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SPERNER PROPERTY AND
FINITE-DIMENSIONAL GORENSTEIN ALGEBRAS

ASSOCIATED TO MATROIDS

TOSHIAKI MAENO AND YASUHIDE NUMATA

ABSTRACT. We prove the Lefschetz property for a cer-
tain class of finite-dimensional Gorenstein algebras associ-
ated to matroids. Our result implies the Sperner property
of the vector space lattice. More generally, it is shown that
the modular geometric lattice has the Sperner property. We
also discuss the Gröbner fan of the defining ideal of our
Gorenstein algebra.

Introduction. The Lefschetz property for Artinian Gorenstein rings
is a ring-theoretic abstraction of the Hard Lefschetz theorem for com-
pact Kähler manifolds. Stanley developed the ideas of applications
of the Lefschetz property to combinatorial problems. For example, he
showed in [18] the Sperner property of the Bruhat ordering on the Weyl
groups based on the Hard Lefschetz theorem for the flag varieties. One
of the main topics of the present paper is an application of the Lefschetz
property for a certain kind of finite-dimensional Gorenstein algebras to
the Sperner property of the vector space lattice V (q, n) consisting of
the linear subspaces of the vector space Fn

q . A finite ranked poset
P =

∪
i≥0 Pi with the level sets Pi is said to have the Sperner property

if the maximal cardinality of antichains of P is equal to maxi(#Pi).

For a given ranked poset P =
∪

i Pi, let Vi be the vector space
spanned by the elements of Pi. The Sperner property for P can be
shown by constructing a sequence (f0, f1, f2, . . .) of linear maps fi :

Vi → Vi+1 satisfying a certain condition. Let A(i) = (a
(i)
uv)u∈Pi,v∈Pi+1
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be the matrix representing fi, i.e.,

fi(u) =
∑

v∈Pi+1

a(i)uvv, u ∈ Pi.

If every matrix A(i) satisfies the condition a
(i)
uv ̸= 0 ⇒ u < v and is of

full rank, then P has the Sperner property (see, e.g., [10] for details).

The Sperner property of the vector space lattice V (q, n) can be
deduced from the result on the rank of its incidence matrices due to
Kantor [11]. We will give another proof of the Sperner property of
V (q, n) by the construction of a finite-dimensional Gorenstein algebra
AM(q,n) associated to the matroidM(q, n) on the finite projective space

Pn−1(Fq) and by showing that AM(q,n) has the Lefschetz property.

Our construction can be done for general matroids. For a matroid
M and its bases B, we introduce a polynomial ΦM :=

∑
B∈B xB . The

Gorenstein algebra AM will be defined to be the quotient algebra of
the ring of the differential polynomials by the annihilator AnnΦM of
ΦM . We will generalize the results for the matroid M(q, n) to the case
of matroids corresponding to modular geometric lattices. The Sperner
property of the modular geometric lattice has been proved by Baker [1].
Our argument based on the Gorenstein algebra AM leads us to another
proof of Baker’s result.

For a general polynomial F , though F has all the information on the
annihilator AnnF in principle, the combinatorial structure of AnnF is
quite delicate in general, so it is difficult to describe directly from F .
It is remarkable that in our case the Gröbner fan G(AnnΦM(q,n)) of
the annihilator of ΦM(q,n) is a refinement of that of the principal ideal
generated by ΦM(q,n), which is also a consequence of our main theorem.
As discussed in [2], the Gröbner fan of an ideal is often difficult to
compute. We will see that G(AnnΦM(q,n)) can be recovered from the
tropical hypersurfaces of certain polynomials defined by the bases of
the linear subspaces of Pn−1(Fq).

The main results of this paper have been given in [12, 13].

1. Finite-dimensional Gorenstein algebras and Lefschetz
property. In this section, we summarize some fundamental results
on the structure of finite-dimensional Gorenstein algebras and on the
Lefschetz property, which will be used in the subsequent sections.
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Definition 1.1. Let A = ⊕D
d=0Ad, AD ̸= 0, be a graded Artinian

algebra. We say that A has the strong Lefschetz property (in the narrow
sense) if there exists an element L ∈ A1 such that the multiplication
map

×LD−2i : Ai −→ AD−i

is bijective for i = 0, . . . , [D/2].

In the rest of this paper, we consider the Gorenstein algebras that
are finite-dimensional over a field k of characteristic zero.

Definition 1.2. (see [16, Chapter 5, 6.5]). A finite-dimensional
graded k-algebra A = ⊕D

d=0Ad is called the Poincaré duality algebra
if dimk AD = 1 and the bilinear pairing

Ad ×AD−d −→ AD
∼= k

is non-degenerate for d = 0, . . . , [D/2].

The following is a well-known fact (see, e.g., [6, 10, 14]).

Proposition 1.3. A graded Artinian k-algebra A is a Poincaré duality
algebra if and only if A is Gorenstein.

Corollary 1.4. The tensor product of two graded Artinian Gorenstein
k-algebras is again Gorenstein.

Let P = k[x1, . . . , xn] and Q = k[X1, . . . , Xn] be polynomial rings
over k. We may regard P as a Q-module via the identification
Xi = ∂/∂xi, i = 1, . . . , n. For a polynomial F (x) ∈ P , denote by AnnF
the ideal of Q generated by the differential polynomials annihilating F ,
i.e.,

AnnF := {φ(X) ∈ Q | φ(X)F (x) = 0}.

The following is immediate from the theory of inverse systems (see
[3, 5, 7]).

Proposition 1.5. Let I be an ideal of Q = k[X1, . . . , Xn] and A = Q/I
the quotient algebra. Denote by m the maximal ideal (X1, . . . , Xn) of
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Q. Then
√
I = m and the k-algebra A is Gorenstein if and only if there

exists a polynomial F ∈ R = k[x1, . . . , xn] such that I = AnnQ F .

Example 1.6. The coinvariant algebra RW of the finite Coxeter group
W is an example of the finite-dimensional Gorenstein algebra with the
strong Lefschetz property. The coinvariant algebra RW is defined to
be a quotient of the ring of polynomial functions on the reflection
representation V of W by the ideal generated by the fundamental
W -invariants. When W is crystallographic (i.e., Weyl group), the
Lefschetz property of RW is a consequence of the Hard Lefschetz
theorem for the corresponding flag variety G/B. Stanley [18] has
shown the Sperner property of the strong Bruhat ordering on W from
the Lefschetz property of RW (except for type H4). The Lefschetz
property of RW of type H4 has been confirmed in [15]. Since RW is
Gorenstein, it has a presentation as in Proposition 1.5. In fact, RW is
isomorphic to the algebra SymV ∗/AnnF , where F is the product of
the positive roots.

Definition 1.7. LetG be a polynomial in k[x1, . . . , xn]. When a family

Bd = {α(d)
i }i of homogeneous polynomials of degree d > 0 is given, we

call the polynomial

det
(
(α

(d)
i (X)α

(d)
j (X)G(x))#Bd

i,j=1

)
∈ k[x1, . . . , xn]

the dth Hessian of G with respect to Bd, and denote it by Hess
(d)
Bd

G.

We denote the dth Hessian simply by Hess(d) G if the choice of Bd is
clear.

When d = 1 and α
(1)
j (X) = Xj , j = 1, . . . , n, the first Hessian

Hess(1) G coincides with the usual Hessian:

Hess(1) G = Hess G := det

(
∂2G

∂xi∂xj

)
ij

.

Let a finite-dimensional graded Gorenstein algebra A = ⊕dAd have
the presentation A = Q/AnnQ F . The following gives a criterion for
an element L ∈ A1 to be a Lefschetz element.
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Proposition 1.8. ([21, Theorem 4]). Fix an arbitrary k-linear basis
Bd of Ad for d = 1, . . . , [D/2]. An element L = a1X1 + · · · + anXn ∈
A1 is a strong Lefschetz element of A = Q/AnnQ F if and only if
F (a1, . . . , an) ̸= 0 and

(Hess
(d)
Bd

F )(a1, . . . , an) ̸= 0

for d = 1, . . . , [D/2].

Corollary 1.9. If one of the Hessians Hess
(d)
Bd

F, d = 1, . . . , [D/2],

is identically zero, then A = Q/AnnQ F does not have the strong
Lefschetz property.

2. Matroids.

Definition 2.1. A pair (E,F) of a finite set E and F ⊂ 2E is called
a matroid if it satisfies the following axioms (M1), (M2) and (M3).

(M1) ∅ ∈ F .
(M2) If X ∈ F and Y ⊂ X, then Y ∈ F .
(M3) If X,Y ∈ F and #X > #Y , then there exists an element

x ∈ X \Y such that Y ∪{x} ∈ F . Here, F is called the system
of independent sets.

Definition 2.2. Let M = (E,F) be a matroid.

(1) A maximal element B ∈ F is called a basis of M . We denote by
B = B(M) ⊂ F the set of bases of M .

(2) For a subset S ⊂ E, define r(S) := max{#F | F ∈ F , F ⊂ S}.
The map r : 2E → Z is called the rank function of M .

(3) For a subset S ⊂ E, define the closure σ(S) of S by

σ(S) := {y ∈ E | r(S ∪ {y}) = r(S)}.

We define an equivalence relation ∼ on 2E by

S ∼ T ⇐⇒ σ(S) = σ(T ).

A subset S of E is called a flat of M if S = σ(S).

Example 2.3. The projective space P := Pn−1(Fq) over a finite field
Fq has the structure of a matroid by the usual linear independence.
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More precisely, if we define the system of independence set F by

F := {F ∈ 2P | F is linearly independent over Fq},

then (P,F) is a matroid. We denote it by M(q, n). In this case, the
closure σ(S) of a subset S ∈ P coincides with the linear subspace ⟨S⟩
of P spanned by S.

Lemma 2.4. Let S, T ∈ F . Then we have

S ∼ T ⇐⇒ {U ∈ F | U ∩ S = ∅, U ∪ S ∈ F}
= {U ∈ F | U ∩ T = ∅, U ∪ T ∈ F}.

Proof. Let S,U be independent sets. If U ∩ S = ∅ and S ∪ U ∈ F ,
then r(S ∪ {y}) = r(S) + 1 for all y ∈ U , and we have U ∩ σ(S) = ∅. If
U ∩S = ∅ and S∪U /∈ F , then there exists an element y ∈ U such that
r(S ∪ {y}) = r(S). So we have U ∩ σ(S) ̸= ∅. Hence, σ(S) determines
the set {U ∈ F | U ∩ S = ∅, U ∪ S ∈ F}, and vice versa. �

Definition 2.5. For a given matroidM = (E,F), the matroid polytope
PM ⊂ RE is defined by the following system of inequalities:

xe ≥ 0 (e ∈ E),
∑
e∈A

xe ≤ r(A) (A ∈ 2E).

For each independent set F ∈ F , we define the incidence vector
v⃗F = (vF,e)e∈E ∈ RE as follows:

vF,e :=

{
1 if e ∈ F,

0 otherwise.

Proposition 2.6. (Edmonds [4]). The matroid polytope PM coincides

with the convex hull of the union of {⃗0} and the set of the incidence
vectors of F :

PM = conv ({⃗0} ∪ {v⃗F | F ∈ F}).

Let ∆M be the face of PM defined by the equation
∑

e∈E xe = r(E),
which is also obtained as the convex hull of the incidence vectors
corresponding to the bases of M .
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Example 2.7. Let M be a matroid defined by the following vectors.

v1 v2 v3 v4 v5
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1.

Then the basis of M is B = {{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5},
{2, 3, 4}, {2, 4, 5}, {3, 4, 5}}. The polytope ∆M is the convex hull of the
following points in R5:

(1, 1, 1, 0, 0), (1, 1, 0, 0, 1), (1, 0, 1, 1, 0), (1, 0, 1, 0, 1),

(1, 0, 0, 1, 1), (0, 1, 1, 1, 0), (0, 1, 0, 1, 1), (0, 0, 1, 1, 1).

3. Gorenstein algebras associated to matroids. For a matroid
M = (E,F), we define a polynomial ΦM ∈ k[xe | e ∈ E] by

ΦM :=
∑
B∈B

xB,

where xB :=
∏

b∈B xb. Note that the Newton polytope of ΦM coincides

with ∆M in RE . Let Q = QM = k[∂/∂xe | e ∈ E] denote the ring of
differential polynomials. For a subset S ⊂ E, we put xS :=

∏
e∈S xe

and ∂S :=
∏

e∈S(∂/∂xe). In the subsequent part of this paper, we
discuss the structure of the Gorenstein ring AM := Q/AnnQ ΦM .

Proposition 3.1. The ideal AnnΦM contains

ΛM := {x2
e|e ∈ E} ∪ {xS | S /∈ F}

∪ {xA − xA′ | A,A′ ∈ F , A ∼ A′}.

Proof. Since ΦM is square-free and does not contain the monomials
of form xS , S /∈ F , the ideal AnnΦM contains {x2

e | e ∈ E}
and {xS | S /∈ F}. If A,A′ ∈ F are equivalent, then we have

∂AΦM = ∂A′
ΦM from Lemma 2.4. �

We denote by JM ⊂ Q the ideal generated by the set ΛM . Let
M = (E,F) be a matroid, and Fi ⊂ F for i = 1, . . . , r(E) the set of
independent sets of cardinality i, i.e.,

Fi := {F ∈ F | #F = i}.
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Let Ω := 2E/ ∼, F l := Fl/ ∼ and ml := #F l. We can identify Ω with
the set of the flats of M . Under this identification, we define the subset
Ω(l), l = 1, . . . , r(E), of Ω by

Ω(l) := {S ∈ 2E | S = σ(S), r(S) = l}.

For an equivalence class τ ∈ Ω, consider a polynomial fτ given by

fτ :=
∑

F∈F∩τ

xF .

Proposition 3.2. We have

JM =
∩
τ∈Ω

Ann fτ .

Proof. It is easy to see that ΛM is contained in ∩τ∈Ω Ann fτ . It is
enough to show that a polynomial p ∈ ∩τ∈Ω Ann fτ of form

p =
∑
τ∈Ω

∑
F∈F∩τ

aFxF , aF ∈ k,

is a linear combination of polynomials of ΛM . Put pτ :=
∑

F∈F∩τ aFxF

and consider the polynomial

p′ :=
∑
τ∈Ω

pτ /∈ΛM

pτ .

Choose τ0 ∈ Ω with pτ ̸= 0 of minimum rank. Then

p(∂)fτ0 = pτ0(∂)fτ0 =
∑

F∈F∩τ0

aF = 0.

Let F ∩ τ = {F1, . . . , Fs}. Then we have

pτ = aF1(xF1 − xF2) + (aF1 + aF2)(xF2 − xF3) + · · ·
+ (aF1 + · · ·+ aFs−1)(xFs−1 − xFs). �

Proposition 3.3. The subset ΛM of Q is a universal Gröbner basis of
JM .

The proof is based on Buchberger’s criterion.
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Proof. Fix a monomial ordering ≤ on the polynomial ring Q. For
non-zero monic polynomials f, g ∈ Q, the S-polynomial S(f, g) is given
as follows:

S(f, g) := −Γ(f, g)

in≤(f)
f +

Γ(f, g)

in≤(g)
g,

Γ(f, g) := L.C.M(in≤(f), in≤(g)).

Let Λ1 := {xA − xA′ | A,A′ ∈ F , A ∼ A′} and Λ2 := {x2
e | e ∈ E} and

Λ3 := {xS | S /∈ F}. We will show that the S-polynomials S(f, g) are
reduced to zero by the division algorithm with respect to ΛM \ {f, g}
for cases:
(i) f, g ∈ Λ1, (ii) f ∈ Λ1, g ∈ Λ2, (iii) f ∈ Λ1, g ∈ Λ3, (iv) f, g ∈ Λ2∪Λ3.

Case (i). Take polynomials f := xA − xA′ and g := xB − xB′ ∈ Λ1

with xA > xA′ and xB > xB′ . If A ∩ B = ∅, it is easy to see that
S(f, g) is reduced to zero. Assume that A ∩ B ̸= ∅. Let C := A ∩ B,

Â = A \ C and B̂ = B \ C. Then we have S(f, g) = xA′xB̂ − xB′xÂ.
Note that we have

r(A′ ∪ B̂) = r(A ∪ B̂) = r(Â ∪ C ∪ B̂),

r(B′ ∪ Â) = r(B ∪ Â) = r(Â ∪ C ∪ B̂),

so r(A′ ∪ B̂) = r(B′ ∪ Â).

(a) If A′ ∩ B̂ ̸= ∅, then xA′xB̂ ∈ Λ2. In this case, we have

(∗) r(Â∪B′) = r(A′ ∪ B̂) < r(A′)+ r(B̂) = #A′+#B̂ = #Â+#B′,

which means that Â ∩ B′ ̸= ∅ or Â ∪ B′ /∈ F . Hence, we also have
xÂxB′ ∈ Λ2 ∪ Λ3.

(b) Assume that A′∩B̂ = ∅. If A′∪B̂ /∈ F , then we have xA′xB̂ ∈ Λ3.
Moreover, again from the inequality (∗), we see that xÂxB′ ∈ Λ2 ∪Λ3.

If A′ ∪ B̂ ∈ F , we have

r(Â ∪B′) = r(A′ ∪ B̂) = r(A′) + r(B̂) = #A′ +#B̂ = #Â+#B′,

which means that Â ∪ B′ ∈ F . Hence, we have S(f, g) = xA′xB̂ −
xB′xÂ ∈ Λ1.

Case (ii). Take polynomials f := xA − xA′ ∈ Λ1 and g := x2
e ∈ Λ2

with xA > xA′ . If e /∈ A, then S(f, g) = x2
exA′ is reduced to zero. If
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e ∈ A, then S(f, g) = xexA′ . Since r(A′ ∪ {e}) = r(A ∪ {e}) = r(A),
we have xexA′ ∈ Λ2 ∪ Λ3.

Case (iii). Take polynomials f := xA − xA′ ∈ Λ1 and g := xB ∈ Λ3

with xA > xA′ . If A ∩B = ∅, then S(f, g) = xA′xB is reduced to zero.
If A ∩B ̸= ∅, then S(f, g) = xA′xB\A. The inequality

r(A′ ∪ (B \A)) = r(A ∪ (B \A)) = r(A ∪B)

< #(A ∪B) = #(A′ ∪ (B \A))

implies that xA′xB\A ∈ Λ2 ∪ Λ3.

Case (iv). This case is easy because Λ2 and Λ3 consist of monomials.
�

Corollary 3.4. The Hilbert function of Q/JM is given by

Hilb(Q/JM , t) =

r(E)∑
i=0

(#F i)t
i.

Example 3.5. Let M be the matroid defined in Example 2.7. Then
the ideal AnnΦM contains an additional generator other than ΛM . In
fact, we have

AnnΦM = JM + (x13 + x45 − x15 − x34).

The Hilbert series of Q/AnnΦM is (1, 5, 5, 1) and that of Q/JM
is (1, 5, 6, 1). In particular, Q/JM is not Gorenstein. By direct
computation, we get

HessΦM = 8(x1 + x4)(x3 + x5)ΦM .

This implies that AM = Q/AnnΦM has the strong Lefschetz property.

4. Vector space lattice. In this section, we treat the matroid

M = M(q, n) defined in Example 2.3. We define polynomials Φ
(i)
M :=∑

G∈Fi
xG for i = 1, . . . , n. Note that Φ

(n)
M = ΦM .

Lemma 4.1. For M = M(q, n) and l ≤ [n/2], the polynomials ∂FΦ
(2l)
M ,

F ∈ F l, are linearly independent over k.
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Proof. In the following, ⟨S⟩ stands for a linear subspace in Fn
q

spanned by a subset S ⊂ Pn−1(Fq). For B ∈ Fl and 0 ≤ i ≤ l,
define

Fl(B, i) := {A ∈ Fl | dim(⟨A⟩ ∩ ⟨B⟩) = i}.

Then, we have
Fl(B, l) = {A ∈ Fl | A ∼ B}

and

Fl =
l∪

i=0

Fl(B, i).

For A,B ∈ Fl, we also define

FA
l (B, i) := {A′ ∈ Fl(B, i) | ⟨A⟩ ∩ ⟨A′⟩ = {⃗0}}

= {A′ ∈ Fl(B, i) | A ∪A′ ∈ F2l}.

For B ∈ Fl, consider a polynomial Φ(B, i) :=
∑

A∈Fl(B,i) xA and a

differential polynomial P (B, i) :=
∑

A∈Fl(B,i) ∂
A. We have

P (B, i)Φ
(2l)
M =

∑
A∈Fl(B,i)

∂AΦ
(2l)
M =

∑
A∈Fl(B,i)

∑
A′∈Fl

A∪A′∈F2l

xA′

=
∑

A′∈Fl

∑
A∈Fl(B,i)
A∪A′∈F2l

xA′

=
l∑

j=0

∑
A′∈Fl(B,j)

#{A ∈ Fl(B, i)|A ∪A′ ∈ F2l}xA′

=
l∑

j=0

∑
A′∈Fl(B,j)

#FA′

l (B, i)xA′ .

Here, #FA′

l (B, i) is independent of the choice of A′ ∈ Fl(B, j) for

M = M(q, n). Put aBij := #FA′

l (B, i) for B ∈ Fl and A′ ∈ Fl(B, j).
Now we have

P (B, i)Φ
(2l)
M =

l∑
j=1

aBij
∑

A′∈Fl(B,j)

xA′ =
l∑

j=1

aBijΦ(B, j).
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If i + j > l, then dim(⟨A⟩ ∩ ⟨B⟩) + dim(⟨A′⟩ ∩ ⟨B⟩) = i + j > l.

Hence, we have dim(⟨A⟩ ∩ ⟨A′⟩ ∩ ⟨B⟩) > 0 and ⟨A⟩ ∩ ⟨A′⟩ ≠ {⃗0}. This
means that aBij = #FA′

l (B, i) = 0.

Assume that i + j = l. For A ∈ Fl(B, j), take an element A1 ∈ Fj

such that ⟨A1⟩ = ⟨A⟩ ∩ ⟨B⟩. We also take an element A2 ∈ Fl−j = Fi

such that ⟨A1 ∪ A2⟩ = ⟨B⟩, and A3 ∈ Fn−l such that ⟨B ∪ A3⟩ = Fn
q .

Put A∗ := A2 ∪ A3. Since dim⟨A∗⟩ = n − j ≥ n − l ≥ l, there
exists an element A′ ∈ Fl such that ⟨A∗⟩ ∩ ⟨B⟩ ⊂ ⟨A′⟩ ⊂ ⟨A∗⟩. Since
⟨A′⟩∩ ⟨B⟩ = ⟨A∗⟩∩⟨B⟩ = ⟨A2⟩, we can see that A′ ∈ FA

l (B, i). Hence,
we have aBij > 0 in this case.

We have seen that the matrix (aBi,l−j)
l
i,j=0 is upper-triangular, so

det(aBi,l−j)ij =
l∏

i=0

aBi,l−i > 0.

Since the matrix (ai,l−j)ij is invertible, ΦM (B, l) may be written as a

linear combination of P (B, 0)Φ
(2l)
M , P (B, 1)Φ

(2l)
M , . . . , P (B, l)Φ

(2l)
M , and

hence it is a linear combination of the polynomials ∂FΦ
(2l)
M , F ∈ F l.

On the other hand, it is easy to see the linear independence of the

polynomials ΦM (B, l) for B ∈ F l. Therefore, the polynomials ∂FΦ
(2l)
M

for F ∈ F l, are linearly independent. �

Proposition 4.2. Let M = M(q, n). Take a representative F1, . . . , Fml

∈ Fl of F l. Then the determinant of the matrix(
∂Fi∂FjΦM

)ml

i,j=1

is not identically zero.

Proof. For F ∈ Fj , define c(F, i) := #{F ′ ∈ Fi | F ∪ F ′ ∈ Fi+j}.
Then the equality c(F1, i) = c(F2, i) holds for any F1, F2 ∈ Fj and for
j = 1, . . . , r(E)− 1. It is easy to see that

det
(
∂Fi∂FjΦM

)ml

i,j=1

∣∣∣
x=1

= γ · det
(
δσ(Fi),σ(Fj)

)
i,j

,

where γ = c(F, l)ml ̸= 0 for any F ∈ Fl, and δτ1,τ2 , τ1, τ2 ∈ Ω(l), is
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defined by

δτ1,τ2 :=

{
1 if τ1 ∩ τ2 = ∅,
0 otherwise.

At the same time, we have

det
(
∂Fi∂FjΦ

(2l)
M

)
i,j

= det
(
δσ(Fi),σ(Fj)

)
i,j

.

Note that the algebra B(2l) := Q/AnnΦ
(2l)
M is also Gorenstein, and the

natural pairings

⟨ , ⟩ : B(2l)
i ×B

(2l)
2l−i −→ B

(2l)
2l

∼= k

are non-degenerate for i = 0, . . . , l. From Lemma 4.1, we see that {xFi |
i = 1, . . . ,ml} gives a basis of B

(2l)
l . Since the matrix (∂Fi∂FjΦ

(2l)
M )i,j

represents the pairing ⟨ , ⟩ at the intermediate part B
(2l)
l ×B

(2l)
l → k,

we see that its determinant is non-zero. Therefore, det(∂Fi∂FjΦM )
∣∣
x=1

is non-zero, and hence it cannot be identically zero. �

Theorem 4.3.

(1) The algebra AM(q,n) has the strong Lefschetz property.
(2) The ideal AnnΦM(q,n) is generated by ΛM(q,n), i.e., AnnΦM(q,n) =

JM(q,n). In particular, it is a binomial ideal.
(3) We have

Hilb(Q/AnnΦM(q,n), t) =
n∑

i=0

ti
(
n

i

)
q

,

where
(
n
i

)
q
, 0 ≤ i ≤ n, are q-binomial coefficients.

(4) The vector space lattice V (q, n) consisting of the linear subspaces
of Fn

q has the Sperner property.

Proof. Proposition 4.2 implies that the monomialsXFi , i=1, . . . ,ml,
are linearly independent in the algebra AM . Hence, we get Q/JM =
AM by comparing their dimension over k. This shows (2) and (3).
Since the monomials XFi , i = 1, . . . ,ml, form a linear basis of (AM )l,
Proposition 4.2 also implies that the polynomial

Hess
(l)

{XFi
}ml
i=1

ΦM(q,n) = det
(
∂Fi∂FjΦM

)ml

i,j=1
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is a nonzero polynomial for l = 1, . . . , [n/2]. Then we have the strong
Lefschetz property for AM by Proposition 1.8. The deduction of the
Sperner property for M from the Lefschetz property is a standard
argument (see, e.g., [10, 1.4.1] for details.) �

Remark 4.4. For i ≤ n, let M (i)(q, n) be a matroid structure on
Pn−1(Fq) obtained by regarding Fi as a system of bases. We see that

ΦM(i)(q,n) = Φ
(i)
M(q,n). It can be shown by a similar manner as the proof

of Proposition 4.2 that Q/AnnΦM(i)(q,n) has the Lefschetz property.

Example 4.5. Let [n] := {1, 2, . . . , n} be an n-element set. The set
2[n] of the subsets of [n] has a natural lattice structure induced by
the operations ∪ and ∩. This lattice is called the Boolean lattice.
Sperner’s theory originates his work [17] on the maximal cardinality
of the antichains of the Boolean lattice. On the other hand, M([n]) :=
([n], 2[n]) satisfies the axioms for a matroid. The matroid M([n]) has
the unique basis [n], so the corresponding Gorenstein algebra is given
by

AM([n])= k[X1, . . . , Xn]/Ann(x1 · · ·xn)=k[X1, . . . , Xn]/(X
2
1 , . . . , X

2
n).

In [9], it has been proved that M([n]) is another example of ma-
troids for which Proposition 4.2 holds. As a consequence, we obtain
AnnΦM([n]) = JM([n]) and the Lefschetz property for AM([n]), which
gives another proof of the Sperner property for the Boolean lattice.

5. Modular geometric lattice. In this section, we discuss a char-
acterization of the matroids for which the algebra Q/JM is Gorenstein.

Definition 5.1. Let L be a finite graded lattice with the rank func-
tion r.

(1) The lattice L is called (upper) semimodular if r(x) + r(y) ≥
r(x ∧ y) + r(x ∨ y) for all x, y ∈ L. If the equality holds for all
x, y ∈ L, then L is called modular.

(2) Assume that L has the unique minimal element 0̂. An element

of L is called an atom if it covers 0̂. The term coatom is dually
defined as an element covered by the unique maximal element 1̂.
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The lattice L is atomic if every element of L is written as a join of
atoms.

(3) The lattice L is said to be geometric if L is atomic and semimodular.

The set of the flats of a matroid forms a lattice, which we denote
by L(M). It is known that a finite lattice L is geometric if and only if
L ∼= L(M) for a matroid M (see [19, Theorem 3.8]).

Proposition 5.2. (Greene [8]). Let L be a finite geometric lattice.
The sets of atoms and of coatoms have the same cardinality if and only
if L is modular.

Greene’s characterization of the modular geometric lattice implies
the following.

Proposition 5.3. If Q/JM is Gorenstein, then L(M) is a modular
geometric lattice.

Proof. Let n be the dimension of M . Then the socle degree of Q/JM
is n. Suppose that Q/JM is Gorenstein. From Proposition 1.3, the part
(Q/JM )1 of degree 1 is isomorphic to (Q/JM )n−1 of degree n − 1 as
vector spaces. Since

#{atoms of L(M)} = dim(Q/JM )1 = dim(Q/JM )n−1

= #{coatoms of L(M)},

we can conclude that the lattice L(M) is a modular geometric lattice
by Proposition 5.2. �

The fundamental theorem of projective geometry shows that a
modular geometric lattice decomposes into a direct product of boolean
lattices, vector space lattices, lattices of rank 2 and incidence lattices
of (non-Desarguesian) finite projective planes (see, e.g., [19]).

Proposition 5.4. Let M(Π) be the matroid associated to a finite
projective plane Π. Then we have JM(Π) = AnnΦM(Π).

Proof. Let Π be a projective plane of order ν. Since JM(Π) ⊂
AnnΦM(Π), we have a surjective homomorphism φ : Q/JM(Π) →
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AM(Π). From Corollary 3.4, we have dim(Q/JM(Π))1 = dim(Q/JM(Π))2
= ν2 + ν + 1. Hence, in order to show that φ is an isomorphism, it
is enough to show dim(Q/JM(Π))1 = dim(AM(Π))1. For two distinct
points p, q ∈ Π, denote by Lpq the line passing through p and q. We
have

∂p∂qΦM(Π) =
∑

r ̸∈Lpq

xr,

for p ̸= q. Consider the specialization S of the matrix (∂p∂qΦM(Π))p,q∈Π

at xa = 1 for all a ∈ Π. Then we have

Spq =

{
0 if p = q,

ν2 if p ̸= q,

and detS ̸= 0. So the polynomials ∂pΦM(Π), p ∈ Π, are linearly
independent. This shows dim(Q/JM(Π))1 = dim(AM(Π))1. �

Corollary 5.5. The algebra AM(Π) has the strong Lefschetz property.

The following lemma is easy.

Lemma 5.6. If M is the direct sum of two matroids M1 and M2, then
QM/JM ∼= QM1/JM1 ⊗QM2/JM2 .

Theorem 5.7. The algebra Q/JM is Gorenstein if and only if L(M)
is a modular geometric lattice.

Proof. In Proposition 5.3, we have proved that L(M) is a modular
geometric lattice if Q/JM is Gorenstein.

Conversely, assume that L(M) is a modular geometric lattice. Then
L(M) decomposes into a direct product of boolean lattices 2[n], vector
space lattices V (q, n) = L(M(q, n)) and incidence lattices of finite
projective planes Π. For the boolean lattice 2[n], we have seen in
Example 4.5 that Q/JM([n]) is Gorenstein. For the matroid M(q, n),
it has been shown in Theorem 4.3 (2) that JM(q,n) = AnnΦM(q,n), so
Q/JM(q,n) is Gorenstein. In Proposition 5.4, we see that Q/JM(Π) is
Gorenstein for a finite projective plane Π. Hence, from Corollary 1.4
and Lemma 5.6, the algebra Q/JM is Gorenstein. �
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Corollary 5.8.

(1) The ideal JM coincides with AnnΦM if and only if L(M) is a
modular geometric lattice.

(2) If L(M) is a modular geometric lattice, then AM has the strong
Lefschetz property.

(3) Every modular geometric lattice has the Sperner property.

6. Gröbner fan of JM . In this section, we discuss the Gröbner fan
of the ideals JM and AnnΦM(q,n). The initial ideal inω⃗(I) of an ideal

I ⊂ Q with respect to the weight vector ω⃗ ∈ RE is given by

inω⃗(I) := (inω⃗(f) | f ∈ I, f ̸= 0).

For a weight vector ω⃗, the set C(ω⃗) := closure{λ⃗ ∈ RE | inλ⃗(I) =

inω⃗(I)} is a polyhedral cone in RE . The set of cones {C(ω⃗) | ω⃗ ∈
RE\{⃗0}} forms a fan G(I). The fan G(I) is called the Gröbner fan of I.
Denote by Gd(I) the set of d-dimensional cones in G(I). The Gröbner
fan G(I) of a homogeneous ideal I has the translation invariance in
the direction of n⃗ := (1, . . . , 1) ∈ RE . Let H be the hyperplane in RE

defined by the equation
∑

e∈E xe = 0. Denote by G(I) the restriction
of G(I) to H.

For two distinct independent sets F, F ′ ∈ F with F ∼ F ′, define a
cone WF,F ′ by the condition∑

e∈F

xe =
∑
e∈F ′

xe,
∑
e∈F

xe ≤
∑
e∈F ′′

xe

(for all F ′′ ∈ F , F ′′ ∼ F ).

Let C1, . . . , Cp be the closures of the connected components of

RE
\ ∪

F,F ′∈F
F∼F ′

F ̸=F ′

WF,F ′ .

Proposition 6.1. The maximal cones of G(JM ) are given by C1,. . ., Cp,
i.e., G#E(JM ) = {C1, . . . , Cp}.

Proof. Since ΛM is a universal Gröbner basis of JM , inω⃗(JM ) is not
a monomial ideal if and only if inω⃗(JM ) contains xF − xF ′ for two
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distinct independent sets F, F ′ with F ∼ F ′ and does not contain xF

or xF ′ . This is the case when ω⃗ ∈ WF,F ′ . �

The tropical hypersurface Vtrop(ΦM ) ⊂ RE is defined as the locus in
RE where the piecewise linear function

trop (ΦM ) = max

(∑
e∈B

xe

∣∣∣B ∈ B
)

is not smooth. The tropical hypersurface Vtrop(ΦM ) can be considered
as a subcomplex of G(ΦM ) (see [2]). Since ΦM is homogeneous,
the corresponding tropical hypersurface Vtrop(ΦM ) has the translation

invariance in the direction of the vector n⃗. Denote by V trop(ΦM ) the

restriction of Vtrop(ΦM ) to H. In our case, V trop(ΦM ) is also regarded
as a fan. The following proposition shows that the tropical variety
V trop(ΦM ) is directly obtained from the matroid polytope of M .

Proposition 6.2. The piecewise linear function trop(ΦM )|H is a
support function for the polytope ∆0

M := ∆M − r(E)(#E)−1 · n⃗ ⊂ H.

Proof. The polytope ∆0
M is spanned by the vectors u⃗B := v⃗B −

r(E)(#E)−1 ·n⃗, B ∈ B, by Proposition 2.6. We also have the inequality

⟨u⃗B , y⃗ ⟩ =
∑
b∈B

yb ≤ trop(ΦM )(y⃗), for all y⃗ = (ye)e∈E ∈ H,

and, for y⃗ = u⃗B,

⟨u⃗B , u⃗B⟩ = r(E)− r(E)2

#E
= trop(ΦM )(u⃗B).

Hence, the polytope ∆0
M is described as

∆0
M = {x⃗ ∈ H | ⟨x⃗, y⃗ ⟩ ≤ trop(ΦM )(y⃗), for all y⃗ ∈ H}. �

For a fan Σ, define −Σ := {−σ|σ ∈ Σ}.

Proposition 6.3.

(1) For an equivalence class τ ∈ Ω(l) with l ≥ 2, we have

G#E−1(fτ ) = {−WF,F ′ | F, F ′ ∈ F ∩ τ, F ̸= F ′}.
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(2)

Vtrop(fτ ) =
∪

σ∈G#E−1(fτ )

σ =
∪

F,F ′∈F∩τ
F ̸=F ′

−WF,F ′ .

(3) The fan −G(JM ) is the common refinement of the fans defined by
the tropical hypersurfaces Vtrop(fτ ), τ ∈ Ω.

Proof. Since the Newton polytope of fτ does not contain interior
lattice points, every monomial xF , F ∈ F ∩ τ , appearing in fτ , can be
the initial monomial for a choice of monomial ordering. Hence, inω⃗(fτ )
is not a monomial ideal if ω⃗ belongs to −WF,F ′ for a pair F, F ′ ∈ F ∩τ,
F ̸= F ′. This shows (1).

The second claim (2) follows from the definition of the tropical
hypersurface Vtrop(fτ ).

Claim (3) is a consequences of (2) and Proposition 6.1. �

Corollary 6.4. The tropical hypersurface Vtrop(ΦM ) is a subcomplex
of the fan −G(JM ).

For M = M(q, n), we have G(AnnΦM(q,n)) = G(JM(q,n)) from
Corollary 4.3 (2). By Proposition 6.3, the Gröbner fan G(AnnΦM(q,n))
can be computed from the tropical hypersurfaces Vtrop(fτ ).

Example 6.5. The matroid M(2, 2) is defined by the following three
vectors:

v1 v2 v3
1 0 1
0 1 1

so we have

ΦM(2,2) = x1x2 + x1x3 + x2x3,

AnnΦM(2,2) = (x2
1, x

2
2, x

2
3, x1x2 − x1x3, x1x2 − x2x3, x1x3 − x2x3).

In this case, Gröbner fansG(AnnΦM(2,2)), G(JM(2,2)) and−G(ΦM(2,2))

are the same. Their restrictions G(AnnΦM(2,2)), G(JM(2,2)) and



568 T. MAENO AND Y. NUMATA

−G(ΦM(2,2)) to the plane H are determined by three rays:

R1 := R≥0(−2, 1, 1),

R2 := R≥0(1,−2, 1),

R3 := R≥0(1, 1,−2).

Moreover, V trop(ΦM(2,2)) = (−R1) ∪ (−R2) ∪ (−R3).

The following examples are obtained by using Sage [20].

Example 6.6. The Gröbner fan G(AnnΦM(2,3)) = G(JM(2,3)) con-
tains 420 cones of maximal dimension 6 and 49 rays. The fan
G(ΦM(2,3)) contains 28 maximal cones and 21 rays.

Example 6.7. Let M be the matroid from Example 2.7. The fan
G(JM ) contains 12 cones of maximal dimension 4 and 7 rays:

R≥0(−4, 1, 1, 1, 1), R≥0(−2,−2, 3,−2, 3),

R≥0(−1, 4,−1,−1,−1), R≥0(1, 1,−4, 1, 1),

R≥0(1, 1, 1,−4, 1), R≥0(1, 1, 1, 1,−4),

R≥0(3,−2,−2, 3,−2).

The fanG(ΦM ) contains eight maximal cones, andG
1
(ΦM ) = −G

1
(JM ).

In this case, G(AnnΦM ) is a refinement ofG(JM ). The fan G(AnnΦM )
contains 20 maximal cones and 9 rays:

R≥0(−4, 1, 1, 1, 1), R≥0(−3, 2, 2,−3, 2),

R≥0(−2,−2, 3,−2, 3), R≥0(−1, 4,−1,−1,−1),

R≥0(1, 1,−4, 1, 1), R≥0(1, 1, 1,−4, 1),

R≥0(1, 1, 1, 1,−4), R≥0(2, 2,−3, 2,−3),

R≥0(3,−2,−2, 3,−2).
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