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Zeta functions of adjacency algebras of association schemes

of prime order or rank two
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Abstract. For a module L which has only finitely many submodules with a given

finite index we define the zeta function of L to be a formal Dirichlet series ζL(s) =P
n≥1 ann−s where an is the number of submodules of L with index n. For a com-

mutative ring R and an association scheme (X, S) we denote the adjacency algebra of

(X, S) over R by RS. In this article we aim to compute ζZS(s), where ZS is viewed as

a regular ZS-module, under the assumption that |X| is a prime or |S| = 2.
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1. Introduction

For a module L which has only finitely many submodules with a given
finite index we define the zeta function of L to be a formal Dirichlet series

ζL(s) =
∑

n≥1

ann−s

where an is the number of submodules of L with index n. In [8], L. Solomon
established several important methods in computing the zeta function of a
lattice over a group ring Z[G] where G is a finite group, and he found the
following zeta function of Z[G] being viewed as a regular Z[G]-module when
the order of G is a prime p:

ζZ[G](s) = (1− p−s + p1−2s)ζQ(s)ζQ(ε)(s)

where ζk(s) is the Dedekind zeta function of an algebraic field k and ε is a
primitive p-th root of unity (see [6], [7] and [9] for other group rings).
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In this article we are concerned with adjacency algebras of association
schemes. Let X be a finite set and S a partition of X×X. Then an element
r of S is a binary relation on X and its adjacency matrix σr is defined to
be a {0, 1}-matrix whose rows and columns are indexed by the elements of
X such that

(σr)x,y =

{
1 if (x, y) ∈ r,

0 if (x, y) /∈ r.

We say that the pair (X, S) is an association scheme if it satisfies the fol-
lowing conditions (see [1] or [11] a background for the theory of associations
schemes):

( i ) The identity matrix is contained in {σr | r ∈ S};
( ii ) {σr | r ∈ S} is closed under the transposed map;
(iii)

∑
r∈S Zσr is closed under the matrix product.

For an association scheme (X, S) we denote
∑

r∈S Zσr by ZS so that ZS is a
Z-algebra. For a commutative ring R we denote the tensor product R⊗ZZS

by RS, which is called the adjacency algebra of (X, S) over R.
For a finite group G we set

Ĝ = {ĝ | g ∈ G}

where ĝ = {(a, b) ∈ G ×G | a−1b = g}. It is well-known (see [10, Theorem
A]) that (G, Ĝ) is an association scheme and the adjacency algebra RĜ is
identified with the group ring R[G] for a commutative ring R. At this point
it is natural to ask whether the same attempt as in [8] can be done for
adjacency algebras generalizing group rings. In this article we deal with
association schemes (X, S) of prime order or rank two, i.e., |X| is a prime
or |S| = 2, and we obtain the zeta function of ZS being viewed as a regular
ZS-module for each of the two cases. It should be mentioned that the proofs
owe much to the methods given in [8]. But, we would like to stress that this
is the first attempt to find zeta functions of adjacency algebras of association
schemes except for group rings. The following are our main theorems:

Theorem 1.1 Let (X, S) be an association scheme of prime order p. Then

ζZS(s) = (1− p−s + p1−2s)ζQ(s)ζF (s)
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where F is the minimal splitting field of a non-principal character of CS.

Theorem 1.2 Let (X, S) be an association scheme of rank two and
|X| =

∏k
i=1 pi

mi where p1, p2, . . . , pk are the prime divisors of |X| and
m1,m2, . . . , mk are positive integers. Then

ζZS(s) =
k∏

i=1

δpi,mi
(pi

−s) · ζQ(s)2

where δpi,mi(t) = pi
mit2mi +

∑mi−1
j=0 pi

jt2j(1− t).

In Section 2 we prepare basic results to make this article as self-contained
as possible. In Sections 3, 4, we reveal the structure of the poset consisting
of submodules of ZpS with finite index where p is a prime divisor of |X| and
Zp is the localization of Z at p. In Section 5 we prove our main theorems.

2. Preliminaries

We use the same notation for association schemes as in [2] and for in-
tegral representations as in [8]. Throughout this article we assume the fol-
lowing:

( i ) (X, S) is an association scheme;
( ii ) p is a prime;
(iii) Zp is the localization of Z at p;
(iv) A module means a finitely generated unitary left module.

For a ring R and an R-module L we will write Rad(L) for the intersection
of all maximal submodules of L, so that Rad(R) is the Jacobson radical of
R.

Lemma 2.1 For every module L over a Zp-algebra we have pL ⊆ Rad(L).

Proof. Assume the contrary, i.e., pL 6⊆ M for a maximal submodule M of
L. Then M + pL = L. Since M , pL and L are viewed as Zp-modules and
pL = (pZp)L = Rad(Zp)L, it follows from Nakayama’s lemma that M = L,
which contradicts the maximality of M . ¤

Lemma 2.2 Let L be a module over a Zp-algebra R and B a subset of L.
Then we have the following :
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( i ) pR is an ideal of R and L/pL is an R/pR-module;
( ii ) B generates L as an R-module if and only if {b+pL | b ∈ B} generates

L/pL as an R/pR-module.

Proof. (i) Since p is in the center of R, pR is a two-sided ideal of R. Since
(pR)L ⊆ pL, the function R/pR×L/pL → L/pL, (r+pR, x+pL) 7→ rx+pL,
is well-defined and it is easily checked that L/pL is an R/pR-module.

(ii) “only if” part is trivial. Suppose that {b + pL | b ∈ B} generates
L/pL as an R/pR-module. Then L = RB + pL, and by Lemma 2.1,

RB + pL ⊆ RB + Rad(R)L.

By Nakayama’s lemma, L = RB. ¤

Lemma 2.3 Let L be a torsion-free Zp-module and B a subset of L. If
{b + pL | b ∈ B} is Zp/pZp-linearly independent in L/pL, then B is Zp-
linearly independent.

Proof. Suppose that

n∑

i=0

aibi = 0 for a0, a1, . . . , ad ∈ Zp and distinct b1, b2, . . . , bn ∈ B.

The assumption implies that ai ∈ pZp for i = 1, 2, . . . , n. Since L is torsion-
free, it follows that ai ∈ pjZp for i = 1, 2, . . . , n and each positive integer
j. This implies that ai = 0 for i = 1, 2, . . . , n. Therefore, B is linearly
independent. ¤

We can weaken the assumption given in [8, Lemma 12] as follows:

Lemma 2.4 Suppose that Λ is a local Zp-order with the unique maximal
ideal of index p, and L is a Λ-lattice. Then all maximal Λ-submodules of L

have the form kerf where

f ∈ HomΛ(L,K) and K = Λ/Rad(Λ) ∼= Z/pZ.

If f, g ∈ HomΛ(L,K), then kerf = kerg if and only if f is a K-multiple of
g. Thus the number of maximal Λ-modules of L is

1 + p + · · ·+ pn−1 where n = dimK HomΛ(L,K).
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Proof. The proof is parallel to that as in [8, Lemma 12]. ¤

Recall that the adjacency algebra of an association scheme over the com-
plex number field is semisimple. We denote by Irr(S) the set of irreducible
characters of CS. We shall write the set of non-principal irreducible charac-
ters of CS as Irr(S)×, and the set of non-diagonal relations of S as S×. For
s ∈ S we denote by σs the adjacency matrix of s. For χ ∈ Irr(S) we denote
the multiplicity of χ by mχ. For a matrix a over Zp, we will write a for the
image by the projection Zp → Zp/pZp.

Theorem 2.5 ([2], [3], [4] and [5]) Suppose that |X| is a prime p and K

is a field of characteristic p. Then we have the following :

( i ) All elements in Irr(S)× are algebraic conjugate;
( ii ) QS ' Q ⊕ F where F is the minimal splitting field of χ ∈ Irr(S)×,

namely F = Q(χ(σs) | s ∈ S), and p is totally ramified in the ring of
algebraic integers of F ;

(iii) There exists s ∈ S such that KS = K[σs] and

{vi | i = 0, 1, 2, . . . , |S| − 1}

is a basis for KS where v = σs − nsσ1;
(iv) KS is a local algebra and (KS)v is the unique maximal ideal of KS.

Lemma 2.6 Let Γ be a maximal Z-order in QS containing ZS. Suppose
ns | mχ for all χ ∈ Irr(S)× and s ∈ S×. Then each prime divisor of the
index |Γ : ZS| divides |X|.
Proof. For short we denote |X| by n. Let x ∈ Γ. Then

x =
∑

s∈S

bsσs for some bs ∈ Q with s ∈ S.

We set T : CS → C as the trace map. Since T (xσs∗) = bsnsn for each
s ∈ S, it follows that

nx =
∑

s∈S

1
ns

T (xσs∗)σs.

Since x, σs∗ ∈ Γ, it follows that xσs∗ ∈ Γ. Note that T (y) ∈ Z for each y ∈ Γ
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since T (y) ∈ Q, T (y) is a sum of eigenvalues of y and y is integral over Z.
Recall that T =

∑
χ∈Irr(S) mχχ. We shall write the principal character of

CS as χ0. Thus,

nx =
∑

s∈S

∑
χ

mχχ(xσs∗)σs

ns

=
∑

s∈S×

∑
χ

mχχ(xσs∗)σs

ns
+

∑
χ

mχχ(x)σ1

=
∑

s∈S×

∑

χ6=χ0

mχχ(xσs∗)σs

ns
+

∑
χ

mχχ(x)σ1 +
∑

s∈S×

χ0(xσs∗)σs

ns

since χ0 is a ring homomorphism such that χ0(σs) = ns

=
∑

s∈S×

∑

χ6=χ0

mχχ(xσs∗)σs

ns
+

∑
χ

mχχ(x)σ1 +
∑

s∈S×
χ0(x)σs.

Therefore, nx ∈ ZS whenever ns | mχ for all χ ∈ Irr(S)× and s ∈ S×.
Let q be a prime divisor of |Γ : ZS|. Since Γ/ZS is a finite group, there

exists an element of order q in Γ/ZS. Since we have already proved that
nΓ ⊆ ZS, q divides n. ¤

3. Submodules of ZpS where |X| = p

Throughout this section we assume that (X, S) is an association scheme
of prime order p, and we denote by Λ the adjacency algebra of (X, S) over
Zp.

Lemma 3.1 The Zp-algebra Λ is commutative and local with the unique
maximal ideal of index p.

Proof. By Theorem 2.5(ii), QS is commutative, and hence, Λ is also com-
mutative. Let M be a maximal ideal of Λ. Applying Lemma 2.1 for Λ we
have pΛ ⊆ M . Since Λ/pΛ ' (Zp/pZp)S, it follows from Theorem 2.5(iv)
that Λ is local with the unique maximal ideal of index p. ¤

We shall denote the unique maximal ideal of Λ as in Lemma 3.1 by M ,
and Λ/M by K where K is viewed as a field or a simple Λ-module for the
remainder of this article. For short we shall write σ1, σS :=

∑
s∈S σs and
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σs − nsσ1 as e, u and v, respectively, where σs ∈ ZS is as in Theorem 2.5.
For short we shall write |S| as d + 1.

Lemma 3.2 {vi | i = 0, 1, . . . , d} is a Zp-basis for Λ.

Proof. By Theorem 2.5(iii), {vi | i = 0, 1, . . . , d} is a basis for KS. Thus,
this lemma follows from Lemma 2.2 and Lemma 2.3. ¤

By Lemma 3.2,

u =
d∑

i=0

aiv
i for some a0, a1, . . . , ad ∈ Zp. (1)

Multiplying u to both sides of (1) we obtain from uv = 0 and uu = pu that

a0 = p. (2)

We claim that v̄d is a nonzero scalar multiple of ū. By Theorem 2.5(iii), the
annihilator of v̄ in KS is exactly Kv̄d. Since vu = 0 by the definition of u

and v, the claim follows. Therefore,

a1 ≡ a2 ≡ · · · ≡ ad−1 ≡ 0 mod p, ad 6≡ 0 mod p. (3)

Multiplying v to both sides of (1) we obtain from (2) that

pv +
d∑

i=1

aiv
i+1 = 0. (4)

Lemma 3.3 We have M = Λu⊕ Λv.

Proof. We claim that Λu∩Λv = {0}. Note that Λu = Zpu by the definition
of u and Λ. Suppose x ∈ Λu ∩ Λv. Then x = ru = tv for some r ∈ Zp and
t ∈ Λ. Now since uv = 0, we have

ux = u(ru) = pru, ux = u(tv) = t(uv) = 0.

This means r = 0 and x = 0. Therefore, we conclude from the claim that
Λu+Λv is a direct sum. Clearly, Λu+Λv is a Λ-submodule, which is a free Zp-
module with the ordered Zp-basis (u, v, v2, . . . , vd). By (2), (pe, v, v2, . . . , vd)
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is an ordered Zp-basis for Λu + Λv, which implies |Λ : Λu + Λv| = p. Since
M is a unique maximal Λ-submodule of Λ, M = Λu⊕ Λv. ¤

Lemma 3.4 We have dimK HomΛ(M, K) = 2.

Proof. By Lemma 2.4 and Lemma 3.3, M/pM ' K⊕U as Λ/pΛ-modules,
where U = (Λ/pΛ)(v + pM) is a uniserial module. So,

(Rad(Λ/pΛ))(M/pM) =
d⊕

i=2

K(vi + pM) and

(M/pM)/(Rad(Λ/pΛ))(M/pM) ' K ⊕K as Λ/pΛ-modules.

Since K is a simple Λ-module, we have

HomΛ(M, K) ' HomΛ/pΛ(M/pM, K)

' HomΛ/pΛ((M/pM)/Rad(Λ/pΛ)(M/pM)),K)

' HomΛ/pΛ(K ⊕K, K).

Thus, dimK HomΛ(M, K) = 2. ¤

Proposition 3.5 Suppose d > 1. Then M has exactly p + 1 maximal
Λ-submodules, exactly two of which are isomorphic to M and exactly p− 1
of which are isomorphic to Λ.

Proof. By Lemma 2.4 and Lemma 3.4, M has exactly p+1 Λ-submodules
of index p. Thus, the first assertion holds. By Lemma 3.3,

Λpu + Λv2 ⊆ MM = Rad(Λ)M.

By Nakayama’s lemma, Rad(Λ)M ⊆ Rad(M). This implies that each max-
imal Λ-submodule of M contains

∑d
i=2 Zpv

i. Thus, by the theory of ele-
mentary divisors, the set of Zp-submodules being viewed as Λ-submodules
of M with index p coincides with

{Na | a = 0, 1, . . . , p− 1,∞}

where N∞ = Zpu + Zp(pv) +
∑d

i=2 Zpv
i and for a = 0, 1, . . . , p− 1
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Na = Zp(pu) + Zp(au + v) +
d∑

i=2

Zpv
i.

We shall write the representation matrix of the multiplication of v in
the ordered Zp-basis β for a Λ-module as Tβ . Note that, for all Λ-modules
M1, M2, M1 ' M2 as Λ-modules if and only if Tβ1 = Tβ2 for some ordered
Zp-basis βi of Mi with i = 1, 2 since v generates Λ by Lemma 3.2.

We claim that N0 ' N∞ ' M . By Lemma 3.3, β1 = (u, v, v2, . . . , vd)
is an ordered basis for M . By the definition of N0, β2 = (pu, v, v2, . . . , vd)
is an ordered basis for N0. By (3) and (4), β3 = (u, v2, . . . , vd, vd+1) is an
ordered basis for N∞. The claim holds since

Tβ1 = Tβ2 = Tβ3 =




0 0 0 · · · 0
0 0 0 · · · (−a−1

d )p
0 1 0 · · · (−a−1

d )a1

0 0 1
. . . (−a−1

d )a2

· · · · · · · · · · · · · · ·
0 0 0 · · · (−a−1

d )ad−1




.

We claim that Na ' Λ for a = 1, 2, . . . , p − 1. By Lemma 3.2, γ =
(e, v, v2, . . . , vd) is an ordered basis for Λ. By (3) and (4), γa = (au +
v, v2, . . . , vd, vd+1) is an ordered basis for Na. The claim holds since

Tγ = Tγa
=




0 0 0 · · · 0
1 0 0 · · · (−a−1

d )p
0 1 0 · · · (−a−1

d )a1

0 0 1
. . . (−a−1

d )a2

· · · · · · · · · · · · · · ·
0 0 0 · · · (−a−1

d )ad−1




.

The two claims complete the proof of the second assertion. ¤

4. Submodules of ZpS with |S| = 2 and p | |X|
Throughout this section we assume that (X, S) is an association scheme

with |S| = 2 and |X| = n, p is a prime divisor of n and m is the least positive
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integer with pm+1 - n. For short we denote ZpS by Λ. For non-negative
integers i, a we define

Ni,a = Zp(pi+1e) + Zp(piae + u) and Ni,∞ = Zp(pie) + Zp(pu)

where e = σ1 and u = σS .

Lemma 4.1 We have the following :

( i ) Ni,a is a free Zp-module of rank 2;
( ii ) {Ni,a | a = 0, 1, . . . , p−1,∞} are the distinct maximal Zp-submodules

of Ni−1,0 where N−1,0 = Λ.

Proof. (i) follows since {xe, ye + zu} are linearly independent for all
x, y, z ∈ Zp with xz 6= 0.

(ii) follows from the theory of elementary divisors since Zp is a principal
ideal domain and Ni,a is a Zp-submodule of Ni−1,0 with index p. ¤

Lemma 4.2 For each i = 0, 1, . . . , m and a = 0, 1, . . . , p − 1, Ni,a is a
Λ-submodule if and only if i 6= 0 or a = 0.

Proof. Suppose that Ni,a is a Λ-submodule. Then

u(apie + u) = x(pi+1e) + y(piae + u)

for some x, y ∈ Zp. Since the left hand side is equal to (api +n)u and {e, u}
are linearly independent, it follows that

xpi+1 = −y(api), y = api + n.

Since Zp is an integral domain, xp = −a(api + n). Since pZp is a prime
ideal, a ∈ pZp or (api + n) ∈ pZp. Thus, if a 6= 0, then api + n ∈ pZp, and
hence, i 6= 0. Therefore, “only if” part holds.

Suppose i 6= 0 or a = 0. Then there exists x ∈ Zp such that xp =
−a(api + n) since p | n, and

u(pi+1e) = (−pia)(pi+1e) + pi+1(piae + u),

u(piae + u) = x(pi+1e) + (pia + n)(piae + u).

This implies that Ni,a is a Λ-submodule. Therefore, “if” part holds. ¤
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Lemma 4.3 For each i = 0, 1, . . . , m, Ni,∞ is a Λ-submodule if and only
if i 6= 0.

Proof. Since ue = u /∈ Zpe + Zp(pu), N0,∞ is not a Λ-submodule. This
implies that “only if” part holds.

Suppose i > 0. Then

u(pie) = 0(pie) + pi−1(pu), u(pu) = npu = 0(pie) + n(pu).

This implies that Ni,∞ is a Λ-submodule. Therefore, “if” part holds. ¤

For each i = 1, . . . , m and a = 1, . . . , p − 1, (api+1e, piae + u) is an
ordered basis for Ni,a and (pu, piae + u) so is. There exists c ∈ Zp \ pZp

such that c(a + n/pi) = 1 whenever a + n/pi /∈ pZp. Then (pu, c(piae + u))
is also an ordered basis for Ni,a. Thus, the representation matrix of u by
(pu, c(piae + u)) is equal to

(
n pi−1

0 0

)
unless i = m and a 6≡ −n

pm (mod p). (5)

If i = m and a ≡ (−n)/pm (mod p), then there exists c ∈ Zp such that
cpn + n + pma = pm+1. Since (pu, pmae + c(pu) + u) is an ordered basis
for Nm,a, the representation matrix of u by the ordered basis (pu, pmae +
c(pu) + u) for Nm,a with a ≡ (−n)/pm (mod p) is equal to

(
n pm+1

0 0

)
. (6)

The representation matrix of u by the ordered basis (pu, pie) for Ni,∞ is
equal to

(
n pi−1

0 0

)
. (7)

For each nonnegative integer i the representation matrix of u by the ordered
basis (u, pi+1e) for Ni,0 is equal to

(
n pi+1

0 0

)
. (8)
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Lemma 4.4 For all distinct i, j, we have Ni,0 ' Nj,0 as Λ-modules if and
only if i, j ≥ m− 1.

Proof. Suppose Ni,0 ' Nj,0. We may assume that i < j. Then, by (8),
there exist a, b, c, d ∈ Zp such that ad− bc /∈ pZp.

(
n pi+1

0 0

)(
a b
c d

)
=

(
a b
c d

)(
n pj+1

0 0

)
. (9)

Comparing the entries we obtain

c = 0 and pi+1d + bn = pj+1a.

Since ad = ad− bc /∈ pZp, we have a, d /∈ pZp. Since pi+1(d− apj−i) = −bn,
it follows from i < j that i + 1 ≥ m. Thus, j > i ≥ m− 1.

Suppose m− 1 ≤ i < j. Then, we can take

(a, b, c, d) = (1, (pj+1 − pi+1)/n, 0, 1)

so that (9) holds. Therefore, Ni,0 ' Nj,0. ¤

Proposition 4.5 We have the following :

( i ) N0,0 is a unique maximal Λ-submodule of Λ and Rad(Λ) = N0,0;
( ii ) For each i = 1, 2, . . . , m − 1, {Ni,a | a = 0, 1, . . . , p − 1,∞} are the

distinct maximal Λ-submodules of Ni−1,0 and Ni,a ' Ni−2,0 for each
a = 1, 2, . . . , p− 1,∞;

(iii) {Nm,a | a = 0, 1, . . . , p−1,∞} are the distinct maximal Λ-submodules
of Nm−1,0, Nm,0 ' Nm,b ' Nm−1,0, and Nm,a ' Nm−2,0 for each
a = 1, 2, . . . , p − 1,∞ with a 6= b where b is a unique element of
{1, 2, . . . , p− 1} such that

b ≡ −n

pm
(mod p);

(iv) For each i = 1, 2, . . . , m, Rad(Ni−1,0) = Ni+1,∞ ' Ni−1,0.

Proof. The first statement of (i), (ii) and (iii) follows from Lemma 4.1,
Lemma 4.2 and Lemma 4.3.

(i) The second statement follows from the first one.
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(ii) The second statement follows from (5), (7) and (8).
(iii) The second statement follows from Lemma 4.4 and (6), and the

third one follows from (5) and (8).
(iv) follows from Lemma 2.1, since pNi−1,0 = Ni+1,∞ ' Ni−1,0. ¤

5. Proof of main theorems

We will apply [8, Theorem 3] for ZS with [8, Remark p. 320]. Whichever
|X| is a prime or |S| = 2, QS is commutative, in particular, QS is isomor-
phic to a direct sum of the full matrix algebras over fields. Moreover, the
assumption as in Lemma 2.6 holds, so the set B given in [8, Theorem 3]
coincides with the set of prime divisors of |X|. Therefore, we obtain

ζZS(s) =
∏

p||X|
δp(p−s) · ζQS(s) where δp(p−s) =

ζZpS(s)
ζQS(s)p

and the definition of ζQS(s)p is the same as in [8]. Note that QS ' Q ⊕ F

for an algebraic field F of degree |S|−1 whichever |X| is a prime or |S| = 2.
We claim that

ζQS(s)p = (1− p−s)−2. (10)

For an algebraic field E and a prime p, the definition of ζE(s)p is the same
as in [8]. Since ζQS(s)p = ζQ(s)pζF (s)p and ζQ(s)p = (1− p−s)−1, it suffices
to show that

ζF (s)p = (1− p−s)−1 when |X| = p.

By Theorem 2.5(ii) and the definition of being totally ramified, there exists a
unique prime ideal dividing p with norm p. Therefore, ζF (s)p = (1−p−s)−1.

Following [8] we define a set of polynomials {Aij(t)}i,j as follows:
We assume the conditions (2.1), (2.2) and (2,3) given in [8] holds. Let
L0, L1, . . . , Lh represent the isomorphism classes of submodules of L0 with
finite index. Let Φij be the set of submodules of Li which include Rad(Li)
and are isomorphic to Lj . For submodules N , L with Rad(L) ⊆ N ⊆ L we
define

µ(N, L) =
∑

J

(−1)|J|
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where the sum is over all subsets J of the maximal submodules of L with
N =

⋂
M∈J M . For i, j = 0, 1, . . . , h we define

Aij(t) =
∑

N∈Φij

µ(N, Li)[Li : N ]

where [Li : N ] = ti whenever |Li : N | = pi. Let Z0(t) be the sum of the
first row of the inverse matrix of (Aij(t))0≤i,j≤h. Then, by [8, Lemma 3],

ζZpS(s) = Z0(p−s).

Suppose that |X| is a prime p and |S| > 2. Then Proposition 3.5 shows
that we have exactly two isomorphism classes of submodules of ZpS with
finite index and the matrix (Aij(t))0≤i,j≤1 is the same as in [8, Lemma 14].
Therefore, we obtain from (10)

δp(t) = 1− p−s + p1−2s.

Suppose that |S| = 2 and p is a prime divisor of |X| and m is the
least positive integer with pm+1 - |X|. Then Proposition 4.5 shows that
L0, L1, . . . , Lm represent the isomorphism classes of ZpS-submodules of ZpS

with finite index where Li = Ni−1,0 for i = 0, 1, . . . , m, and

Φ00 = {L0}, Φ01 = {L1}, Φ0j = ∅ for each j with 2 ≤ j ≤ m,

Φ10 = {N1,a | a = 1, 2, . . . , p− 1,∞}, Φ11 = {L1, N2,∞}, Φ12 = {L2},
Φ1j = ∅ for each j with 2 ≤ j ≤ m

· · ·
Φmj = ∅ for each j with 0 ≤ j ≤ m− 2,

Φm,m−1 = {Nm,a | a 6= b}, Φmm = {Nm+1,∞, Lm, Nm,b}
where b is a unique element as in Proposition 4.5.

Thus, (Aij(t))0≤i,j≤m is equal to the following tridiagonal matrix:
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Aij(t) =





−t if j = i + 1 and i = 0, 1, . . . , m− 1,

1 if j = i = 0,

1 + pt2 if j = i and i = 1, . . . , m− 1,

1− 2t + pt2 if j = i = m,

−pt if j = i− 1 and i = 1, . . . , m− 1,

−(p− 1)t if j = m− 1 and i = m.

Namely,

(Aij(t)) =




1 −t 0 · · · 0
−pt 1 + pt2 −t 0 · · ·
0 −pt 1 + pt2 −t · · ·
. . . . . . . . . . . . . . .
0 · · · −pt 1 + pt2 −t

0 · · · 0 −(p− 1)t 1− 2t + pt2




.

We shall denote (Aij(t))0≤i,j≤m by A. Note that

det(A) = (t− 1)2

and if Ax is the all one vector, then the first entry of x = A−1Ax is the sum
of the first row of A−1, that is exactly what we need. Thus, it suffices to
find the first entry of the solution of Ax = b where b is the all one vector.

By Cramer’s Rule, it is equal to

det(A1)
det(A)

where A1 is the matrix obtained from A by replacing the first column of A

by b. For k = 2, 3, . . . , m+1 we denote by ak the determinant of the square
matrix of degree k whose first column is the all one vector and the rest of
the matrix is equal to the lower right k × (k − 1) submatrix of A1. Note
that, for k = 2, 3, . . . , m,

ak+1 = tak + bk

where bk is the determinant of the lower right k × k submatrix of A for
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k = 2, 3, . . . , m. Note that

bk = (1 + pt2)bk−1 − pt2bk−2.

Therefore,

ak+1 − tak = (1 + pt2)(ak − tak−1)− pt2(ak−1 − tak−2),

equivalently,

ak+1 − pt2ak = (t + 1)(ak − pt2ak−1)− t(ak−1 − pt2ak−2). (11)

We claim that

ak+1 = pkt2k +
k−1∑

j=0

(−pjt2j+1 + pjt2j).

We denote the right hand side by ck+1. It suffices to show that ak = ck for
k = 2, 3, 4 and ck and ak satisfy the same recursive equation. It is easy to
show that, for each k, ck+1 − pt2ck = 1 − t, and (11) hold with replacing
ak+1 − pt2ak by 1− t. Therefore, we obtain from (10) that

δp(t) =
Z0(t)

(1− t)−2
=

am+1

(1− t)2
(1− t)2 = am+1.

This completes the proof of Theorem 1.2. Note that a2 = 1− t + pt2. This
implies that Theorem 1.1 holds also when |S| = 2. This completes the proof
of Theorem 1.1.
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