Simplicity of p-blocks of modular adjacency algebras of association schemes

Akihide Hanaki *

Abstract

A criterion is given for blocks of modular adjacency algebras of association schemes to be simple.

1 Introduction

In [4], the author proved the following theorem.
Theorem 1.1. Let (X, S) be an association scheme, and let F be a field of characteristic p. Then the adjacency algebra FS is semisimple if and only if p does not divide the Frame number $\mathcal{F}(S)$.

For the definition of the Frame number, see $\S 2.4$.
The notion of an association scheme generalizes the notion of a finite group, so that Theorem 1.1 is a straightforward generalization of Maschke's theorem on finite groups [7, III. Theorem 1.22].

Example 1.2. Let (X, S) be a thin association scheme defined by the symmetric group \mathfrak{S}_{3} of degree 3. Then the Frame number of S is

$$
\mathcal{F}(S)=6^{6} \times \frac{1 \times 1 \times 1 \times 1 \times 1 \times 1}{1 \times 1 \times 2^{4}}=2^{2} \times 3^{6}=2916
$$

Thus the adjacency algebra $F S$ is semisimple if and only if $p \neq 2,3$. However, in this case, the adjacency algebra is just the group algebra. Therefore, it is characterized by the group order $\left|\mathfrak{S}_{3}\right|=6$ in Maschke's theorem.

For a finite group G and a field F of characteristic p, we know that

$$
\begin{aligned}
p \nmid|G| & \Longleftrightarrow \text { the principal block of } F G \text { is simple } \\
& \Longleftrightarrow F G \text { is semisimple. }
\end{aligned}
$$

[^0]For an association scheme (X, S), we still have

$$
p \nmid|X| \Longleftrightarrow \text { the principal block of } F S \text { is simple }
$$

but these two conditions are not equivalent to the fact that $F S$ is semisimple. However, this equivalence can also be considered as a generalization of Maschke's theorem, a generalization which is different from the generalization provided by Theorem 1.1.

In this article, we will divide the Frame number to blocks and give a criterion for blocks to be simple. In $\S 3$, we define a matrix T_{B} for each block B of $F S$ such that the determinant of T_{B} decides on the simplicity of the block B (Theorem 3.2). Also we will see that the product of $\left(\operatorname{det} T_{B}\right)^{2}$ for all blocks B is almost equal to the Frame number, and that provides us also with a new proof of Theorem 1.1.

2 Preliminaries

2.1 Association schemes and adjacency algebras

Let X be a finite set, and let S be a partition of $X \times X$. The pair (X, S) is said to be an association scheme if
(1) $1=\{(x, x) \mid x \in X\} \in S$,
(2) for every $s \in S, s^{*}=\{(y, x) \mid(x, y) \in s\} \in S$,
(3) for every triple $(s, t, u) \in S^{3}$, there is a non-negative integer $p_{s t}^{u}$ such that $\sharp\{z \in X \mid$ $(x, z) \in s,(z, y) \in t\}=p_{s t}^{u}$ when $(x, y) \in u$.

We denote by $M_{X}(R)$ the full matrix ring over a commutative ring R where both rows and columns of matrices are indexed by the set X. For $s \subset X \times X$, we define the adjacency matrix $\sigma_{s} \in M_{X}(\mathbb{Z})$ whose (x, y)-entry is 1 if $(x, y) \in s$ and 0 otherwise. Using adjacency matrices, we can see that the conditions (1), (2), (3) are equivalent to the following conditions :
(1) there is a $1 \in S$ such that σ_{1} is the identity matrix,
(2) for every $s \in S$, there is an $s^{*} \in S$ such that $\sigma_{s^{*}}$ is the transposed matrix of σ_{s},
(3) for every triple $(s, t, u) \in S^{3}$, there is a non-negative integer $p_{s t}^{u}$ such that $\sigma_{s} \sigma_{t}=$ $\sum_{u \in S} p_{s t}^{u} \sigma_{u}$.

For details, see [2] or [8].
Let (X, S) be an association scheme. By the condition (3), we can define a \mathbb{Z}-algebra $\mathbb{Z} S=\bigoplus_{s \in S} \mathbb{Z} \sigma_{s} \subset M_{X}(\mathbb{Z})$. For a commutative ring R with identity, we can define an R-algebra $R S=R \otimes_{\mathbb{Z}} \mathbb{Z} S \subset M_{X}(R)$. We call $R S$ the adjacency algebra of (X, S) over R. In this article, a "representation" of (X, S) over R means a representation of $R S$, namely an R-algebra homomorphism from $R S$ to the full matrix algebra $M_{n}(R)$ for some degree n, and a "character" means the trace function of a representation.

Let R be a commutative ring with identity. Since $R S$ is defined as a subalgebra of $M_{X}(R)$, the map $\Gamma_{R}: R S \rightarrow M_{X}(R), \Gamma_{R}\left(\sigma_{s}\right)=\sigma_{s}$ is a representation. We call Γ_{R} the standard representation of (X, S) over R. We denote by γ_{R} the standard character of (X, S) over R, the character of the standard representation. By definition, we can see that $\gamma_{R}\left(\sigma_{1}\right)=|X| 1_{R}$ and $\gamma_{R}\left(\sigma_{s}\right)=0$ for $1 \neq s \in S$. We put $n_{s}=p_{s s^{*}}^{1}$ for $s \in S$, and call this number the valency of $s \in S$. Easily we can see that every row or column of σ_{s} contains exactly n_{s} ones. Thus the map $\sigma_{s} \mapsto n_{s} 1_{R}$ is a representation of $R S$, and we call this the trivial representation.

Now we consider the case $R=\mathbb{C}$, the complex number field. It is known that $\mathbb{C} S$ is semisimple [8, Theorem 4.1.3 (ii)]. We denote by $\operatorname{Irr}(S)$ the set of all irreducible characters of $\mathbb{C} S$. Considering the irreducible decomposition of the standard character, we set $\gamma_{\mathbb{C}}=\sum_{\chi \in \operatorname{Irr}(S)} m_{\chi} \chi$. We call m_{χ} the multiplicity of $\chi \in \operatorname{Irr}(S)$.

2.2 Splitting p-modular systems and p-blocks

Let p be a rational prime number. Like in modular representation theory of finite groups, we consider a splitting p-modular system (K, R, F) of an association scheme (X, S). For details, see [7]. Now R is a complete discrete valuation ring with the maximal ideal πR, K the quotient field of R of characteristic zero, $F=R / \pi R$ the residue class field of characteristic p, and algebras $K S$ and $F S$ are splitting algebras. There is a natural correspondence between representations of $K S$ and $\mathbb{C} S$. Thus we can suppose that $\operatorname{Irr}(S)$ is the set of all irreducible characters of $K S$.

Let $R S=B_{0} \oplus \cdots \oplus B_{\ell}$ be the indecomposable direct sum decomposition of $R S$ as a two-sided ideal. We call B_{i} a block or a p-block of (X, S) and denote by $\operatorname{Bl}(S)$ the set of all blocks. We have a decomposition $1_{R S}=e_{B_{0}}+\cdots+e_{B_{\ell}}, e_{B_{i}} \in B_{i}$, and call $e_{B_{i}}$ the block idempotent of B_{i}. Put $F B_{i}=F \otimes_{R} B_{i}$ and $K B_{i}=K \otimes_{R} B_{i}$. Then $F B_{i}$ are also indecomposable as two-sided ideals and we have direct sum decompositions $F S=F B_{0} \oplus \cdots \oplus F B_{\ell}$ and $K S=K B_{0} \oplus \cdots \oplus K B_{\ell}$. We also have a partition $\operatorname{Irr}(S)=\operatorname{Irr}\left(K B_{0}\right) \cup \cdots \cup \operatorname{Irr}\left(K B_{\ell}\right)$, where $\operatorname{Irr}\left(K B_{i}\right)=\left\{\chi \in \operatorname{Irr}(S) \mid \chi\left(e_{B_{i}}\right) \neq 0\right\}$.

We suppose that the trivial character is in $\operatorname{Irr}\left(K B_{0}\right)$ and call B_{0} the principal block.

2.3 Decomposition and Cartan matrices

Let (X, S) be an association scheme, and let (K, R, F) be a splitting p-modular system of (X, S). For every representation Ψ of $K S$, we can take an R-form of Ψ, namely, taking suitable similar representation, we may assume $\Psi\left(\sigma_{s}\right) \in M_{n}(R)$ for any $s \in S[7$, I. Theorem 1.6].

We denote by $\operatorname{Irr}(F S)$ the set of all irreducible characters of $F S$. Note that $\operatorname{Irr}(F S)$ is linearly independent over F. Let Ψ be an irreducible representation of $K S$ affording $\chi \in \operatorname{Irr}(S)$. We suppose $\Psi\left(\sigma_{s}\right) \in M_{n}(R)$ for any $s \in S$. Then we can define an F representation $\bar{\Psi}$. We denote by $d_{\chi \varphi}$ the multiplicity of $\varphi \in \operatorname{Irr}(F S)$ in the representation $\bar{\Psi}$ as an irreducible constituent. The R-form Ψ is not unique for χ, but the number $d_{\chi \varphi}$ is defined [7, I. Theorem 1.9]. We call $d_{\chi \varphi}$ the decomposition number. The matrix $D=\left(d_{\chi \varphi}\right)_{\operatorname{Irr}(S) \times \operatorname{Irr}(F S)}$ is called the decomposition matrix of (X, S).

Let W and W^{\prime} be simple $F S$-modules affording irreducible F-characters φ and φ^{\prime}, respectively. We denote by $c_{\varphi \varphi^{\prime}}$ the multiplicity of W^{\prime} in the projective cover of W as an irreducible constituent. We call $c_{\varphi \varphi^{\prime}}$ the Cartan invariant. The matrix $C=$ $\left(c_{\varphi \varphi^{\prime}}\right)_{\operatorname{Irr}(F S) \times \operatorname{Irr}(F S)}$ is called the Cartan matrix of (X, S). We have $C={ }^{t} D D$ same as in [7, II. Theorem 6.8].

The decomposition matrix D and the Cartan matrix C are decomposed into blocks. Namely, for distinct blocks B and $B^{\prime}, d_{\chi \varphi}=0$ if $\chi \in \operatorname{Irr}(K B)$ and $\varphi \in \operatorname{Irr}\left(F B^{\prime}\right)$, and $c_{\varphi \varphi^{\prime}}=0$ if $\varphi \in \operatorname{Irr}(F B)$ and $\varphi^{\prime} \in \operatorname{Irr}\left(F B^{\prime}\right)$. We write

$$
D=\left(\begin{array}{ccc}
D_{B_{0}} & & \\
& \ddots & \\
& & D_{B_{\ell}}
\end{array}\right), \quad C=\left(\begin{array}{ccc}
C_{B_{0}} & & \\
& \ddots & \\
& & C_{B_{\ell}}
\end{array}\right)
$$

and call D_{B} and C_{B} the decomposition and the Cartan matrices of the block B. We have $C_{B}={ }^{t} D_{B} D_{B}$.

We will give an easy lemma without proof to use it later.
Lemma 2.1. For $B \in \operatorname{Bl}(S)$, the following conditions are equivalent :
(1) $F B$ is a semisimple algebra.
(2) $F B$ is a simple algebra.
(3) $D_{B}=(1)$.
(4) $C_{B}=(1)$.

2.4 Schur relations and the Frame number

Let (X, S) be an association scheme. Write $\operatorname{Irr}(S)=\left\{\chi_{1}, \ldots, \chi_{r}\right\}$ and fix irreducible representations $\Psi^{(i)}$ affording χ_{i} for $i=1, \ldots, r$. For $1 \leq i \leq r$ and $1 \leq j, k \leq \chi_{i}(1)$, define a function $\Psi_{j k}^{(i)}$ which send σ_{s} to the (j, k)-entry of $\Psi^{(i)}\left(\sigma_{s}\right)$.
Theorem 2.2 (Schur relation $[3,5]$). Under the above notations, we have

$$
\frac{m_{\chi_{i}}}{|X|} \sum_{s \in S} \frac{1}{n_{s}} \Psi_{j k}^{(i)}\left(\sigma_{s}\right) \Psi_{j^{\prime} k^{\prime}}^{\left(i^{\prime}\right)}\left(\sigma_{s^{*}}\right)=\delta_{i i^{\prime}} \delta_{j k^{\prime}} \delta_{j^{\prime} k} .
$$

Put $I=\left\{(i, j, k) \mid 1 \leq i \leq r, 1 \leq j, k \leq \chi_{i}(1)\right\}$. Then $|I|=|S|$. We define an $I \times S$ square matrix $T=\left(\Psi_{j k}^{(i)}\left(\sigma_{s}\right)\right)_{(i, j, k), s}$. We have the matrix form of Schur relation.

Theorem 2.3 (Schur relation - matrix form). We have

$$
|X|^{-1} T N^{-1} P^{t} T Q M=E,
$$

where $T_{I \times S}=\left(\Psi_{j k}^{(i)}\left(\sigma_{s}\right)\right), N_{S \times S}=\operatorname{diag}\left(n_{s}\right), M_{I \times I}=\operatorname{diag}\left(m_{\chi_{i}}\right), P_{S \times S}$ is the permutation matrix representing $s \mapsto s^{*}$, $Q_{I \times I}$ is the permutation matrix representing $(i, j, k) \mapsto$ (i, k, j), and E is the identity matrix.

Considering the determinants of the equation in Theorem 2.3, we have

$$
(\operatorname{det} T)^{2}=\varepsilon|X|^{|S|}(\operatorname{det} N)(\operatorname{det} M)^{-1}=\varepsilon|X|^{|S|} \frac{\prod_{s \in S} n_{s}}{\prod_{\chi \in \operatorname{Irr}(S)} m_{\chi}^{\chi(1)^{2}}}
$$

where $\varepsilon=(\operatorname{det} P)(\operatorname{det} Q) \in\{-1,1\}$. We put $\mathcal{F}(S)=\left|(\operatorname{det} T)^{2}\right|$ and call this number the Frame number of (X, S). It is known that $\mathcal{F}(S)$ is a rational integer.

3 Simplicity of p-blocks

Let (X, S) be an association scheme, and let (K, R, F) be a splitting p-modular system of (X, S). As in $\S 2.4$, write $\operatorname{Irr}(S)=\left\{\chi_{1}, \ldots, \chi_{r}\right\}$ and fix irreducible representations $\Psi^{(i)}$ affording χ_{i} for $i=1, \ldots, r$. We suppose that $\Psi^{(i)}\left(\sigma_{s}\right) \in M_{\chi_{i}(1)}(R)$ for any $s \in S$. Recall that $I=\left\{(i, j, k) \mid 1 \leq i \leq r, 1 \leq j, k \leq \chi_{i}(1)\right\}$. Put $I_{B}=\left\{(i, j, k) \mid \chi_{i} \in \operatorname{Irr}(K B), 1 \leq\right.$ $\left.j, k \leq \chi_{i}(1)\right\}$. Then $I=\bigcup_{B \in \operatorname{Bl}(S)} I_{B}$ is a partition of I. As before, we define $\Psi_{j k}^{(i)}$ and the matrix $T_{I \times S}=\left(\Psi_{j k}^{(i)}\left(\sigma_{s}\right)\right)$. Also we define an $I_{B} \times S$ matrix $T_{B}^{\prime}=\left(\Psi_{j k}^{(i)}\left(\sigma_{s}\right)\right)$ for $B \in \operatorname{Bl}(S)$. We can write

$$
T=\left(\begin{array}{c}
T_{B_{0}}^{\prime} \\
\vdots \\
T_{B_{\ell}}^{\prime}
\end{array}\right)
$$

We also consider a partition of S. We can apply [7, III. Lemma 11.1] and get the following lemma.

Lemma 3.1. There is a partition $S=\bigcup_{B \in \mathrm{Bl}(S)} S_{B}$ such that $\bigcup_{B \in \mathrm{Bl}(S)}\left\{e_{B} \sigma_{s} \mid s \in S_{B}\right\}$ is an R-basis of $R S$.

We call the partition in Lemma 3.1 a block decomposition of S. We note that the decomposition is not unique. For $s \in S$, we write B_{s} for the block such that $s \in S_{B_{s}}$. Now we define an $I \times S$ matrix $T^{\prime}=\left(\Psi_{j k}^{(i)}\left(e_{B_{s}} \sigma_{s}\right)\right)$. Since $\Psi_{j k}^{(i)}\left(e_{B_{s}} \sigma_{s}\right)=0$ if $\chi_{i} \notin \operatorname{Irr}\left(K B_{s}\right)$, we can write

$$
T^{\prime}=\left(\begin{array}{ccc}
T_{B_{0}} & & 0 \\
& \ddots & \\
0 & & T_{B_{\ell}}
\end{array}\right)
$$

where T_{B} is an $I_{B} \times S_{B}$ square matrix over R.
Now we can state our main result.
Theorem 3.2. Let (X, S) be an association scheme, and $B \in \operatorname{Bl}(S)$. Then $F B$ is simple if and only if $\operatorname{det} T_{B}$ is a unit in R.

Proof. For $B \in \operatorname{Bl}(S)$, we show that the following conditions are equivalent.
(i) $F B$ is semisimple.
(ii) $F B$ is simple.
(iii) The F-representation $\overline{\Psi^{(i)}}$ is surjective for every $\chi_{i} \in \operatorname{Irr}(K B)$.
(iv) T_{B} is invertible in $M_{\left|S_{B}\right|}(R)$.
(v) $\operatorname{det} T_{B}$ is a unit in R.

Equivalences (i) \Longleftrightarrow (ii) and (iii) \Longleftrightarrow (iv) \Longleftrightarrow (v) are clear. Also it is easy to see (iii) \Longrightarrow (ii). If (ii) holds, then (iii) holds by Lemma 2.1.

Theorem 1.1 is proved again as a corollary to Theorem 3.2.
Corollary 3.3 ([4, Theorem 4.2]). Let (X, S) be an association scheme, and let F be a field of characteristic p. Then the adjacency algebra $F S$ is semisimple if and only if p does not divide the Frame number $\mathcal{F}(S)$.

Proof. Since the adjacency algebra is defined over the prime field \mathbb{F}_{p} and \mathbb{F}_{p} is perfect, we may assume that the field F is arbitrary large. Also it is easy to see that $\mathcal{F}(S)=$ $u \prod_{B \in \mathrm{Bl}(S)}\left(\operatorname{det} T_{B}\right)^{2}$ for some unit u in R. Therefore the assertion is clear by Theorem 3.2.

We have shown in Theorem 3.2 that the determinant of T_{B} decides the simplicity of the block. However the matrix T_{B} is depending on the choice of representations $\Psi^{(i)}$ and a block decomposition of S. We give the following proposition.

Proposition 3.4. The determinant of T_{B} is unique up to unit factors in R.
Proof. We consider a similarity of a representation. If we change $\Psi^{(i)}\left(\sigma_{s}\right)$ to $P^{-1} \Psi^{(i)}\left(\sigma_{s}\right) P$ for some invertible matrix P over K, T_{B} becomes

$$
\left(\begin{array}{ccccc}
1 & & & & 0 \\
& \ddots & & & \\
& & P^{-1} \otimes^{t} P & & \\
& & & \ddots & \\
0 & & & & 1
\end{array}\right) T_{B}
$$

and $\operatorname{det}\left(P^{-1} \otimes{ }^{t} P\right)=1$. Thus the determinant of T_{B} is not changed.
We consider choices of block decompositions of S. Let $S=\bigcup_{B \in \mathrm{Bl}(S)} S_{B}=\bigcup_{B \in \mathrm{Bl}(S)} S_{B}^{\prime}$ be two block decompositions. If we change the basis, T_{B} becomes $T_{B} Q$ for some unimodular matrix Q over R since $\left\{e_{B} \sigma_{s} \mid s \in S_{B}\right\}$ and $\left\{e_{B} \sigma_{s} \mid s \in S_{B}^{\prime}\right\}$ are R-bases of B. Therefore $\operatorname{det} T_{B} Q=\left(\operatorname{det} T_{B}\right)(\operatorname{det} Q)$ and $\operatorname{det} Q$ is a unit in R.

Example 3.5. Let (X, S) be the unique non-commutative association scheme with
$|X|=15$. The matrix T is as follows.

	σ_{0}	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}
$\Psi_{11}^{(1)}$	1	1	1	4	4	4
$\Psi_{11}^{(2)}$	1	1	1	-1	-1	-1
$\Psi_{11}^{(3)}$	1	0	-1	2	0	-2
$\Psi_{21}^{(3)}$	0	-1	1	-2	2	0
$\Psi_{12}^{(3)}$	0	1	-1	0	2	-2
$\Psi_{22}^{(3)}$	1	-1	0	-2	0	2

We consider the case $p=2$. Then $\operatorname{Bl}(S)=\left\{B_{0}, B_{1}, B_{2}\right\}$ and we have

$$
S_{B_{0}}=\left\{\sigma_{0}\right\}, \quad S_{B_{1}}=\left\{\sigma_{3}\right\}, \quad S_{B_{2}}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{4}, \sigma_{5}\right\}
$$

and

$$
\operatorname{Irr}\left(K B_{0}\right)=\left\{\chi_{1}\right\}, \quad \operatorname{Irr}\left(K B_{1}\right)=\left\{\chi_{2}\right\}, \quad \operatorname{Irr}\left(K B_{2}\right)=\left\{\chi_{3}\right\} .
$$

The matrix T^{\prime} is as follows.

	$e_{B_{0}} \sigma_{0}$	$e_{B_{1}} \sigma_{3}$	$e_{B_{2}} \sigma_{1}$	$e_{B_{2}} \sigma_{2}$	$e_{B_{2}} \sigma_{4}$	$e_{B_{2}} \sigma_{5}$
$\Psi_{11}^{(1)}$	1					
$\Psi_{11}^{(2)}$		-1				
$\Psi_{11}^{(3)}$			0	-1	0	-2
$\Psi_{21}^{(3)}$			-1	1	2	0
$\Psi_{12}^{(3)}$			1	-1	2	-2
$\Psi_{22}^{(3)}$			-1	0	0	2

We have $\operatorname{det} T_{B_{0}}=1$, $\operatorname{det} T_{B_{1}}=-1$, $\operatorname{det} T_{B_{2}}=-12$. Therefore, we can see that $F B_{0}$ and $F B_{1}$ are simple and $F B_{2}$ is not simple.

Remark. Let A be a \mathbb{Z}-free \mathbb{Z}-algebra of finite rank such that the \mathbb{C}-algebra $\mathbb{C} \otimes_{\mathbb{Z}}$ A is semisimple. For example, adjacency algebras of coherent configurations [6] and integral standard generalized table algebras [1] satisfy this condition. Then we can apply arguments in this article, except in $\S 2.4$, especially the Frame numbers are not defined for them, in general. We can define T_{B} and Theorem 3.2 holds for them.

Example 3.6. Let X be a finite poset such that $|X| \geq 2$, and let n be a nonzero rational integer. Define a \mathbb{Z}-subalgebra A of $M_{X}(\mathbb{Z})$ by $A_{x y}=\mathbb{Z}$ if $x \leq y$ and $A_{x y}=n \mathbb{Z}$ otherwise. Then $\mathbb{C} \otimes_{\mathbb{Z}} A \cong M_{X}(\mathbb{C})$ is semisimple and Theorem 3.2 holds for A. We can define the matrix T and we have $|\operatorname{det} T|=n^{a}$ where $a=\sharp\{(x, y) \in X \times X \mid x \not \leq y\}$. Thus $A / p A$ is a semisimple \mathbb{F}_{p}-algebra if and only if $p \nmid n$.

Acknowledgments

The author would like to thank anonymous referees for their careful checking and errorcorrections. This work was supported by JSPS KAKENHI Grant Number JP25400011.

References

[1] Z. Arad, E. Fisman, and M. Muzychuk, Generalized table algebras, Israel J. Math. 114 (1999), 29-60.
[2] E. Bannai and T. Ito, Algebraic combinatorics. I, The Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA, 1984.
[3] J. S. Frame, The double cosets of a finite group, Bull. Amer. Math. Soc. 47 (1941), 458-467.
[4] A. Hanaki, Semisimplicity of adjacency algebras of association schemes, J. Algebra 225 (2000), no. 1, 124-129.
[5] D. G. Higman, Schur relations for weighted adjacency algebras, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), Academic Press, London, 1974, pp. 467-477.
[6] \qquad , Coherent configurations. I. Ordinary representation theory, Geometriae Dedicata 4 (1975), no. 1, 1-32.
[7] H. Nagao and Y. Tsushima, Representations of finite groups, Academic Press Inc., Boston, MA, 1989.
[8] P.-H. Zieschang, An algebraic approach to association schemes, Lecture Notes in Mathematics, vol. 1628, Springer-Verlag, Berlin, 1996.

[^0]: *Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan. e-mail : hanaki@shinshuu.ac.jp

