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Abstract. We investigate the indecomposable decomposition of the modu-

lar standard modules of two families of association schemes of finite order.
First, we show that, for each prime number p, the standard module over a

field F of characteristic p of a residually thin scheme S of p-power order is

an indecomposable FS-module. Second, we describe the indecomposable de-
composition of the standard module over a field of positive characteristic of a

wreath product of finitely may association schemes of rank 2.

1. Introduction

It is easy to see that algebraically isomorphic association schemes have isomor-
phic standard modules over algebraically closed fields of characteristic 0. In [3],
the first author considered modular adjacency algebras and standard modules of
cyclotomic association schemes, and gave direct sum decompositions of the stan-
dard modules. He determined indecomposable decompositions only for the case
where the representation types were finite, or tame and the dimensions of algebras
were small. In general, it is hard to describe indecomposability of a given module,
especially if the representation type of the algebra is wild. For representation types,
see [6], for example.

In this article, we provide indecomposable decompositions of modular standard
modules for two families of association schemes. Let F be a field of positive charac-
teristic p. In Section 4, we consider residually thin schemes of p-power order (called
p-schemes in [8]). In this case, the standard modules are indecomposable (Theorem
4.2). To prove this, we consider multiple wreath products of thin schemes given by
the cyclic groups of order p and show that their standard modules are indecom-
posable. Since residually thin schemes are fissions of such wreath products, we see
that their standard modules are indecomposable. In Section 5, we consider multi-
ple wreath products of schemes of rank 2. This is one of the simplest examples of
association schemes but the structure of their standard module is not always easy
to describe. The adjacency algebra is isomorphic to

F ⊕ · · · ⊕ F ⊕ F [u1, . . . , un]/(uiuj | 1 ≤ i, j ≤ n).

Therefore the representation type of the algebra is finite if n = 0, 1, tame if n = 2,
and wild if n ≥ 3. We completely determine indecomposable decompositions of
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standard modules for them (Theorem 5.1). This is the first result on indecompos-
able decompositions for wild adjacency algebras of association schemes.

In Section 2, we give the definition of an association scheme. In Section 3, we
define an algebra V and its subalgebra W and show that V is indecomposable as a
W -module (Proposition 3.3). This is a key result in this article.

Throughout this article, we denote by In the identity matrix of degree n, and
by Jn the n× n matrix all of whose entries are one.

2. Association schemes

In this section, we will give necessary definitions for association schemes and
their representations. For details, see [1, 8].

Let X be a finite set, and let S be a collection of non-empty subsets of X ×X.
We call (X,S) an association scheme or a scheme if the following conditions hold:

(1) X ×X =
⋃
s∈S s and s ∩ s′ = ∅ for s 6= s′, s, s′ ∈ S,

(2) 1X = {(x, x) | x ∈ X} ∈ S,
(3) s∗ = {(y, x) | (x, y) ∈ s} ∈ S for s ∈ S, and
(4) for s, t, u ∈ S, there is an integer pust such that ]{z ∈ X | (x, z) ∈ s, (z, y) ∈

t} = pust whenever (x, y) ∈ u.

In this case, we also say that S is an association scheme. The number p1Xss∗ is
called the valency of s ∈ S and denoted by ns. We call the number |X| the order
of the association scheme (X,S). We denote by MX(R) the full matrix algebra
over a commutative ring R with unity, where both rows and columns of whose
matrices are indexed by the set X. For s ⊂ X × X, we define the adjacency
matrix As ∈ MX(Z) by (As)xy = 1 if (x, y) ∈ s and (As)xy = 0 otherwise. By
definition, ZS =

⊕
s∈S ZAs is a subalgebra of MX(Z). Let R be a commutative

ring with unity. We define an R-subalgebra RS = R⊗ZZS of MX(R) and call it the
adjacency algebra of (X,S) over R. We also write RX for the adjacency algebra of
X = (X,S). A representation of (X,S) over R is an R-algebra homomorphism from
RS to Mn(R) for some degree n. Since RS is defined as a subalgebra of MX(R),
the inclusion map is a representation and we call it the standard representation
of (X,S) over R. The corresponding RS-module is called the standard module of
(X,S) over R. The standard module has a natural basis X, so we denote it by RX.

A subset T of S is said to be closed if pust = 0 for all s, t ∈ T and u 6∈ T . A
closed subset defines subschemes and the factor scheme. An association scheme
(X,S) is said to be thin if ns = 1 for all s ∈ S. A thin association schemes are
obtained by a regular permutation representation of a finite group. Thus a thin
scheme is essentially a finite group. The thin residue Oθ(S) is the smallest closed
subset of S such that the factor scheme S//Oθ(S) is thin. Define (Oθ)n(S) by
Oθ((Oθ)n−1(S)) inductively. An association scheme (X,S) is said to be residually
thin if (Oθ)n(S) = 1 for some n. For details, see [8].

Let X = (X,S) and Y = (X,T ) be association schemes on a common underlying
set X. When every t ∈ T is a union of some subset of S, we say that Y is a fusion
of X and X is a fission of Y. In this case, the adjacency algebra RT is a subalgebra
of RS.

Let X = (X,S) and Y = (Y, T ) be association schemes with adjacency matri-

ces {Ai}di=0 and {A′i}
f
i=0, respectively. We suppose that A0 and A′0 are identity



MODULAR STANDARD MODULES 3

matrices. For s ∈ S and t ∈ T , we set

s× t = {((x, y), (x′, y′)) | (x, x′) ∈ s, (y, y′) ∈ t} ⊂ (X × Y )× (X × Y )

and

S × T = {s× t | s ∈ S, t ∈ T}.
Then (X × Y, S × T ) is an association scheme, called the direct product of X and
Y, and denoted by X × Y. The adjacency matrices of X × Y are (d + 1)(f + 1)
matrices:

A0 ⊗A′0, . . . , Ad ⊗A′f .
For s ∈ S, we put

s̃ = {((x, y), (x′, y)) | (x, x′) ∈ s, y ∈ Y } ⊂ (X × Y )× (X × Y ).

For t ∈ T , we put

t̃ = {((x, y), (x′, y′)) | x, x′ ∈ X, (y, y′) ∈ t} ⊂ (X × Y )× (X × Y ).

Also we put

S o T = {s̃ | s ∈ S} ∪ {t̃ | t ∈ T\{1Y }}.
Then (X × Y, S o T ) is an association scheme, called the wreath product of X and
Y, and denoted by X oY. The adjacency matrices of X oY are d+ f + 1 matrices:

A0 ⊗ I|Y |, . . . , Ad ⊗ I|Y |, J|X| ⊗A′1, . . . , J|X| ⊗A′f .

For irreducible representations of wreath products, see [4].
It is clear that the wreath product X oY is a fusion scheme of X×Y. This means

that R(S o T ) is a subalgebra of R(S × T ).
Let X = (X,S) be an association scheme. The cardinality of S is called the rank

of X. For any finite set X with |X| ≥ 2, there is a unique association scheme on X
of rank 2, namely it is (X, {1X , (X ×X) \ 1X}).

Let X = (X,S) be an association scheme with a closed subset T . A subscheme
Yx = (X,S)xT (see [8, §1.5] for definition) depends on x ∈ X. Subschemes are
algebraically isomorphic but not necessarily isomorphic. We will give an easy lemma
without a proof.

Lemma 2.1. Let X = (X,S) be an association scheme with a closed subset T .
Suppose that all subschemes Yx (x ∈ X) of X defined by T are isomorphic. Then
X is a fission scheme of the wreath product Yx o (S//T ).

3. Indecomposability of a module

In this section, for ni ≥ 2 (i = 1, . . . , r), we define an algebra V = V (n1 . . . , nr)
and a subalgebra W = W (n1, . . . , nr) and prove that V is indecomposable as a
W -module in Proposition 3.3.

Let F be a field and n1, . . . , nr be integers which are greater than or equal to 2.
We define a finite dimensional F -algebra V by

V = V (n1, . . . , nr) = F [t1, . . . , tr]/(t
n1
1 , . . . , tnr

r ).

We write ti in the factor ring V by the same letter ti. The set

B = {te11 . . . terr | 0 ≤ ei < ni (1 ≤ i ≤ r)}
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is a basis of V . We use the lexicographical order in sequences of powers for the basis
and write a base te = te11 . . . terr for e = (e1, . . . , er). Let us put V>e =

⊕
f>e F t

f .
For any element α of V , we can write uniquely as

α = cet
e + β, (ce ∈ F \ {0}, β ∈ V>e).

We consider a subalgebra W = W (n1, . . . , nr) of V with basis

B′ = {1} ∪

(
r⋃
i=1

{tn1−1
1 . . . t

ni−1−1
i−1 teii | 1 ≤ ei ≤ ni − 1}

)
.

We can consider V as a right W -module.
By considering products of elements in B′, easily we have the structure of W ,

that is
W = F [u0, u1, . . . , u`]/I,

where ` =
∑r
i=2(ni − 1) and I is the ideal generated by

{un1
0 } ∪ {u2i | 1 ≤ i ≤ `} ∪ {uiuj | 0 ≤ i < j ≤ `}.

We remark that the algebra W has wild representation type when ` ≥ 2 (see [6],
for example), and representation theory is difficult in this case.

We show that the endomorphism algebra EndW (V ) is a local algebra so that we
prove VW is indecomposable.

Lemma 3.1. For ϕ ∈ EndW (V ) and 0 6= α ∈ Kerϕ, put α = cet
e + β (ce ∈

F \ {0}, β ∈ V>e), we suppose that e < (n1 − 1, . . . , nr − 1). Then there exist a
sequence f and 0 6= α′ = cf t

f + γ (cf ∈ F \ {0}, γ ∈ V>f ) such that f > e and
α′ ∈ Kerϕ.

Proof. We put e = (n1 − 1, . . . , ni−1 − 1, ei, . . . , er), where ei < ni − 1. We remark

that tn1−1
1 . . . t

ni−1−1
i−1 teii ∈ B′ is a common factor of each term of β. Since α ∈ Kerϕ,

0 = ϕ(α) = ϕ(cet
ei+1

i+1 . . . t
er
r + β′)tn1−1

1 . . . t
ni−1−1
i−1 teii .

Multiplying both sides of this equation by tni−ei−1
i , since tn1−1

1 . . . t
ni−1−1
i−1 tni−1

i ∈
B′, we have

0 = ϕ(cet
ei+1

i+1 . . . t
er
r + β′)tn1−1

1 . . . t
ni−1−1
i−1 tni−1

i = ϕ(cet
etni−ei−1
i + βtni−ei−1

i ).

If we put α′ = cet
etni−ei−1
i + βtni−ei−1

i , then the conditions are satisfied. �

Lemma 3.2. For ϕ ∈ EndW (V ), ϕ is an isomorphism if and only if ϕ(t(n1−1,...,nr−1)) 6=
0.

Proof. If ϕ is an isomorphism, then it is clear that ϕ(t(n1−1,...,nr−1)) 6= 0. We
assume that ϕ is not an isomorphism. This means that Kerϕ 6= 0. By repeatedly
using Lemma 3.1, we can conclude that t(n1−1,...,nr−1) ∈ Kerϕ. �

Now we can prove the main result in this section.

Proposition 3.3. The endomorphism algebra EndW (V ) is a local algebra. Namely,
V is indecomposable as a right W -module.

Proof. If ϕ is a non-isomorphism and ψ ∈ EndW (V ), then clearly ϕψ and ψϕ are
non-isomorphisms. Suppose that both ϕ and ψ are non-isomorphisms. Then, by
Lemma 3.2, ϕ + ψ is not an isomorphism. Hence the set of all non-isomorphisms
in EndW (V ) is an ideal of EndW (V ), and thus EndW (V ) is local by [5, I, §5]. �
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We will give a matrix form of Proposition 3.3. We consider a regular represen-
tation of V . Put Nn the n× n matrix of the form

Nn =



0 1
0 1

. . .
. . .

. . . 1
0

 .

Then Φ : te11 . . . terr 7→ Ne1
n1
⊗ · · · ⊗Ner

nr
is a regular representation of V .

Proposition 3.4. The restriction Φ to W is an indecomposable representation of
W .

4. Residually thin schemes of prime power order

Let F be a field of characteristic p, and let (X,S) be a residually thin association
scheme of p-power order, a p-scheme in [8]. In this section, we will show that the
standard module FX is an indecomposable FS-module. Thus the indecomposable
decomposition of the standard module FX is determined for this case.

We need one lemma.

Lemma 4.1. Let F be a field of characteristic p, and let Cp be the association
scheme given by the regular permutation representation of the cyclic group order p.
Then the standard module of the wreath product Cp o· · ·oCp over F is indecomposable.

Proof. We can write Cp = (Cp, Cp), where Cp is the cyclic group of order p. We
know that FCp ∼= F [t]/(tp) and the all-one matrix Jp corresponds to tp−1. The
standard module of Cp o · · · o Cp (r-times) is F (Cp × · · · ×Cp). The module F (Cp ×
· · · × Cp) has a natural algebra structure and it is easy to see that

F (Cp × · · · × Cp) ∼= FCp ⊗ · · · ⊗ FCp
∼= F [t]/(tp)⊗ · · · ⊗ F [t]/(tp)
∼= F [t1, . . . , tr]/(t

p
1, . . . , t

p
r)

= V (p, . . . , p).

Now the adjacency algebra F (Cp o · · · oCp) is a subalgebra of F (Cp × · · · ×Cp), and
since Jp corresponds tp−1, we have F (Cp o · · · oCp) ∼= W (p, . . . , p). Thus the standard
module is indecomposable by Proposition 3.3. �

Now we show one of the main results in this article.

Theorem 4.2. Let F be a field of characteristic p, and let (X,S) be a residually
thin association scheme of p-power order. Then the standard module FX is an
indecomposable FS-module.

Proof. By definition, there is a series of closed subsets

S = S0 ⊃ S1 ⊃ · · · ⊃ Sr = 1

such that Si−1//Si ∼= Cp for i = 1, . . . , r. Therefore, (X,S) is a fission scheme of
Cp o · · · oCp by Lemma 2.1 and the adjacency algebra F (Cp o · · · oCp) is a subalgebra
of FS. We can assume that the standard modules FX are common. The standard
module is indecomposable as an F (Cp o · · · o Cp)-module by Lemma 4.1, and thus it
is indecomposable as an FS-module. �
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We give an easy application as a corollary to Theorem 4.2, though it is not so
hard to prove it by combinatorial argument [8, Corollary 2.4.7]. An association
scheme (X,S) is said to be p′-valenced if p - ns for all s ∈ S.

Corollary 4.3. Let (X,S) be a p′-valenced residually thin association scheme of
p-power order. Then (X,S) is thin.

Proof. We fix x ∈ X. The map f : FS → FX, f(As) = xAs is an FS-module
monomorphism. Since (X,S) is p′-valenced, FS is a symmetric algebra by [2,
Corollary 4.3] and thus FS is an injective FS-module. Therefore the map f splits,
namely FS is isomorphic to a direct summand of FX. However, by Theorem 4.2,
FX is indecomposable. This is possible only if |S| = |X|, namely (X,S) is thin. �

5. Wreath product of schemes of rank 2

Let X1, . . . , Xr be finite sets. For each element i ∈ {1, ..., r}, let Si be an
association scheme of order qi (≥ 2) and rank 2 on Xi . Define X = X1 × · · · ×Xr

and S = S1 o · · · o Sr. Then S is an association scheme on X. Association schemes
of this type have been characterized in [7, Theorem A]. The adjacency matrices are
described as follows

Ai = Jq1 ⊗ · · · ⊗ Jqi−1
⊗ (Jqi − Iqi)⊗ Iqi+1

⊗ · · · ⊗ Iqr (i = 0, 1, . . . , r).

We replace the basis {Ai | i = 0, 1, . . . , r} of the adjacency algebra with {Bi | i =
0, 1, . . . , r} where

Bi =

i∑
j=0

Aj = Jq1 ⊗ · · · ⊗ Jqi ⊗ Iqi+1
⊗ · · · ⊗ Iqr (i = 0, 1, . . . , r).

Let F be a field of characteristic p. The adjacency algebra is a subalgebra of
MX1

(F )⊗ · · · ⊗MXr
(F ) with basis {Bi | i = 0, 1, . . . , r} and the standard module

is F (X1 × · · · ×Xr) ∼= FX1 ⊗ · · · ⊗ FXr.
The space FXi has a natural basis Xi = {x1, . . . , xqi}. For each i ∈ {1, . . . , r},

we replace this basis with {y1, . . . , yqi} where

y1 = x1, y2 =

qi∑
j=1

xj , yk = xk − x1 (k = 3, 4, . . . , qi),

if p | qi, and

y1 =

qi∑
j=1

xj , yk = xk − x1 (k = 2, 3, · · · , qi).

if p - qi. The representing matrix of Jqi with respect to the basis {y1, . . . , yqi} is
0 1 · · · 0
0 0 · · · 0
· · · · · ·

0 · · · · · · 0

 if p | qi, and


qi 0 · · · 0
0 0 · · · 0
· · · · · ·

0 · · · · · · 0

 if p - qi.

We set

• ∆ = {i | 1 ≤ i ≤ r, p | qi},
• Ti = {1, 2} if i ∈ ∆ and Ti = {1} if i 6∈ ∆,
• Ui =

⊕
j∈Ti

Fyj , and

• δ(k) = |∆ ∩ {1, . . . , k}|.
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Now we show the main result in this section.

Theorem 5.1. Let (Xi, Si), i = 1, 2, . . . , r, be association schemes of rank 2.
We have an indecomposable decomposition of the standard module of (X,S) =
(X1 × · · · ×Xr, S1 o · · · o Sr) :

FX = FX1 ⊗ · · · ⊗ FXr =

r⊕
i=0

⊕
U1 ⊗ · · · ⊗ Ui ⊗ Fy`i+1

⊗ · · · ⊗ Fy`r ,

where the second direct sum runs over all (`i+1, . . . , `r) such that `i+1 6∈ Ti+1 and
1 ≤ `k ≤ qk (k = i + 2, . . . , r). Moreover, the indecomposable direct summands
U1 ⊗ · · · ⊗ Ui ⊗ Fy`i+1

⊗ · · · ⊗ Fy`r and U1 ⊗ · · · ⊗ Ui′ ⊗ Fy`′
i′+1
⊗ · · · ⊗ Fy`′r are

isomorphic as FS-modules if and only if i = i′.

Proof. It is easy to see that the sum is direct and every direct summand is an
FS-submodule of FX.

We consider a direct summand U = U1 ⊗ · · · ⊗Ui ⊗ Fy`i+1
⊗ · · · ⊗ Fy`r . We set

Mk =

(
0 1
0 0

)
if k ∈ ∆, and Mk =

(
qk
)

if k 6∈ ∆.

Then the action of Bj on U is

M1 ⊗ · · · ⊗Mj ⊗ I ⊗ · · · ⊗ I

for 0 ≤ j ≤ i, where I is the identity matrix of degree 1 or 2, and 0 for j > i. By the
action of {Bi} on the summands, we can characterize isomorphic direct summands.
We need to show that U is indecomposable. We consider a subalgebra W of FS
generated by {Bj | 1 ≤ j ≤ i, j ∈ ∆}. We can see that W ∼= W (2, . . . , 2) (δ(i)-
times), defined in section 3, and the action of W on U is just the representation
in Proposition 3.4 up to non-zero scalar factors. Thus FX is an indecomposable
W -module, and so is an indecomposable FS-module. �

We set

Vi = U1 ⊗ · · · ⊗ Ui ⊗ Fy`i+1
⊗ · · · ⊗ Fy`r

where `i+1 6∈ Ti+1. The dimension of Vi is 2δ(i) and Vi appears (qi+1−µ)
∏r
k=i+2 qk

times in FX, where µ = 2 if p | qi+1 and µ = 1 otherwise.
If p - qj for 1 ≤ j ≤ m− 1 and p | qm, then {V0, · · · , Vm} is the complete set of

isomorphism classes of simple FS-modules, Vk is not a simple FS-module if k > m,
and all composition factors of Vk are Vm if k > m.

The structure of the adjacency algebra FS is

FS ∼= F ⊕ · · · ⊕ F︸ ︷︷ ︸
m-times

⊕F [u1, . . . , ur−m]/(uiuj | 1 ≤ i, j ≤ r −m).

Therefore the representation type of FS is finite if 0 ≤ r−m ≤ 1, tame if r−m = 2,
and wild if r −m ≥ 3.
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