 ± 0.16 1.36 ± 0.16 0.92 ± 0.11
2004 − 0.46 ± 0.03 17.4 ± 0.3 0.74 ± 0.04 0.14 ± 0.03 0.29 ± 0.04 −0.41 ± 0.07 1.30 ± 0.16 0.85 ± 0.12
2005 − 0.48 ± 0.04 17.9 ± 0.3 0.83 ± 0.05 0.18 ± 0.03 0.19 ± 0.02 −0.51 ± 0.09 0.88 ± 0.10 1.35 ± 0.16
2006 − 0.36 ± 0.03 17.5 ± 0.4 0.64 ± 0.05 0.21 ± 0.03 0.22 ± 0.03 −0.45 ± 0.06 0.69 ± 0.10 1.44 ± 0.22
2007 − 0.33 ± 0.03 17.4 ± 0.2 0.65 ± 0.03 0.22 ± 0.02 0.15 ± 0.03 −0.43 ± 0.04 0.51 ± 0.06 1.87 ± 0.20
2008 − 0.27 ± 0.02 17.4 ± 0.3 0.64 ± 0.03 0.26 ± 0.02 0.17 ± 0.02 −0.49 ± 0.04 0.50 ± 0.07 1.85 ± 0.25
2009 − 0.21 ± 0.02 16.8 ± 0.3 0.45 ± 0.02 0.26 ± 0.02 0.12 ± 0.02 −0.44 ± 0.04 0.28 ± 0.04 2.76 ± 0.39
2010 − 0.34 ± 0.03 17.6 ± 0.3 0.62 ± 0.03 0.21 ± 0.04 0.18 ± 0.03 −0.43 ± 0.07 0.56 ± 0.08 1.72 ± 0.24
2011 − 0.35 ± 0.03 17.9 ± 0.3 0.67 ± 0.04 0.22 ± 0.03 0.26 ± 0.03 −0.53 ± 0.08 0.88 ± 0.10 1.17 ± 0.14
2012 ∗ 0.36 ± 0.05 17.5 ± 0.3 0.62 ± 0.05 0.23 ± 0.04 0.26 ± 0.05 ∗ 0.93 ± 0.17 1.12 ± 0.21
2013 ∗ 0.38 ± 0.04 17.7 ± 0.3 0.65 ± 0.04 0.18 ± 0.04 0.24 ± 0.04 ∗ 0.76 ± 0.14 1.34 ± 0.25

Notes. The amplitude and phase (the local solar time of maximum intensity) of the space harmonic vector in Figure 3, three components (ξ‖, ξ⊥, ξz) of the anisotropy
in the solar wind frame in Figure 4 and modulation parameters (G|z|, Gr , λ‖) in Figure 5, all derived from the Nagoya MD data, are listed for each year. Yearly mean
value and error are deduced from the average and dispersion of monthly values, respectively.
a Each character in the column “sgn(A)” indicates the polarity of the large-scale solar magnetic field assigned by us referring to the Solar Polar Field Strength available
at the WSO Web site; “ + ” for a year in A > 0 epoch, “−” for a year in A < 0 epoch and “∗” for a year when the polarity reversal is in progress (see the text).

(Levy 1976; Erdös & Kóta 1980; Potgieter & Moraal 1985).
The reproduction of the NS anisotropy, which is formed by
the interplay of drift and perpendicular diffusion, is more chal-
lenging for theoretical models. This is particularly true for the
A > 0 epoch, when latitudinal gradients tend to point away
from the current sheet, but the intensity minimum of GCRs is
not precisely on the HCS. Hence, one cannot expect a one-to-
one correlation between the field polarity and the NS anisotropy
(Okazaki et al. 2008). Kóta & Jokipii (2001) modeled the 3D
anisotropy in a simulation including a wavy HCS with possible
variations in the solar wind speed leading to the formation of
corotating interaction regions. Their results are in qualitative

agreement with the observed phase shift and reduction of the
radial gradient in the A > 0 epochs, as well as with oppo-
sitely directed (poleward vs. equatorward) latitudinal gradients
in the A > 0 and A < 0 epochs, respectively. The simula-
tion results for the variation in the NS anisotropy remained
inconclusive.

It is important to keep in mind that solar cycles are not
identical and, as mentioned in the previous section, long-term
changes do occur. A particularly interesting recent example is
the long and unusual last solar cycle, when the GCR intensity
at the Earth reached a record-high level (Mewaldt at al. 2010).
The most plausible explanation is that the magnetic field was the
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Figure 9. Long-term variation of the common vector. The yearly mean amplitude in % and the phase (denoted by the local solar time of the maximum intensity)
in hours of the common vector are displayed in the upper and lower panels, respectively, each as a function of year on the horizontal axis. The common vector is
introduced as a free parameter representing the atmospheric temperature effect on the diurnal anisotropy observed with the MD (see the text). The yearly mean and
error are deduced from the means and dispersions of the monthly values, respectively. The solar maximum and minimum periods are indicated by black and gray
arrows on the horizontal axis of the lower panel, respectively.

weakest ever recorded (McComas et al. 2008) and the weaker
field allowed faster diffusion of GCRs into the inner part of the
heliosphere. Another remarkable feature of the last solar cycle
was that the HCS remained tilted for a long time and did not
flatten the same way as in other cycles. Figure 4 shows that ξz

turned out to be larger in the last solar minimum than during
previous solar minima. This most likely shows the effect of
the tilted HCS. The streaming component normal to the HCS
cannot abruptly change, but has to change continuously at the
HCS. Hence, ξz must be a small value when the HCS flattens,
and it can be larger if the HCS is tilted. This feature is more
apparent for the MD data than for the NM data.

The dynamic range of λ‖ (or Gr) due to the 11 yr variation in
the lower panels of Figure 7 is close to an order of magnitude
and is much larger than the 22 yr variation. The small signature
of its 22 yr variation can be easily masked by the 11 yr variation
with a much larger amplitude. In order to analyze the 22 yr
variation of each modulation parameter, therefore, it is necessary
to minimize the influence of the 11 yr variation as much as
possible. Simple means of λ‖ and Gr in each of the A > 0 and
A < 0 epochs may also be seriously biased by their long-term
trends, as seen above. To identify the physical origin of the 22 yr
variation correctly, it is also necessary to analyze its rigidity
dependence. The long-term observation with the Nagoya MD,
as well as the observations with NMs, makes such analyses
possible.
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APPENDIX A

NUMERICAL DATA OF ANISOTROPY COMPONENTS
AND MODULATION PARAMETERS OBTAINED

IN THIS PAPER

For reference, we list in Table 2 numerical data of the
anisotropy and modulation parameters derived from the MD
data at 60 GV. Note that the amplitude and phase in these
tables are corrected for the CG effect arising from the Earth’s
orbital motion around the Sun (see Section 2.2 in the text). We
confirmed that the anisotropy components derived from NMs
by us each year are fairly consistent with the components given
in Paper I (see Table 2 in their paper), which analyzed the same
NM data in a similar manner during an overlap period between
1970 and 1988. The amplitude and phase of the common vector
derived in our analyses of the MD data are shown in Figure 9
(see the text). It is seen that the amplitude of the common vector
is small and the phase is almost stable around ∼06:00 local solar
time.

APPENDIX B

DEPENDENCE ON THE UPPER LIMIT RIGIDITY

Following the analyses in Papers I and II, we assumed in this
paper the rigidity spectrum of the anisotropy in Equation (9)
with γ and Pu fixed at 0 and 100 GV respectively. This choice
of the spectrum is rather subjective, lacking firm physical or
observational proof. In this section, we show how β (the ratio
between anisotropies and modulation parameters derived from
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(a)

(b)

(c)

Figure 10. Three components of the free-space anisotropy derived from the MD data assuming Pu = 100, 200, 300 GV. Solid black, solid gray, and open circles
represent the components obtained with Pu = 100, 200, 300 GV, respectively. The solar maximum and minimum periods are indicated by black and gray arrows on
the horizontal axis of the top panel, respectively.

Table 3
Mean β Values Obtained with Three Different Pus in Equation (9)

Polarity Pu = 100 GV Pu = 200 GV Pu = 300 GV

A > 0 0.77 ± 0.07 0.74 ± 0.06 0.75 ± 0.06
βξ‖ A < 0 0.94 ± 0.05 0.84 ± 0.04 0.82 ± 0.04

Mean 0.89 ± 0.05 0.81 ± 0.04 0.79 ± 0.04

A > 0 1.65 ± 0.35 2.24 ± 0.34 2.36 ± 0.33
βξ⊥ A < 0 1.26 ± 0.14 1.59 ± 0.14 1.70 ± 0.14

Mean 1.35 ± 0.14 1.80 ± 0.13 1.93 ± 0.13

A > 0 4.45 ± 0.61 2.81 ± 0.39 2.45 ± 0.34
βξz A < 0 6.08 ± 0.96 3.82 ± 0.61 3.32 ± 0.53

Mean 5.22 ± 0.55 3.29 ± 0.35 2.86 ± 0.31

A > 0 0.48 ± 0.10 0.68 ± 0.09 0.72 ± 0.09
βG|z| A < 0 0.35 ± 0.05 0.46 ± 0.05 0.49 ± 0.06

Mean 0.39 ± 0.05 0.53 ± 0.05 0.57 ± 0.05

A > 0 0.85 ± 0.12 0.56 ± 0.08 0.50 ± 0.07
βGr A < 0 0.87 ± 0.13 0.58 ± 0.09 0.52 ± 0.08

Mean 0.86 ± 0.08 0.57 ± 0.05 0.51 ± 0.05

A > 0 1.00 ± 0.13 1.44 ± 0.18 1.62 ± 0.20
βλ‖ A < 0 1.16 ± 0.15 1.53 ± 0.19 1.65 ± 0.21

Mean 1.08 ± 0.09 1.47 ± 0.12 1.61 ± 0.13

Notes. The β value is the ratio of the parameter derived from MD data at 60 GV
to that derived from NM data at 17 GV (see text). Mean β values in A > 0 and
A < 0 epochs and in the total period consisting of all A > 0 and A < 0 epochs
are listed. Mean value and error are deduced from the average and dispersion of
yearly values.

the NM and MD data) depends on the upper limiting rigidity
(Pu) assumed and that our major conclusions on the rigidity
dependence derived from β are not affected by changing Pu.
Figure 10 displays anisotropy components derived from the

MD data with three different Pu values. We choose a range of
Pu between 100 and 300 GV based on the solar cycle variation
of Pu reported in Munakata et al. (1997). We confirmed that the
anisotropy derived from the NM data is almost insensitive to
changing Pu as pointed out by Paper II, while the anisotropy
derived from the MD data changes significantly. The increase in
Pu with the same spectral index (γ ) results in the reduction of
the amplitude of the free-space anisotropy. It also results in the
phase of the diurnal anisotropy in free space shifting to earlier
hours, due to the reduced average deflection of GCR orbits
in the geomagnetic field. Features of anisotropy components in
Figure 10 changing with Pu are interpreted in terms of the nature
of the free-space anisotropy. Table 3 lists the mean β for three
Pu values. First, the mean βξ‖ close to (or slightly smaller than)
one for all Pu indicates ξ‖ as being similar in the NM and MD
data, while it is significantly smaller in A > 0 than in A < 0
for each Pu. Second, the mean βξ⊥ and βξz

are both significantly
larger than one, indicating harder rigidity spectra of ξ⊥ and ξz

than that of ξ‖. The mean βξz
is always larger than the mean βξ⊥ .

Third, the mean βG|z| and βGr
are significantly smaller than one

for all Pu values.
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