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Visualization of hydraulic cylinder dynamics by
a structure preserving nondimensionalization

Satoru Sakai, Member, IEEE and Stefano Stramigioli, Fellow, IEEE

Abstract—This paper reveals a new simplicity of a nominal
hydraulic cylinder model whose original representation suffers
from too many physical parameters. The 8-dimensional param-
eter space in the original representation is reduced to a 3-
dimensional parameter space in the proposed nondimensional
representation while preserving the parametric structure. To
clarify comprehensive relations between the nonlinear dynamics
and the many physical parameters, an advanced direct search
approach is suggested. More precisely, we can repeat the fast
computation of the nonlinear dynamics and the updates of
only three parameters without verifying any new simulator. The
efficient visualization of the numerical solutions presents the best
possible result corresponding to the analytical solution.

Index Terms—Hydraulic systems, nonlinear dynamics, fast
computation, visualization.

I. INTRODUCTION

B alance between accuracy and simplicity is a key in
modeling for control of hydraulic cylinders. Hydraulic

cylinders are a fluid-mechanical system. However, instead of
the infinite dimensional model, which achieves high accuracy,
the finite dimensional nominal models are accepted in many
controller design procedures [1] [2] [3] [4]. Nevertheless, such
nominal models are still complex in terms of not only the
nonlinear dynamics (nonlinear response) but also the many
physical parameters in the original representation. In fact, in
addition to the well-known mechanical parameters such as the
damping constant, the several fluid parameters such as the
bulk modulus and the source pressure can be dominant in the
nonlinear response [5] [6]. Eventually, the comprehensive re-
lations between the nonlinear dynamics and the many physical
parameters are not entirely clarified. This implies that even if
a good control result is achieved under a certain experimental
condition, it may not be justifiable to apply the result to
more general conditions. For example, when a linearization
based control [7] is useful for a certain experimental hydraulic
system, it is not clear when the linearization is useful again
for other hydraulic systems.

To overcome this situation, due to the nonlinear response,
numerical studies are important and relevant. However, since
the original parameter space is too large due to the many phys-
ical parameters, it is never efficient to apply the conventional
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direct search (the brute-force search) approaches [8] in which
the computation of the nonlinear dynamics and the updates
of the many physical parameters are repeated in the original
representation. Also, even if the original parameter space is
reduced by an usual nondimensional representation, it is never
efficient to build and verify a new simulator for the usual
nondimensional representation where the existing simulator for
the original representation cannot be applied.

On the other hand, such comprehensive relations are already
studied for other systems. The mass-damper-spring

m
d2s

dt2
+ d

ds

dt
+ ks = f

in the original representation is transformed to

s̈∗ + d∗ṡ∗ + s∗ = f∗

in a special nondimensional representation with only one
parameter d∗ = d/

√
mk preserving the parametric structure

and the analytical study completely clarified the relations (e.g.,
the critical response at d∗ = 2) based on the linearity. The
Navier-Stokes equations of a fluid system [9]

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p + geg + νΔu

in the original representation is transformed to

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = −∇∗p∗ +

1
Fr2

e∗g +
1

Re
Δ∗u∗

in a special nondimensional representation with only two
parameters Fr and Re preserving the parametric structure and
many numerical studies have clarified the relations. These
analytical and numerical studies which are not detailed here
provide the foundations for many things today.

To clarify such relations for a nominal hydraulic cylinder
model as well, this paper proposes a new special nondimen-
sional representation that preserves the parametric structure
and suggests an advanced direct search approach different
from the conventional ones with respect to both the efficiency
and visualization (3D-visualization), without which many nu-
merical studies are less valuable. The proposed nondimen-
sional representation is a new simplicity of the nominal model
that does not exist in more accurate or complex existing
models (e.g. [10] [11] in the original representation) as well as
in the merely simple (freely-truncated) existing models. More
precisely, without building and verifying any new simulator,
we can repeat the fast computation of the nonlinear dynamics
and the updates of only three parameters in the proposed
nondimensional representation. To provide an example, the
numerical existence and nonlinearity are efficiently visualized



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

since the nonlinear dynamics computations are impossible if
the numerical existence is not achieved and the linearization
is less reliable if the nonlinearity is strong.

The rest of this paper is organized as follows. In Section
II, a nominal model of hydraulic cylinders is reviewed in the
original representation. A new special nondimensional repre-
sentation is proposed and compared with other nondimensional
representations in Section III. In Section IV, the effectiveness
of the proposed nondimensional representation is confirmed.
Conclusions are provided in Section V.

II. THE NOMINAL MODEL

Let us start with the nominal model of Figure 1 in the
original representation: [12] [13] [14] [15]

Σ0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M
d2s

dt2
= −D

ds

dt
+ A+p+ − A−p−

dp+

dt
=

b

A+(L/2 + s(t))

[
−A+

ds

dt
+ Q+(p+, u)

]

dp−
dt

=
b

A−(L/2 − s(t))

[
+A−

ds

dt
− Q−(p−, u)

](1)

where the displacement s(t) [m], the cap pressure p+(t) [Pa],
the rod pressure p−(t) [Pa], and the spool displacement (the
input) u(t) [m] are the functions of time t [s]. The subscript +
and − denote the cap-side and the rod-side, respectively, and
the subscript ± denotes both sides. The driving force is f(t) =
A+p+(t) − A−p−(t) [N]. The mass M [kg], the damping
constant D [Ns/m], the piston areas A+ ≥ A− [m2], and the
bulk modulus b [Pa] are the positive constants. The cylinder
volumes V+(s(t)) := A+(L/2+s(t)), V−(s(t)) := A−(L/2−
s(t)) [m3] with the constant stroke L [m] are the functions
of the displacement s(t). The input flows Q+ and Q− [m3/s],
are approximated by Bernoulli’s principle:

Q+ = B(p+, +u)u, Q− = B(p−,−u)u (2)

with

B(r, u)=

⎧⎨
⎩

C
√−r + P (u > 0)

0 (u = 0)
C
√

+r − 0 (u < 0)
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Fig. 1. Nominal hydraulic cylinder model.
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Fig. 2. Example of the nominal model output (the black curves)
with (M, D, L, A+, A−, b, C, P ) = (14, 3200, 0.075, 7.0 × 10−4, 5.4 ×
10−4, 5.3 × 108, 1.6 × 10−4, 7 × 106) and the experimental output [15]
(the red dots) whose valve is replaced by LSVG-01EH-20-WC-A1-10 (Yuken
Kogyo).

where the flow gain C [
√

m5/kg] and the source pressure P
[Pa] are the positive constants. The nominal model introduces
the restricted domain s ∈ (−L/2, L/2) and p± ∈ [0, P ] and
the absolute notation within the square root functions (2) is
dropped.
Remark 1 (Relating to uncertainty) The equations (1) ignore
the nonlinear friction effect and also the internal and external
leakage effects at least. The equations (2) assume the steady
flow and the negligible servo dynamics of the zero-lapped
spool valve. On the other hand, the stroke L can include
the pipeline length effect and the bulk modulus b includes
the pipeline (or tube) flexibility effect. Figure 2 shows an
example of the accuracy between the nominal model (1)
(2) and an experimental setup (a real system) in a practical
frequency band (see [15] for details). This figure displays a
long time cross validation in which the experimental outputs
(the red dots) were never used in the parameter identification
procedure for the nominal model outputs (the black curves).
Nevertheless, with respect to the nonlinear responses in the
pressures and displacement, the nominal model has an accu-
racy that any linearized model (transfer function) cannot have.
Of course, the difference (e.g. the nonlinear friction effect)
between the nominal model and the experimental setup exists
and depends on each experimental setup but would change
continuously. In the context of robust control [16] [17], the
difference is uncertainty taken into account in the controller
design procedure.

The nominal model (1) (2) is not our result. Not the
accuracy but a new simplicity is our contribution evaluated
in terms of the efficiency and visualization.

III. A SPECIAL NONDIMENSIONALIZATION

First, a new special nondimensional representation is pro-
posed. Second, the advantages of the proposed nondimensional
representation are discussed in comparison with other nondi-
mensional ones because they are not unique [18] [19].
Proposition 1 (Special nondimensional representation)
Consider the original representation (1) (2) of the nom-
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inal model. Then, there exists a set of a time scal-
ing t∗ = (1/T )t, a variable scaling (s∗, p∗+, p∗−)T =
((1/S)s, (1/P+)p+, (1/P−)p−)T, and an input scaling u∗ =
(1/U)u by which the original representation (1) (2) is trans-
formed to the following nondimensional representation:

Σs

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s̈∗ = −D∗ṡ∗ + p∗+ − A∗p∗−

ṗ∗+ =
1

1/2 + s∗
(−ṡ∗ + Q∗

+

)

ṗ∗− =
1

1/2 − s∗

(
+ṡ∗ − 1

A∗ Q∗
−

) (3)

and

Q∗
+ = B∗(p∗+, +u∗)u∗, Q∗

− = B∗(p∗−,−u∗)u∗ (4)

with

B∗(r, u)=

⎧⎨
⎩

√−r + P ∗ (u > 0)
0 (u = 0)√
+r − 0 (u < 0)

where T , S, P+, P−, and U are the constants and D∗, A∗,
and P ∗ are the nondimensional parameters. The notation •̇
denotes the derivative with respect to the nondimensional time
t∗.

In the following proof of Proposition 1, the original rep-
resentation (1) (2) is converted into an input-state equation
of a physical form from which the special nondimensional
representation (3) (4) is derived via a set of the state and input
transformation [20] and also the time transformation.
Proof of Proposition 1. The original representation (1) (2) is
converted into an input-state equation of the form [13]:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx

dt
=

⎡
⎢⎢⎣

0 +1 0 0
−1 −D J23 J24

0 −J23 0 0
0 −J24 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
F

∇xH+

⎡
⎢⎢⎣

0
0

+bV −1
+ Q+

−bV −1
− Q−

⎤
⎥⎥⎦

︸ ︷︷ ︸
gu

y = gT∇xH
(5)

with the state x = (s, pm, p+, p−)T,

J23(s) = +bV+(s)−1A+, J24(s) = −bV−(s)−1A−,

and the original energy

H = p2
m/(2M)− V+(s)(b + p+) − V−(s)(b + p−).

Here, the notation ∇x denotes the gradient with respect to the
variable x. The variable pm = Mv is the momentum imparted
by the velocity v = ds

dt . By the gradient of the original energy
H in the input-state equation of the form (5), the equations
(1) are obtained by a direct calculation.

Since the state x is defined, let us take the set of the time
transformation t∗ = (1/T )t with T =

√
(ML)/(bA+) =: Ts,

the state transformation x∗ = (s∗, v∗, p∗+, p∗−)T = X−1
s x with

Xs :=

⎡
⎢⎢⎣

S 0 0 0
0 MS/T 0 0
0 0 P+ 0
0 0 0 P−

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

L 0 0 0
0
√

MLbA+ 0 0
0 0 b 0
0 0 0 b

⎤
⎥⎥⎦ ,

and the input transformation u∗ = (1/U)u with U =
(
√

A3
+L/M)/C =: Us. Then the original form (5) is trans-

formed to the nondimensional form:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ∗ =

⎡
⎢⎢⎣

0 +1 0 0
−1 −D∗ J∗

23 J∗
24

0 −J∗
23 0 0

0 −J∗
24 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
TsX−1

s FX−T
s

∇x∗H∗+

⎡
⎢⎢⎣

0
0

+J∗
23Q

∗
+

−(J∗
24/A

∗)Q∗
−

⎤
⎥⎥⎦

︸ ︷︷ ︸
TsX−1

s gUu∗=:g∗u∗

y∗ := g∗T∇x∗H∗
(6)

with

J∗
23 = +1/(1/2 + s∗), J∗

24 = −1/(1/2− s∗),

and the nondimensional energy

H∗ = (1/2)(v∗)2

−(1/2 + s∗)(+1 + p∗+)
−(1/2 − s∗)(+1 + p∗−)A∗

in which D∗ := D
√

L/(MbA+), A∗ := A−/A+, P ∗ := P/b.
Again, by the gradient of the nondimensional energy H ∗ in
the input-state equation of the nondimensional form (6), the
nondimensional representation (3) (4) is obtained. �

In general, a model is valuable when the model has desirable
properties that the other models do not have. Not only accuracy
but also simplicity for control are among the properties. In
a word, this paper highlights that the nominal model has
high simplicity that more accurate or complex existing models
(e.g., [10][11][21]) do not have as well as the merely simple
(freely-truncated) existing models do not. A simplicity for
control of the nominal model is the form (5) which is not our
contribution and an application [13] of the physical form [22]
[23] developed for the finite dimensional version of physical
systems. The physical form provides so many links to fruitful
results in modeling and control (e.g., modeling of the infinite
dimensional systems, robust stabilization, learning) [24] [25]
[26] than the general nonlinear forms (e.g., ẋ = f(x)+ g(x)u
and y = h(x) [27]). Indeed, the physical form is a special case
of the general nonlinear forms. Regarding our contribution, the
rest of this paper reveals that the nominal model has another
simplicity for the parametric structure linked to the several
advantages, that is, the efficiency and visualization.

Technically speaking, the proposed nondimensional repre-
sentation (3) (4) is different from the conventional ones with
respect to the visualization (3D-visualization) at a minimum.
The time scaling in the famous nondimensionalizations [21]
is not coupled with the state and input scaling to reduce the
parameters for the visualization. Unlike the translational joint
corresponding to the nominal model, the rotational joint [28]
is complex due to more parameters making the visualization
impossible. Also, the translational joint formulation cannot be
a special case of the rotational joint formulation [29].

The first advantage of the proposed nondimensional
representation (3) (4) is the parameter space reduc-
tion. The 8-dimensional parameter space with θ :=
(M, D, L, A+, A−, b, C, P ) ∈ R

8
+ in the original representa-

tion (1) (2) is reduced to the 3-dimensional parameter space
with θ∗ := (D∗, A∗, P ∗) ∈ R+ × (0, 1] × R+ ⊂ R

3
+ ⊂ R

8
+
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in the proposed nondimensional representation (3) (4). Of
course, other nondimensional representations bring a similar
advantage [18] [19]. To discuss the additional advantages of
the proposed nondimensional representation (3) (4), let us
make our examples of other nondimensional representations.
Example 1 For the original physical form (5), let us take
the set of the time transformation t∗ = (1/T )t with T =√

(ML)/(bA+) =: T1 and the state transformation x∗ =
(s∗, v∗, p∗+, p∗−)T = X−1

1 x with

X1 :=

⎡
⎢⎢⎣

S 0 0 0
0 MS/T 0 0
0 0 P+ 0
0 0 0 P−

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

L 0 0 0
0
√

MLbA+ 0 0
0 0 b 0
0 0 0 bA+/A−

⎤
⎥⎥⎦

and the input transformation u∗ = (1/U)u with U =
(
√

A3
+L/M)/C =: U1. Then, via a procedure similar to the

one in the proof of Proposition 1, we obtain one of the other
nondimensional representations:

Σ1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s̈∗ = −D∗ṡ∗ + p∗+ − p∗−

ṗ∗+ =
1

1/2 + s∗
(−ṡ∗ + Q∗

+

)

ṗ∗− =
1

1/2 − s∗

(
+A∗ṡ∗ − 1√

A∗Q∗
−

) (7)

and

Q∗
+ = B∗(p∗+, +u∗)u∗, Q∗

− = B∗(p∗−,−u∗)u∗ (8)

with

B∗(r, u∗) :=

⎧⎨
⎩

√−r + P ∗ (u∗ > 0)
0 (u∗ = 0)√
+r − 0 (u∗ < 0)

in which D∗ := D
√

L/(MbA+), A∗ := A−/A+, P ∗ := P/b.
�

A significant difference between the nondimensionalizations
in Proposition 1 and Example 1 is a parametric structure.
By dropping the superscript •∗, the proposed nondimensional
representation (3) (4) can be equal to the original repre-
sentation (1) (2) when θ = (1, D, 1, 1, A, 1, 1, P ) ∈ R

8
+.

However, by dropping the superscript •∗, one of the other
nondimensional representations (7) (8) generally cannot be
equal to the original representation (1) (2). More precisely,
the first equation in (7) can be equal to the first equation
in (1) when M = A+ = A− = 1. The second equation
in (7) can be also equal to the second equation in (1) when
L = A+ = b = 1. However, even if L = A− = b = 1,
the third equation in (7) cannot be equal to the third equation
in (1) since A∗ �≡ 1 for any C and P . In this sense, the
other nondimensional representation (7) (8) fails to preserve
the parametric structure in the original representation (1) (2)
whereas the proposed nondimensionalization (3) (4) preserves
it successfully. This difference can also be easily observed in
the energy. The nondimensional energy in the other nondimen-
sional representation (7) (8) is described by

H∗ = (1/2)(v∗)2

−(1/2 + s∗)(+1 + p∗+)
−(1/2 − s∗)(+1 + p∗−/A∗)A∗,

and the parametric structure differs from that of the original
energy H since A∗ �≡ 1.

Eventually, the above significant difference is trivially
rephrased as the following time response property of the
hydraulic cylinders. Let the notation φ[θ, x(0), u(t)] denote
the state x(t) in the original representation (1) (2) of θ =
(M, D, L, A+, A−, b, C, P ) at time t starting from the initial
state x(0) in the presence of the input signal u(τ) (0 ≤ τ ≤ t).
Theorem 1 (Structure preserving property) Suppose the
state x(t) = φ[θ, x(0), u(t)] exists. Then the nondimensional
state x∗(t∗) = X−1

s φ[θ, Xsx
∗(0), Usu

∗(Tst
∗)] in the special

nondimensional representation (3) (4) at nondimensional time
t∗ = (1/Ts)t starting from the nondimensional initial state
x∗(0) = X−1

s x(0) in the presence of the nondimensional input
u∗(t∗) = (1/Us)u(t∗) is given as

x∗(t∗)=φ[θ∗special(θ), x
∗(0), u∗(t∗)] (9)

of θ∗special(θ) = (1, D
√

L/(MbA+)︸ ︷︷ ︸
0<D∗

, 1, 1, A−/A+︸ ︷︷ ︸
0<A∗≤1

, 1, 1, P/b︸︷︷︸
0<P∗

).

The second advantage is the verification-free based on
Theorem 1. The existing simulator for the original represen-
tation (1) (2) cannot be applied as a simulator for the other
nondimensionalization (7) (8). It is never efficient to build
a new simulator for the other nondimensional representation.
Moreover, from a practical viewpoint, the verification (e.g.,
checking of the simulator codes or settings) is more laborious
than the building. But, based on Theorem 1, the existing
simulator for the original representation (1) (2) is successfully
applicable as a simulator for the proposed nondimensional
representation (3) (4). Then we do not have to endure the
verification. u The third advantage is the fast computation
based on Theorem 1. The computation time for x(t) =
Xsφ[θ∗special(θ), x

∗(0), u∗(t/Ts)] should be shorter than that
for x(t) = φ[θ, x(0), u(t)]. This is because the number of
multiplication and division operations for the forward dynam-
ics computations of (3) (4) is trivially small due to the unity
parameters (M, A+, L, b, C) = (1, 1, 1, 1, 1) in equation (9)
whereas the parametric structure in the original representation
(1) (2) is preserved. Of course, computer performances has
much improved since 1990’ [29]. However, depending on the
objective (e.g., numerical study or design optimization), the
computation time is still substantial when many dynamics
computations need to be repeated.

The fourth advantage of the proposed nondimensional rep-
resentation is discussed after our next example.
Example 2 For the original physical form (5), let us take
the set of the time transformation t∗ = (1/T )t with T =√

M/(PL) =: T2 and the state transformation x∗ =
(s∗, v∗, p∗+, p∗−)T = X−1

2 x with

X2 :=

⎡
⎢⎢⎣

S 0 0 0
0 MS/T 0 0
0 0 P+ 0
0 0 0 P−

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

L 0 0 0
0

√
MPL3 0 0

0 0 P 0
0 0 0 P

⎤
⎥⎥⎦ ,

and the input transformation u∗ = (1/U)u with U =
(
√

L7/M)/C =: U2. Then, via a procedure similar to the
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one in the proof of Proposition 1, we obtain one of the other
nondimensional representations:

Σ2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s̈∗ = −D∗ṡ∗ + A∗
+p∗+ − A∗

−p∗−

ṗ∗+ =
b∗

1/2 + s∗

(
−ṡ∗ +

1
A∗

+

Q∗
+

)

ṗ∗− =
b∗

1/2 − s∗

(
+ṡ∗ − 1

A∗−
Q∗

−

) (10)

and

Q∗
+ = B∗(p∗+, +u∗)u∗, Q∗

− = B∗(p∗−,−u∗)u∗ (11)

with

B∗(r, u∗) :=

⎧⎨
⎩

√−r + 1 (u∗ > 0)
0 (u∗ = 0)√
+r − 0 (u∗ < 0)

in which D∗ := D/
√

MPL, A∗
+ := A+/L2, A∗

− := A−/L2,
b∗ := b/P �

Now, the other nondimensionalization (10) (11) also pre-
serves the parameter structure in the original representation (1)
(2). Indeed, by dropping the superscript • ∗, the other nondi-
mensional representation (10) (11) can be equal to an original
representation (1) (2) when θ = (1, D, 1, A+, A−, b, 1, 1). The
nondimensional energy of the other nondimensional represen-
tation (10) (11) described by

H∗ = (1/2)(v∗)2

−(1/2 + s∗)(b∗ + p∗+)A∗
+

−(1/2 − s∗)(b∗ + p∗−)A∗
−,

can be a special case of the original energy H .
The fourth advantage of the proposed nondimensional rep-

resentation is the visualization. A difference between the
nondimensionalizations in Proposition 1 and Example 2 is
the dimension of the parameter space. Of course, the 4-
dimensional parameter space with (D∗, A∗

+, A∗
−, b∗) ∈ R

4
+

is much smaller than the original 8-dimensional parameter
space R

8
+ and close to the proposed 3-dimensional parameter

space with θ∗ = (D∗, A∗, P ∗). However, only the proposed 3-
dimensional parameter space can be visualized in 3D whereas
even the 4-dimensional parameter space cannot.

IV. 3D VISUALIZATION

Not the accuracy but the new simplicity is evaluated in terms
of the efficiency (parameter space reduction, verification-free,
and fast computation) and visualization.

A. The numerical existence and nonlinearity

For many practical nonlinear systems, one of the most
fundamental properties may be the stability [30] as long as the
state exists. Especially, it is relevant that the state x(t) exists
within an restricted region: ΩLP = (−L/2, L/2)×R× [0, P ]2

in the presence of the input. In addition to the numerical
existence, the nonlinearity (or the input-output linearity) is also
of interest for the linearization based controls [31] [7].

The numerical existence is evaluated by the existence of the
escape time te [30] at which the state x(te) starting from a

test initial state x(0) = (0, 0, P/2, (A+/A−)P/2)T ∈ ΩLP

leaves the region ΩLP for the first time in the presence of
a test signal u(t) = Au sin(2πfut) in the test period [0, Tu].
The numerical existence is achieved only if the escape time
te ∈ [0, Tu] does not exist. The numerical existence depends
on the setting of the test parameters Au, fu, and Tu as well
as θ = (M, D, L, A+, A−, b, C, P ) and x(0).

The nonlinearity is evaluated by a difference between an
output of the nominal model and that of the linearized model:

Σ̂0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M
d2ŝ

dt2
= −D

dŝ

dt
+ A+p̂+ − A−p̂−

dp̂+

dt
= bV+(0)−1

[
−A+

dŝ

dt
+ Q+(P/2, u)

]

dp̂−
dt

= bV−(0)−1

[
+A−

dŝ

dt
− Q−(P/2, u)

] (12)

whose state x̂(t) := (ŝ(t), ˙̂s(t), p̂+(t), p̂−(t))T starts from the
same state x̂(0) = x(0) in the presence of the same input
u(t). The displacement s(t) and the driving force f(t) =
A+p+(t) − A−p−(t) are relevant in control [1] [7] whereas
the pressures p±(t) are used in parameter identification [15].
Here, the difference is defined as the FIT ratio [32]:

FIT(yi
0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −

√√√√ Te∑
t=0

(ŷi
0(t) − yi

0(t))
2

√√√√ Te∑
t=0

(yi
0(t) − ȳi

0)
2

⎞
⎟⎟⎟⎟⎟⎟⎠

× 100

where ȳi
0 is the mean value of the i-th element y i

0(t) (i =
1, · · · , 4) of the outputs y0(t) := (p+(t), p−(t), f(t), s(t))T

of the nominal model and ŷ i
0 is the i-th element of the

corresponding outputs ŷ0(t) := (p̂+(t), p̂−(t), f̂(t), ŝ(t))T of
the linearized model (12). The results on the velocity v(t) can
be discussed by that on the displacement s(t). If the numerical
existence is achieved, Te := Tu, otherwise Te := te ∈ [0, Tu].
The value of FIT(yi

0) can be negative.

B. Experimental conditions

The nonlinear dynamics computation and the parameter
updates were repeated in the proposed nondimensional rep-
resentation instead of the original representation. For the
nonlinear dynamics computations, the equation (9) was applied
to compute the nondimensional state x∗(t∗) starting from the
initial state x∗(0) = (0, 0, P ∗/2, A∗P ∗/2)T in the presence
of the test signal A∗

u sin(2πf∗
ut∗) with the amplitude A∗

u :=
Au/Us = 0.01 and the frequency f ∗

u := Tsfu ∈ [0.001, 10].
The test period was defined as [0, T ∗

u ] := [0, 5/f∗
u]. The

modified backward differential formula with the variable step
was applied (20-sim, Ver. 4.1, 64-bit 2.60GHz CPU with 8GB
of memory). The nondimensional outputs y ∗

0(t∗) were given
by the nondimensional state x∗(t∗) directly. Using a similar
procedure, the corresponding estimated outputs ŷ ∗

0(t∗) were
also given by linearized model (12) in the nondimensional
version. The damping constant, the rod area, and the source
pressure (D∗, A∗, P ∗) ∈ [D∗

min, D
∗
max] × [A∗

min, A
∗
max] ×
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[P ∗
min, P ∗

max] = [0.0006, 11.2]× [0.5, 1.0]× [1.4× 10−5, 0.07]
were updated with the increments δ∗

D = 1.12, δA∗ = 0.05,
and δP∗ = 0.007, respectively and the other parameters
(M, A+, L, b, C) = (1, 1, 1, 1, 1) were not updated.

C. Experimental results and discussion

Figure 3 shows the numerical existence and nonlinearity
visualized in D∗A∗P ∗ space. In the colorless regions on the
slices, the numerical existence is not achieved since the escape
time t∗e ∈ [0, T ∗

u ] exists such that x∗(t∗e) �∈ Ω1P∗ . Figure 4
shows the time response examples corresponding to Figure 3
in the following four cases:
CASE-a: (D∗, A∗, P ∗) = (0.0006, 0.5, 0.07),
CASE-b: (D∗, A∗, P ∗) = (0.0006, 0.9, 0.07),
CASE-c: (D∗, A∗, P ∗) = (6.0, 0.5, 0.07),
CASE-d: (D∗, A∗, P ∗) = (6.0, 0.9, 0.07).
The outputs y∗

0(t∗) are depicted as the curves. The maximum
variable step was 104 times larger than the minimum one.

The numerical existence was not achieved when A∗ ≤ 0.5
at every frequency f ∗

u . When 0.5 < A∗ ≤ 1.0, the numerical
existence depended on the frequency f ∗

u . In particular, at the
low frequency f ∗

u ≤ 0.001, the numerical existence was not
achieved for 0.07 ≤ P ∗. This may not be surprising in the
sense that P ∗ increases only the gain of the nondimensional
transfer function matrix:

√
8P ∗

p2 + D∗p + 2(1 + A∗)

⎡
⎢⎢⎣

(+p2 + D∗p − 2(1 − A∗))/(2p)
(−p2 − D∗p − 2(1 − A∗))/(2A∗p)

p + D∗

1/p

⎤
⎥⎥⎦

from the input u∗ to the estimated outputs ŷ∗
0 =

(p̂∗+, p̂∗−, f̂∗, ŝ∗)T of the linearized model (12) in the nondi-
mensional version. The increase of P ∗ corresponds to the
increase of the amplitude of the test signal. Here, the notation p
denotes the derivative operator in the Laplace transform with
respect to the nondimensional time t∗(= t/Ts). Indeed, in
Figure 4(a), there always exists t∗e ≤ 450 such that x∗(t∗e) �∈
Ω1P∗ due to the displacement saturation s∗(t∗e) → +0.5.
Additionally, around the resonance frequency f̂∗

r (D∗, A∗) :=√
2(1 + A∗) − (D∗/2)2/(2π) ∈ (0, 1/π) of the linearized

model when the under-damping (D∗ < 2
√

2(1 + A∗) ∈
(2
√

2, 4], the numerical existence was not always achieved.
In Figure 4(f), there exists t∗e ≤ 6.5 such that x∗(t∗e) �∈ Ω1P∗

due to the pressure saturation p∗−(t∗e) → P ∗ in CASE-a.
The colored regions on the slices in Figure 3 depict the

FIT ratio as the nonlinearity. In Figure 5 which corresponds

TABLE I
COMPUTATION SPEED COMPARISON

Frequency f∗
u [1] Computation time [s] Computation time [s]

in original representation in proposed representation
0.001 6942 3131
0.002 9028 4777
0.003 8242 3909
0.02 3295 1722
0.1 1675 841
0.3 1205 572
0.5 695 486
10 374 272

to Figure 4 the estimated outputs ŷ∗
0(t∗) are depicted as

the curves. For the pressures p∗
±(t), remarkably, around a

frequency f ∗
u = 0.02, the lower nonlinearity (higher linearity)

was achieved uniformly in D∗A∗P ∗ space. This was observed
as the time-response examples in Figure 4(d) and Figure 5(d).
At other frequencies, the pressures p∗

±(t∗) and the estimated
ones p̂∗±(t∗) could be very different as shown in Figure
4(b) and Figure 5(b) in spite of the best initial condition
p∗±(0) = p̂∗±(0). In Figure 2, these nonlinearities, the non-
negative and multi-peak pressures in CASE-c of Figure 4(b),
were already observed.

For the driving force f ∗(t∗) = p∗+(t∗) − A∗−p∗−(t∗), the
lower nonlinearity was achieved at every frequency f ∗

u in
D∗A∗P ∗ space uniformly. Figure 4(c) and Figure 5(c) show
the corresponding time response examples. Interestingly, even
when the pressures p∗

±(t∗) and the estimated ones p̂∗
±(t∗) were

very different, the force f ∗(t∗) could be approximated roughly
by the estimated one f̂∗(t∗). At every high frequency 10 < f ∗

u ,
not only the pressure changes p∗±(t∗) but also the force f ∗(t∗)
were small as shown in Figure 4(h) and Figure 5(h) and the
nonlinearity was less important.

For the displacement s∗(t∗), the nonlinearity was not uni-
form in D∗A∗P ∗ space and also sensitive to the frequency
f∗

u . The lower nonlinearity was achieved at every frequency
f∗

u when 0.9 < A∗ ≤ 1.0. As shown in Figure 4(b) and Figure
4(c), as long as A∗ �= 1.0, the displacement s∗(t∗) could be
asymmetric and was not always approximated by the estimated
one ŝ∗(t∗) which was more symmetric. At a glance, one may
think that such asymmetric displacements were generated by
a nonlinear friction effect. This conjecture is not true because
the nominal model ignores the nonlinear friction effect. At
every high frequency 0.1 ≤ f ∗

u except around the resonance
frequency f̂∗

r (D∗, A∗), the displacement s∗(t∗) was small as
shown in Figure 4(h) and Figure 5(h) and the nonlinearity was
again less important.

In all, at every frequency f ∗
u , the linearization was roughly

reliable for the driving force f ∗(t∗) in all cases and also for the
displacement s∗(t∗) when 0.9 ≤ A∗ ≤ 1.0. For the pressures
p∗±(t∗), the linearization was roughly reliable around the
frequency f ∗

u = 0.02 in all cases. Precisely speaking, even for
the driving force f ∗(t∗), the asymmetric nonlinearity existed
as long as A∗ �= 1.0 and will affect the force and position
control performance via the linearization. The verification-free
and the visualization were successfully evaluated.
Remark 2 (Relating to parameter perturbation) Every
parameter perturbation in the original parameter space (e.g.
b → b(1 + δb)) can also be the perturbation in D∗A∗P ∗

space (e.g. D∗ → D
√

L/(Mb(1 + δb)A+) =: D∗(1 + δD∗),
P ∗ → P/(b(1 + δb)) =: P ∗(1 + δP∗)) by which a point
in D∗A∗P ∗ space is mapped into the other point. Note that
the nonlinearity (color) at these points in Figure 3 evaluates
uncertainty for the linearized model (12) and is different from
uncertainty for the nominal model discussed in Remark 1.

For the numerical study to clarify comprehensive relations
between the nonlinear dynamics and the many physical param-
eters, the proposed nondimensional representation has only
O(n3) time complexity whereas the original representation
has O(n8) time complexity. Since our experimental condition
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Fig. 3. Numerical existence and nonlinearity in D∗A∗P ∗ space
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Fig. 4. Nondimensional time response (Nominal model)
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Fig. 5. Nondimensional time response (Linearized model)
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took n = 10 to make Figure 3, the number of updates of the
physical parameters was remarkably reduced. For the design
optimization [8] which is not our main objective in this paper,
since we may need the 5-dimensional search after the 3-
dimensional search, the proposed nondimensional representa-
tion has O(n3) + O(n5) time complexity at maximum which
is still better than O(n8) time complexity even at n = 2. The
parameter space reduction was also evaluated.

Table 1 evaluates the nonlinear dynamics computation
time which is the sum of all computation times within
D∗A∗P ∗ space needed to make Figure 3. At every fre-
quency f ∗

u , as expected, the computation time for x(t) =
Xsφ[θ∗special(θ), x

∗(0), u∗(t/Ts)] using the proposed nondi-
mensional representation (3) (4) was better than that for
x(t) = φ[θ, x(0), u(t)] using the original representation (1)
(2). In total, the computation time of the proposed nondimen-
sional representation was reduced to 15710 s (4.2 h) which
is around the half of that of the original representation 31455
s (8.7 h). This is because the parameters (M, A+, L, b, C) =
(1, 1, 1, 1, 1) reduce the number of multiplication and division
operations preserving the parametric structure in the original
representation (1) (2). The computation time can be improved
more since all existing methods [8] [33] developed for the
original representation (1) (2) can be applied. While the
computations were made for only eight frequencies f ∗

u in Table
1, the fast computation was well evaluated.

Finally, let us remark that Proposition 1 and Theorem 1
provide the links to the closed-loop discussion as well as the
open-loop discussion presented in the above of this paper.

Remark 3 (Relating to design and control via scaling) Let
us put a simple example of the links based on our experimental
1-DOF arm, and consider a scaling design and control problem
of a hydraulic cylinder whose piston undershoot should be
zero in the presence of force disturbance. Assume that only
(D, A+, b) = (11000 Ns/m, 0.0021 m2, 5.3 × 108 Pa) are
given and the others (M, L, A−, C, P ) ∈ R

5
+ and a gain F > 0

of the simple control u(t) = −Fs(t) are unknown under a
certain working constraints L/2 ≥ 2.5 m (with pipeline length
effect), A− ≤ 0.0016 m2, P ≤ 21×106 Pa in the large scale.
[Step 1] In the large scale, we search the parameters
(M, L, A−, C, P ) by the advanced direct search approach.
Since the transfer function in the following linearization
based control (the classical control) does not treat any ini-
tial response x̄(t) := φ[θ, x(0), u(t) ≡ 0], the objective
function is the norm overshoot max

0≤t<∞
|x̄(t)TQx̄(t)| by the

random initial state x(0) ∈ ΩLP . Here, we will suffer from
O(n5) time complexity without Proposition 1 and Theorem
1, but now only O(n3) time complexity is needed. when
n = 10 and Q = diag(1, 1, 0.1, 0.1), the searched pa-
rameters are (D∗, A∗, P ∗) = (4.1, 0.75, 0.028) which imply
(M, L, A−, C, P ) = (M, 0.144M, 0.0016 m2, C, 14×106 Pa)
with the free parameters M and C. Under the constraints, our
choice is M = 100 kg and C = 1.8 × 10−4

√
m5/kg. The

physical units are unique and dropped in the following.
[Step 2] In the large scale, we prepare the linearization based
control u(t) = −Fs(t) whose nondimensional version is
u∗(t∗) = −(1/Us)F (Ls∗(t∗)) =: F ∗s∗(t∗). By the standard
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Fig. 6. Disturbance response (Left: large scale, Right: small scale).

linear analysis, if F ∗ < {−(2(D∗ − 6(1 + A∗))3/2)/27 +
2(D∗)3/27 − 2D∗(1 + A∗)/3}/√8P ∗ ≈ 1.82, the zero-
undershoot is guaranteed for the linearized model (12), but
not guaranteed for the nominal model due to the nonlinearity.
Figure 6 shows the disturbance responses (the solid black
and red curves) with F = 0.0128 (F ∗ = 0.908 < 1.82)
of the nominal model and that of the linearized model (12)
against the step disturbance 20000 N. Fortunately, without
adjusting F , the zero-undershoot for the nominal model is
confirmed numerically (not analytically) whereas the response
(the dashed red curve) with F = 0.0345 (F ∗ = 2.45 > 1.82)
has the nonzero (dangerous) undershoot for the linearized
model (12). The response difference between the models with
the same gain corresponds to the nonlinearity (the FIT ratio
≈ 0 in the band f ∗

u < 0.02) in Figure 3 which justifies to use
the nominal model instead of the linearized model (12).
[Step 3] In a certain small scale, we design and control
the small scaled hydraulic cylinder since the similarity [34]
is sometimes required to reduce the experimental cost in
the large scale. Here, by replacing M = 100 → 25 and
keeping (D∗, A∗, P ∗) and F ∗, we have (M, L, A−, C, P ) =
(25, 3.6, 0.0016, 1.8 × 10−4, 14 × 106) and F = 0.0512.
Against the nonlinearity, based on Proposition 1 and Theorem
1, the zero-undershoot is guaranteed even for the nominal
model in the small scale. Indeed, Figure 6 shows no under-
shoots in the disturbance responses with F = 0.0512 of both
models in the small scale. Now we can start to construct the
small scaled hydraulic cylinder for the experimental validation.

V. CONCLUSION

This paper reveals that a nominal model of hydraulic cylin-
ders has a new simplicity on the parametric structure that more
accurate or complex, and merely simple existing models do not
have. Without loss of generality, only by changing the damping
constant D∗, the rod area A∗, and the source pressure P ∗

and assuming that all the other physical parameters are unity,
any index, such as the numerical existence and nonlinearity,
is visualized efficiently. Three parameters D∗, A∗, and P ∗

correspond to the damping parameter d∗ of the mass-damper-
spring, or to the Froude number Fr and the Reynolds number
Re of the fluid system in Section I. This is an inevitable,
unexpected, and economical result. Roughly speaking, Figure
4 is the best possible result corresponding to the analytical
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(analytic) solution. In this sense, the comprehensive relations
between the nonlinear dynamics and many physical parameters
are clarified. Besides the small and large scale experiments,
one of the key future works is to improve the accuracy of the
nominal model keeping the simplicity for control.
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