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Abstract – 2-Amino-6-bromoazulene derivatives reacted with cyclic amines 

(pyrrolidine, piperidine and morpholine) under the sealed-tube conditions to 

afford the corresponding 2,6-diaminoazulenes in excellent yields. 

Aromatic compounds with multiple-amino functional groups have been of great interest owing to their 

potential applications in organic electronic devices, such as hole transport materials for organic 

light-emitting diodes.1 Therefore, a large number of synthetic procedures for aromatic compounds with 

multiple-amino groups were found in literatures.2  

In the pioneering works of azulene chemistry by Nozoe et al., 2,6-diaminoazulenes were first synthesized 

from an aminotropolone derivative, but the procedure requires a multistep reaction for the preparation of 

the starting tropolone derivatives which are essential to the preparation of 2,6-diaminoazulenes with 

different amino functions.3 They have also reported that the most promising intermediate, diethyl 

2-amino-6-bromoazulene-1,3-dicarboxylate (1) that could be obtained much easier, does not react with 
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amines to give the corresponding 2,6-diaminoazulenes, although the related diethyl 

6-bromoazulene-1,3-dicarboxylate is easily reacted with amines to give the corresponding 

6-aminoazulene derivatives.4 Difference of the reactivity at the 6-bromo groups is explained by the 

enhancement of electron-density of 1 owing to the electron-donating 2-amino group at the 6-position. 

Although we have reported an efficient preparation of 2- and 6-aminoazulene derivatives by utilizing 

palladium-catalyzed amination of 2- and 6-haloazulenes with several amines under the 

Hartwig–Buchwald conditions,5 the conditions has never been applied to the preparation of 

diaminoazulene derivatives due to the low availability of 2,6-dihaloazulenes.6 Thus, the development of 

an efficient and versatile preparation method for azulene derivatives with multiple-amino functional 

groups is one of the remained subjects in azulene chemistry for the applications of the aminoazulene 

derivatives to organic electronic materials. Recently, the sealed-tube conditions have been revealed by Li 

et al. as a good expedient for the amination reaction with volatile amines to provide aromatic amines that 

could not be obtained by the straightforward reaction.7 Thus, the amination reaction using the sealed-tube 

conditions will open a new and efficient strategy for the preparation of azulene derivatives with 

multiple-amino functional groups.  

Herein, we describe novel synthetic procedures for 2,6-diaminoazulene derivatives 2−4 by the SNAr-type 

amination reaction of 1 with cyclic amines (i.e., pyrrolidine, piperidine and morpholine) under the 

sealed-tube conditions, and by three-step amination reaction of 1 involving a protection and deprotection 

sequence of 2-amino group by trifluoroacetic anhydride.  

The outline of synthetic pathways for 2,6-diaminoazulene derivatives is shown in Scheme 1. The reaction 

conditions and yield of the products are summarized in Table 1. The reaction of 1 with cyclic amines (i.e., 

pyrrolidine, piperidine and morpholine) was examined under the sealed-tube conditions for the first time.8 

The SNAr reaction of 1 with pyrrolidine at 130 °C in a sealed-tube and subsequent chromatographic 

purification on silica gel afforded the presumed product 29 in 94% yield (Entry 1). Likewise, the reaction 

of 1 with piperidine afforded 310 in 89% yield (Entry 2). The amination of 1 with morpholine under the 

sealed-tube conditions gave 411 in 91% yield (Entry 3). Although Nozoe et al. have reported that these 

amines do not react with 1 to afford the 2,6-diaminoazulenes,5 we found that they could be obtained by 

the SNAr reaction under the sealed-tube conditions. The reaction of 1 with alkylamines (i.e., 

tert-butylamine, diethylamine, dibutylamine and diisopropylamine) was also examined under the same 

conditions, but the compound 1 was recovered, quantitatively, in all cases. The amination of ethyl 

2-amino-6-bromoazulene-1-carboxylate (8) was also investigated, but the reaction did not undergo at all 

under the same conditions. Therefore, both high nucleophilicity of cyclic amines and 

electron-withdrawing groups at the 1,3-positions on azulene ring are essential to accelerate this SNAr-type 

reaction. To explore the milder reaction condition, 2-amino group of 1 was protected by trifluoroacetyl 
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group that exhibits high electron-withdrawing nature. The trifluoroamidation reaction of 1 was 

established by using 3.0 equiv. of trifluoroacetic anhydride (TFAA) in the presence of excess pyridine as 

a base to afford the N-protected product 5 in 95% yield. As expected, amination reaction at the 6-position 

of 5 with cyclic amines was readily proceeded under much milder reaction conditions and short reaction 

period. Reaction of 5 with piperidine and morpholine was achieved at room temperature within 30 min to 

afford 6 and 7 in 60% and 81% yields, respectively, along with the deprotected 1 (Entries 5 and 6). The 

generation of 1 should exhibits the competition of the SNAr and deprotection reactions in these cases. In 

contrast, pyrrolidine reacted with 5 to give the deprotected-substitution product 2 in 74% yield, due to the 

consequence of the successive SNAr and deprotection reactions in one-pot (Entry 4). These results should 

be attributable to the higher nucleophilicity of pyrrolidine than that of piperidine and morpholine.12 

Deprotection of N-trifluoroacetyl group of 6 and 7 was readily established by the treatment with K2CO3 in 

EtOH to give the corresponding 2,6-diaminoazulenes 3 and 4, quantitatively (6: 99%, 7: 99%).  
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Scheme 1. Synthesis of 2,6-diaminoazulene derivatives 

 

Table 1. Reaction of 2-amino-6-bromoazulenes 1 and 5 with cyclic amines 

Entry Substrate Amine Reaction time [h] Product, Yield [%] 
1 1 pyrrolidine 6 2, 94 
2 1 piperidine 6 3, 89 
3 1 morpholine 6 4, 91 
4 5 pyrrolidine 0.5 2, 74 and 1, 23 
5 5 piperidine 0.5 6, 60 and 1, 34 
6 5 morpholine 0.5 7, 81 and 1, 15 

 

In conclusion, three new 2,6-diaminoazulene derivatives 2−4 have been prepared by the SNAr reaction of 

compound 1 with cyclic amines under the sealed-tube conditions. Although a protection-deprotection 
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sequence was required, 2,6-diaminoazulene derivatives 2−4 were also obtained from 1 under much milder 

reaction conditions. Since compound 1 is readily available as a starting material by the selective 

bromination of diethyl 2-aminoazulene-1,3-dicarboxylate at the 6-position, our synthetic methodologies 

have potentials to be an efficient procedure for the synthesis of azulene derivatives with multiple-amino 

functional groups. 
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