SYNTHESIS OF 2,6-DIAMINOAZULENES BY THE $S_N Ar$ REACTION WITH CYCLIC AMINES †

Taku Shoji,^{a,b}* Yuki Fujiwara,^a Akifumi Maruyama,^a Mitsuhisa Maruyama,^b Shunji Ito,^c Masafumi Yasunami (the late),^d Ryuji Yokoyama,^e and Noboru Morita^e

^a Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Japan. E-mail: tshoji@shinshu-u.ac.jp

^b Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Japan

^c Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

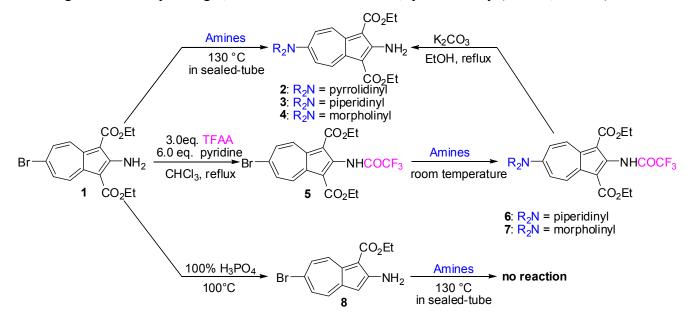
^d Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama 963-8642, Japan

^e Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

Abstract – 2-Amino-6-bromoazulene derivatives reacted with cyclic amines (pyrrolidine, piperidine and morpholine) under the sealed-tube conditions to afford the corresponding 2,6-diaminoazulenes in excellent yields.

Aromatic compounds with multiple-amino functional groups have been of great interest owing to their potential applications in organic electronic devices, such as hole transport materials for organic light-emitting diodes.¹ Therefore, a large number of synthetic procedures for aromatic compounds with multiple-amino groups were found in literatures.²

In the pioneering works of azulene chemistry by Nozoe *et al.*, 2,6-diaminoazulenes were first synthesized from an aminotropolone derivative, but the procedure requires a multistep reaction for the preparation of the starting tropolone derivatives which are essential to the preparation of 2,6-diaminoazulenes with different amino functions.³ They have also reported that the most promising intermediate, diethyl 2-amino-6-bromoazulene-1,3-dicarboxylate (1) that could be obtained much easier, does not react with


HETEROCYCLES, Vol. 90, No. 1, 2015, pp. 85 - 88. © 2015 The Japan Institute of Heterocyclic Chemistry Received, 8th January, 2014, Accepted, 30th January, 2014, Published online, 3rd February, 2014 DOI: 10.3987/COM-14-S(K)1

[†] Dedicated to Professor Isao Kuwajima on the occasion of his 77th birthday

amines corresponding 2,6-diaminoazulenes, although related diethyl to give the the 6-bromoazulene-1,3-dicarboxylate is easily reacted with amines to give the corresponding 6-aminoazulene derivatives.⁴ Difference of the reactivity at the 6-bromo groups is explained by the enhancement of electron-density of 1 owing to the electron-donating 2-amino group at the 6-position. Although we have reported an efficient preparation of 2- and 6-aminoazulene derivatives by utilizing palladium-catalyzed amination of 2- and 6-haloazulenes with several amines under the Hartwig-Buchwald conditions,⁵ the conditions has never been applied to the preparation of diaminoazulene derivatives due to the low availability of 2,6-dihaloazulenes.⁶ Thus, the development of an efficient and versatile preparation method for azulene derivatives with multiple-amino functional groups is one of the remained subjects in azulene chemistry for the applications of the aminoazulene derivatives to organic electronic materials. Recently, the sealed-tube conditions have been revealed by Li et al. as a good expedient for the amination reaction with volatile amines to provide aromatic amines that could not be obtained by the straightforward reaction.⁷ Thus, the amination reaction using the sealed-tube conditions will open a new and efficient strategy for the preparation of azulene derivatives with multiple-amino functional groups.

Herein, we describe novel synthetic procedures for 2,6-diaminoazulene derivatives 2-4 by the S_NAr-type amination reaction of 1 with cyclic amines (i.e., pyrrolidine, piperidine and morpholine) under the sealed-tube conditions, and by three-step amination reaction of 1 involving a protection and deprotection sequence of 2-amino group by trifluoroacetic anhydride.

The outline of synthetic pathways for 2,6-diaminoazulene derivatives is shown in Scheme 1. The reaction conditions and yield of the products are summarized in Table 1. The reaction of 1 with cyclic amines (i.e., pyrrolidine, piperidine and morpholine) was examined under the sealed-tube conditions for the first time.⁸ The S_NAr reaction of 1 with pyrrolidine at 130 °C in a sealed-tube and subsequent chromatographic purification on silica gel afforded the presumed product 2^9 in 94% yield (Entry 1). Likewise, the reaction of 1 with piperidine afforded 3^{10} in 89% yield (Entry 2). The amination of 1 with morpholine under the sealed-tube conditions gave 4^{11} in 91% yield (Entry 3). Although Nozoe *et al.* have reported that these amines do not react with 1 to afford the 2.6-diaminoazulenes,⁵ we found that they could be obtained by the S_NAr reaction under the sealed-tube conditions. The reaction of 1 with alkylamines (i.e., tert-butylamine, diethylamine, dibutylamine and diisopropylamine) was also examined under the same conditions, but the compound 1 was recovered, quantitatively, in all cases. The amination of ethyl 2-amino-6-bromoazulene-1-carboxylate (8) was also investigated, but the reaction did not undergo at all under the same conditions. Therefore, both high nucleophilicity of cyclic amines and electron-withdrawing groups at the 1,3-positions on azulene ring are essential to accelerate this S_NAr-type reaction. To explore the milder reaction condition, 2-amino group of 1 was protected by trifluoroacetyl group that exhibits high electron-withdrawing nature. The trifluoroamidation reaction of **1** was established by using 3.0 equiv. of trifluoroacetic anhydride (TFAA) in the presence of excess pyridine as a base to afford the *N*-protected product **5** in 95% yield. As expected, amination reaction at the 6-position of **5** with cyclic amines was readily proceeded under much milder reaction conditions and short reaction period. Reaction of **5** with piperidine and morpholine was achieved at room temperature within 30 min to afford **6** and **7** in 60% and 81% yields, respectively, along with the deprotected **1** (Entries 5 and 6). The generation of **1** should exhibits the competition of the S_NAr and deprotection reactions in these cases. In contrast, pyrrolidine reacted with **5** to give the deprotected-substitution product **2** in 74% yield, due to the consequence of the successive S_NAr and deprotection reactions in one-pot (Entry 4). These results should be attributable to the higher nucleophilicity of pyrrolidine than that of piperidine and morpholine.¹² Deprotection of *N*-trifluoroacetyl group of **6** and **7** was readily established by the treatment with K₂CO₃ in EtOH to give the corresponding 2,6-diaminoazulenes **3** and **4**, quantitatively (**6**: 99%, **7**: 99%).

Scheme 1. Synthesis of 2,6-diaminoazulene derivatives

Entry	Substrate	Amine	Reaction time [h]	Product, Yield [%]
1	1	pyrrolidine	6	2 , 94
2	1	piperidine	6	3 , 89
3	1	morpholine	6	4 , 91
4	5	pyrrolidine	0.5	2 , 74 and 1 , 23
5	5	piperidine	0.5	6, 60 and 1, 34
6	5	morpholine	0.5	7, 81 and 1, 15

Table 1. Reaction of 2-amino-6-bromoazulenes 1 and 5 with cyclic amines

In conclusion, three new 2,6-diaminoazulene derivatives 2-4 have been prepared by the S_NAr reaction of compound 1 with cyclic amines under the sealed-tube conditions. Although a protection-deprotection

sequence was required, 2,6-diaminoazulene derivatives 2-4 were also obtained from 1 under much milder reaction conditions. Since compound 1 is readily available as a starting material by the selective bromination of diethyl 2-aminoazulene-1,3-dicarboxylate at the 6-position, our synthetic methodologies have potentials to be an efficient procedure for the synthesis of azulene derivatives with multiple-amino functional groups.

ACKNOWLEDGEMENTS

This work was partially supported by a Grant-in-Aid for Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (Grant No. 25810019 to T. S.).

REFERENCE AND NOTE

- 1. (a) J. Kido and Y. Okamoto, *Chem. Rev.*, 2002, **102**, 2357; (b) A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, and A. B. Holmes, *Chem. Rev.*, 2009, **109**, 897.
- 2. J.-P. Corbet and G. Mignani, *Chem. Rev.*, 2006, **106**, 2651.
- 3. T. Nozoe, K. Takase, and M. Tada, Bull. Chem. Soc. Jpn., 1963, 36, 1006.
- 4. T. Nozoe, K. Takase, and M. Tada, Bull. Chem. Soc. Jpn., 1965, 38, 247.
- (a) R. Yokoyama, S. Ito, T. Okujima, T. Kubo, M. Yasunami, A. Tajiri, and N. Morita, *Tetrahedron*, 2003, 59, 8191;
 (b) S. Ito, T. Kubo, N. Morita, T. Ikoma, S. Tero-Kubota, J. Kawakami, and A. Tajiri, *J. Org. Chem.*, 2005, 70, 2285.
- 6. T. Nozoe, T. Asao, H. Susumago, and M. Ando, Bull. Chem. Soc. Jpn., 1974, 47, 1471.
- 7. J. J. Li, Z. Wang, and L. H. Mitchell, J. Org. Chem., 2007, 72, 3606.
- 8. General procedure: The solution of 1 (366 mg, 1.00 mmol) in the corresponding amines (5 mL) was stirred at 130 °C in a sealed-tube for 6 h under an Ar atmosphere. The reaction mixture was poured into a 1M HCl solution and extracted with CH₂Cl₂. The organic layer was washed with brine, dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with CH₂Cl₂ to give 2,6-diaminoazulenes 2–4 (yield of the products is summarized in Table 1).
- 9. Selected data of compound 2: mp 208.0 210.0 °C (MeOH); ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H} =$ 9.01 (d, 2H, *J* = 11.7 Hz, 4,8-H), 7.05 (br s, 2H, NH₂), 6.87 (d, 2H, *J* = 11.7 Hz, 5,7-H), 4.42 (q, 4H, *J* = 7.2 Hz, CO₂Et), 3.53 (t, 4H, *J* = 6.3 Hz, 2,5-H of pyrrolidine), 2.13 (t, 4H, *J* = 6.3 Hz, 3,4-H of pyrrolidine), 1.45 (t, 6H, *J* = 7.2 Hz, CO₂Et).
- 10. Selected data of compound 3: Orange oil; ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H} = 8.97$ (d, 2H, J = 11.8 Hz, 4,8-H), 7.32 (br s, 2H, NH₂), 7.12 (d, 2H, J = 11.8 Hz, 5,7-H), 4.42 (q, 4H, J = 7.2 Hz, CO₂Et), 3.49 (t, 4H, J = 5.5 Hz, 2,6-H of piperidine), 1.72 (br s, 6H, 3,4,5-H of piperidine), 1.45 (t, 6H, J = 7.2 Hz, CO₂Et).
- 11. Selected data of compound 4: mp 139.0 140.0 °C (MeOH); ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H} =$ 9.02 (d, 2H, *J* = 11.8 Hz, 4,8-H), 7.40 (br s, 2H, NH₂), 7.15 (d, 2H, *J* = 11.8 Hz, 5,7-H), 4.43 (q, 4H, *J* = 7.2 Hz, CO₂Et), 3.88 (t, 4H, *J* = 4.9 Hz, 3,5-H of morpholine), 3.43 (t, 4H, *J* = 4.9 Hz, 2,6-H of morpholine), 1.45 (t, 6H, *J* = 7.2 Hz, CO₂Et).
- 12. T. Kanzian, T. A. Nigst, A. Maier, S. Pichl, and H. Mayr, Eur. J. Org. Chem., 2009, 6379.