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Abstract

A criterion is given for blocks of modular adjacency algebras of association
schemes to be simple.

1 Introduction

In [4], the author proved the following theorem.

Theorem 1.1. Let (X,S) be an association scheme, and let F be a field of characteristic
p. Then the adjacency algebra FS is semisimple if and only if p does not divide the Frame
number F(S).

For the definition of the Frame number, see §2.4.
The notion of an association scheme generalizes the notion of a finite group, so that

Theorem 1.1 is a straightforward generalization of Maschke’s theorem on finite groups
[7, III. Theorem 1.22].

Example 1.2. Let (X,S) be a thin association scheme defined by the symmetric group
S3 of degree 3. Then the Frame number of S is

F(S) = 66 × 1× 1× 1× 1× 1× 1

1× 1× 24
= 22 × 36 = 2916.

Thus the adjacency algebra FS is semisimple if and only if p 6= 2, 3. However, in this
case, the adjacency algebra is just the group algebra. Therefore, it is characterized by
the group order |S3| = 6 in Maschke’s theorem.

For a finite group G and a field F of characteristic p, we know that

p - |G| ⇐⇒ the principal block of FG is simple

⇐⇒ FG is semisimple.
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For an association scheme (X,S), we still have

p - |X| ⇐⇒ the principal block of FS is simple

but these two conditions are not equivalent to the fact that FS is semisimple. However,
this equivalence can also be considered as a generalization of Maschke’s theorem, a
generalization which is different from the generalization provided by Theorem 1.1.

In this article, we will divide the Frame number to blocks and give a criterion for
blocks to be simple. In §3, we define a matrix TB for each block B of FS such that the
determinant of TB decides on the simplicity of the block B (Theorem 3.2). Also we will
see that the product of (detTB)2 for all blocks B is almost equal to the Frame number,
and that provides us also with a new proof of Theorem 1.1.

2 Preliminaries

2.1 Association schemes and adjacency algebras

Let X be a finite set, and let S be a partition of X ×X. The pair (X,S) is said to be
an association scheme if

(1) 1 = {(x, x) | x ∈ X} ∈ S,

(2) for every s ∈ S, s∗ = {(y, x) | (x, y) ∈ s} ∈ S,

(3) for every triple (s, t, u) ∈ S3, there is a non-negative integer pust such that ]{z ∈ X |
(x, z) ∈ s, (z, y) ∈ t} = pust when (x, y) ∈ u.

We denote by MX(R) the full matrix ring over a commutative ring R where both rows
and columns of matrices are indexed by the set X. For s ⊂ X × X, we define the
adjacency matrix σs ∈ MX(Z) whose (x, y)-entry is 1 if (x, y) ∈ s and 0 otherwise.
Using adjacency matrices, we can see that the conditions (1), (2), (3) are equivalent to
the following conditions :

(1) there is a 1 ∈ S such that σ1 is the identity matrix,

(2) for every s ∈ S, there is an s∗ ∈ S such that σs∗ is the transposed matrix of σs,

(3) for every triple (s, t, u) ∈ S3, there is a non-negative integer pust such that σsσt =∑
u∈S p

u
stσu.

For details, see [2] or [8].
Let (X,S) be an association scheme. By the condition (3), we can define a Z-algebra

ZS =
⊕

s∈S Zσs ⊂ MX(Z). For a commutative ring R with identity, we can define an
R-algebra RS = R ⊗Z ZS ⊂ MX(R). We call RS the adjacency algebra of (X,S) over
R. In this article, a “representation” of (X,S) over R means a representation of RS,
namely an R-algebra homomorphism from RS to the full matrix algebra Mn(R) for
some degree n, and a “character” means the trace function of a representation.
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Let R be a commutative ring with identity. Since RS is defined as a subalgebra of
MX(R), the map ΓR : RS → MX(R), ΓR(σs) = σs is a representation. We call ΓR the
standard representation of (X,S) over R. We denote by γR the standard character of
(X,S) over R, the character of the standard representation. By definition, we can see
that γR(σ1) = |X|1R and γR(σs) = 0 for 1 6= s ∈ S. We put ns = p1ss∗ for s ∈ S, and
call this number the valency of s ∈ S. Easily we can see that every row or column of σs
contains exactly ns ones. Thus the map σs 7→ ns1R is a representation of RS, and we
call this the trivial representation.

Now we consider the case R = C, the complex number field. It is known that CS
is semisimple [8, Theorem 4.1.3 (ii)]. We denote by Irr(S) the set of all irreducible
characters of CS. Considering the irreducible decomposition of the standard character,
we set γC =

∑
χ∈Irr(S)mχχ. We call mχ the multiplicity of χ ∈ Irr(S).

2.2 Splitting p-modular systems and p-blocks

Let p be a rational prime number. Like in modular representation theory of finite groups,
we consider a splitting p-modular system (K,R, F ) of an association scheme (X,S). For
details, see [7]. Now R is a complete discrete valuation ring with the maximal ideal πR,
K the quotient field of R of characteristic zero, F = R/πR the residue class field of
characteristic p, and algebras KS and FS are splitting algebras. There is a natural
correspondence between representations of KS and CS. Thus we can suppose that
Irr(S) is the set of all irreducible characters of KS.

Let RS = B0 ⊕ · · · ⊕ B` be the indecomposable direct sum decomposition of RS as
a two-sided ideal. We call Bi a block or a p-block of (X,S) and denote by Bl(S) the
set of all blocks. We have a decomposition 1RS = eB0 + · · · + eB`

, eBi
∈ Bi, and call

eBi
the block idempotent of Bi. Put FBi = F ⊗R Bi and KBi = K ⊗R Bi. Then FBi

are also indecomposable as two-sided ideals and we have direct sum decompositions
FS = FB0 ⊕ · · · ⊕ FB` and KS = KB0 ⊕ · · · ⊕ KB`. We also have a partition
Irr(S) = Irr(KB0) ∪ · · · ∪ Irr(KB`), where Irr(KBi) = {χ ∈ Irr(S) | χ(eBi

) 6= 0}.
We suppose that the trivial character is in Irr(KB0) and call B0 the principal block.

2.3 Decomposition and Cartan matrices

Let (X,S) be an association scheme, and let (K,R, F ) be a splitting p-modular system
of (X,S). For every representation Ψ of KS, we can take an R-form of Ψ, namely,
taking suitable similar representation, we may assume Ψ(σs) ∈Mn(R) for any s ∈ S [7,
I. Theorem 1.6].

We denote by Irr(FS) the set of all irreducible characters of FS. Note that Irr(FS)
is linearly independent over F . Let Ψ be an irreducible representation of KS affording
χ ∈ Irr(S). We suppose Ψ(σs) ∈ Mn(R) for any s ∈ S. Then we can define an F -
representation Ψ. We denote by dχϕ the multiplicity of ϕ ∈ Irr(FS) in the representation
Ψ as an irreducible constituent. The R-form Ψ is not unique for χ, but the number dχϕ
is defined [7, I. Theorem 1.9]. We call dχϕ the decomposition number. The matrix
D = (dχϕ)Irr(S)×Irr(FS) is called the decomposition matrix of (X,S).
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Let W and W ′ be simple FS-modules affording irreducible F -characters ϕ and ϕ′,
respectively. We denote by cϕϕ′ the multiplicity of W ′ in the projective cover of W
as an irreducible constituent. We call cϕϕ′ the Cartan invariant. The matrix C =
(cϕϕ′)Irr(FS)×Irr(FS) is called the Cartan matrix of (X,S). We have C = tDD same as in
[7, II. Theorem 6.8].

The decomposition matrix D and the Cartan matrix C are decomposed into blocks.
Namely, for distinct blocks B and B′, dχϕ = 0 if χ ∈ Irr(KB) and ϕ ∈ Irr(FB′), and
cϕϕ′ = 0 if ϕ ∈ Irr(FB) and ϕ′ ∈ Irr(FB′). We write

D =

 DB0

. . .

DB`

 , C =

 CB0

. . .

CB`

 ,

and call DB and CB the decomposition and the Cartan matrices of the block B. We
have CB = tDBDB.

We will give an easy lemma without proof to use it later.

Lemma 2.1. For B ∈ Bl(S), the following conditions are equivalent :

(1) FB is a semisimple algebra.

(2) FB is a simple algebra.

(3) DB = (1).

(4) CB = (1).

2.4 Schur relations and the Frame number

Let (X,S) be an association scheme. Write Irr(S) = {χ1, . . . , χr} and fix irreducible
representations Ψ(i) affording χi for i = 1, . . . , r. For 1 ≤ i ≤ r and 1 ≤ j, k ≤ χi(1),

define a function Ψ
(i)
jk which send σs to the (j, k)-entry of Ψ(i)(σs).

Theorem 2.2 (Schur relation [3, 5]). Under the above notations, we have

mχi

|X|
∑
s∈S

1

ns
Ψ

(i)
jk (σs)Ψ

(i′)
j′k′(σs∗) = δii′δjk′δj′k.

Put I = {(i, j, k) | 1 ≤ i ≤ r, 1 ≤ j, k ≤ χi(1)}. Then |I| = |S|. We define an I ×S
square matrix T = (Ψ

(i)
jk (σs))(i,j,k),s. We have the matrix form of Schur relation.

Theorem 2.3 (Schur relation – matrix form). We have

|X|−1TN−1P tTQM = E,

where TI×S = (Ψ
(i)
jk (σs)), NS×S = diag(ns), MI×I = diag(mχi

), PS×S is the permutation
matrix representing s 7→ s∗, QI×I is the permutation matrix representing (i, j, k) 7→
(i, k, j), and E is the identity matrix.
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Considering the determinants of the equation in Theorem 2.3, we have

(detT )2 = ε|X||S|(detN)(detM)−1 = ε|X||S|
∏

s∈S ns∏
χ∈Irr(S)mχ

χ(1)2

where ε = (detP )(detQ) ∈ {−1, 1}. We put F(S) = |(detT )2| and call this number
the Frame number of (X,S). It is known that F(S) is a rational integer.

3 Simplicity of p-blocks

Let (X,S) be an association scheme, and let (K,R, F ) be a splitting p-modular system
of (X,S). As in §2.4, write Irr(S) = {χ1, . . . , χr} and fix irreducible representations Ψ(i)

affording χi for i = 1, . . . , r. We suppose that Ψ(i)(σs) ∈Mχi(1)(R) for any s ∈ S. Recall
that I = {(i, j, k) | 1 ≤ i ≤ r, 1 ≤ j, k ≤ χi(1)}. Put IB = {(i, j, k) | χi ∈ Irr(KB), 1 ≤
j, k ≤ χi(1)}. Then I =

⋃
B∈Bl(S) IB is a partition of I. As before, we define Ψ

(i)
jk and

the matrix TI×S = (Ψ
(i)
jk (σs)). Also we define an IB × S matrix T ′B = (Ψ

(i)
jk (σs)) for

B ∈ Bl(S). We can write

T =

 T ′B0
...
T ′B`

 .

We also consider a partition of S. We can apply [7, III. Lemma 11.1] and get the
following lemma.

Lemma 3.1. There is a partition S =
⋃
B∈Bl(S) SB such that

⋃
B∈Bl(S){eBσs | s ∈ SB}

is an R-basis of RS.

We call the partition in Lemma 3.1 a block decomposition of S. We note that the
decomposition is not unique. For s ∈ S, we write Bs for the block such that s ∈ SBs .

Now we define an I×S matrix T ′ = (Ψ
(i)
jk (eBsσs)). Since Ψ

(i)
jk (eBsσs) = 0 if χi 6∈ Irr(KBs),

we can write

T ′ =

 TB0 0
. . .

0 TB`

 ,

where TB is an IB × SB square matrix over R.
Now we can state our main result.

Theorem 3.2. Let (X,S) be an association scheme, and B ∈ Bl(S). Then FB is
simple if and only if detTB is a unit in R.

Proof. For B ∈ Bl(S), we show that the following conditions are equivalent.

(i) FB is semisimple.

(ii) FB is simple.
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(iii) The F -representation Ψ(i) is surjective for every χi ∈ Irr(KB).

(iv) TB is invertible in M|SB |(R).

(v) detTB is a unit in R.

Equivalences (i) ⇐⇒ (ii) and (iii) ⇐⇒ (iv) ⇐⇒ (v) are clear. Also it is easy to see (iii)
=⇒ (ii). If (ii) holds, then (iii) holds by Lemma 2.1.

Theorem 1.1 is proved again as a corollary to Theorem 3.2.

Corollary 3.3 ([4, Theorem 4.2]). Let (X,S) be an association scheme, and let F be a
field of characteristic p. Then the adjacency algebra FS is semisimple if and only if p
does not divide the Frame number F(S).

Proof. Since the adjacency algebra is defined over the prime field Fp and Fp is perfect,
we may assume that the field F is arbitrary large. Also it is easy to see that F(S) =
u
∏

B∈Bl(S)(detTB)2 for some unit u in R. Therefore the assertion is clear by Theorem
3.2.

We have shown in Theorem 3.2 that the determinant of TB decides the simplicity
of the block. However the matrix TB is depending on the choice of representations Ψ(i)

and a block decomposition of S. We give the following proposition.

Proposition 3.4. The determinant of TB is unique up to unit factors in R.

Proof. We consider a similarity of a representation. If we change Ψ(i)(σs) to P−1Ψ(i)(σs)P
for some invertible matrix P over K, TB becomes

1 0
. . .

P−1 ⊗ tP
. . .

0 1

TB

and det(P−1 ⊗ tP ) = 1. Thus the determinant of TB is not changed.
We consider choices of block decompositions of S. Let S =

⋃
B∈Bl(S) SB =

⋃
B∈Bl(S) S

′
B

be two block decompositions. If we change the basis, TB becomes TBQ for some uni-
modular matrix Q over R since {eBσs | s ∈ SB} and {eBσs | s ∈ S ′B} are R-bases of B.
Therefore detTBQ = (detTB)(detQ) and detQ is a unit in R.

Example 3.5. Let (X,S) be the unique non-commutative association scheme with
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|X| = 15. The matrix T is as follows.

σ0 σ1 σ2 σ3 σ4 σ5

Ψ
(1)
11 1 1 1 4 4 4

Ψ
(2)
11 1 1 1 −1 −1 −1

Ψ
(3)
11 1 0 −1 2 0 −2

Ψ
(3)
21 0 −1 1 −2 2 0

Ψ
(3)
12 0 1 −1 0 2 −2

Ψ
(3)
22 1 −1 0 −2 0 2

We consider the case p = 2. Then Bl(S) = {B0, B1, B2} and we have

SB0 = {σ0}, SB1 = {σ3}, SB2 = {σ1, σ2, σ4, σ5}

and
Irr(KB0) = {χ1}, Irr(KB1) = {χ2}, Irr(KB2) = {χ3}.

The matrix T ′ is as follows.

eB0σ0 eB1σ3 eB2σ1 eB2σ2 eB2σ4 eB2σ5

Ψ
(1)
11 1

Ψ
(2)
11 −1

Ψ
(3)
11 0 −1 0 −2

Ψ
(3)
21 −1 1 2 0

Ψ
(3)
12 1 −1 2 −2

Ψ
(3)
22 −1 0 0 2

We have detTB0 = 1, detTB1 = −1, detTB2 = −12. Therefore, we can see that FB0

and FB1 are simple and FB2 is not simple.

Remark. Let A be a Z-free Z-algebra of finite rank such that the C-algebra C ⊗Z
A is semisimple. For example, adjacency algebras of coherent configurations [6] and
integral standard generalized table algebras [1] satisfy this condition. Then we can
apply arguments in this article, except in §2.4, especially the Frame numbers are not
defined for them, in general. We can define TB and Theorem 3.2 holds for them.

Example 3.6. Let X be a finite poset such that |X| ≥ 2, and let n be a nonzero
rational integer. Define a Z-subalgebra A of MX(Z) by Axy = Z if x ≤ y and Axy = nZ
otherwise. Then C⊗Z A ∼= MX(C) is semisimple and Theorem 3.2 holds for A. We can
define the matrix T and we have | detT | = na where a = ]{(x, y) ∈ X × X | x 6≤ y}.
Thus A/pA is a semisimple Fp-algebra if and only if p - n.
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