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Abstract. To extend the Bose-Einstein (BE) distribution to fractional order, we turn our
attention to the differential equation, df/dx = −f − f2. It is satisfied with the stationary
solution, f(x) = 1/(ex+µ − 1), of the Kompaneets equation, where µ is the constant chemical
potential. Setting R = 1/f , we obtain a linear differential equation for R. Then, the Caputo
fractional derivative of order p (p > 0) is introduced in place of the derivative of x, and fractional
BE distribution is obtained, where function ex is replaced by the Mittag–Leffler (ML) function
Ep(x

p). Using the integral representation of the ML function, we obtain a new formula. Based
on the analysis of the NASA COBE monopole data, an identity p ≃ e−µ is found.

1. Introduction
The COBE FIRAS experiments have shown that the cosmic microwave background (CMB)
radiation spectrum is well described by the Planck distribution with temperature, T = 2725.0±1
mK [1, 2]. Furthermore, a slight distortion from the Planck distribution in the photon number
distribution, f(x), is observed. It is expressed by

f(x) = 1/(ex+µ − 1), x = hν/(kT ), (1)

where µ is the dimensionless constant chemical potential and ν is the frequency of photon. The
measured value is µ = (−1± 4)× 10−5 or |µ| < 9× 10−5 with 95% confidence [1, 2].

Equation (1) is known as a stationary solution of the Kompaneets equation[3]:

∂f
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neσe
c

xe
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∂xe
xe

4
(
∂f/∂xe + f + f2

)
, (2)

where ne is the electron density, σe is the Thomson scattering cross-section and xe = hν/(kTe).
Equation (2) describes the photon distribution, which obeys the Planck distribution at the initial
stage, and is affected by the elastic e-γ scatterings in the expanding universe.
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In the theories of stochastic processes, in order to take a sort of memory effect into account,
fractional calculus is introduced [4, 5, 6, 7]. Based on the Caputo derivative [4], Ertik et al.
proposed a generalized BE distribution [8], f(x) = 1/(Ep(x) − 1), where Ep(x) denotes the
Mittag-Leffler (ML) function defined by

Ep(x) =
∞∑
n=0

xn/Γ(np+ 1), p > 0. (3)

To extend the BE distribution to fractional order, we turn our attention to the equation,

df(x)/dx = −af(x)− bf(x)2, (4)

where a and b are constant. If a = b = 1, Eq.(4) reduces to the equation which is adopted by
Planck [9, 10] to derive the blackbody radiation law, and is satisfied with the stationary solution
(1) of the Kompaneets equation (2). Putting f = 1/R, we obtain the linear differential equation,

dR/dx = aR+ b. (5)

In Appendix A, the Caputo fractional derivative is introduced into Eq. (5) in place of the
derivative x, and a fractional BE and other distributions are obtained.

In [11], we have applied the Riemann–Liouville fractional derivative to obtain a fractional BE
distribution f(x) = 1/(Ep(x

p)− 1), and we have investigated the NASA COBE monopole data
using BE and fractional BE distributions. The photon spectrum given from Eq.(1) is written as

UBE(x, µ) = CB/(e
x+µ − 1), (6)

where x = hν/(kT ) and CB = 2hν3/c2. On the other hand, the photon spectrum in the
Universe, based on the fractional calculus, is given by

U(x, p) = CB/(Ep(x
p)− 1). (7)

From the analysis of NASA COBE monopole data [2] , the following values of parameters are
estimated [11]: from Eq.(6), T = 2.72501 ± 0.00002 K and µ = (−1.1 ± 3.2) × 10−5, and from
Eq.(7), T = 2.72501± 0.00003 K and p− 1 = (1.1± 3.5)× 10−5. Then, we estimated a relation
between µ and p as µ ≈ 1− p.

In the present study, the COBE monopole data [2] is analyzed by the use of an integral
representation of the ML function [5, 12]:

Ep(x
p) = ex/p+ δ(x, p), (8)

δ(x, p) = −sin(pπ)

π

∫ +∞

0

yp−1e−xy

y2p − 2yp cos(pπ) + 1
dy. (9)

Function δ(p, x) for 0 < p < 2 and 0 ≤ x satisfies the relation, |δ(p, x)| ≤ |δ(p, 0)| = |p− 1|/p.

2. Analysis of the COBE monople data by Eqs.(8) and (9)
By the use of the integral representation of the ML function, Eq. (8), Eq. (7) is written as

U(x, p) = CB/(e
x/p− 1 + δ(x, p)), (10)

with two parameters, T and p. At first we analyze the COBE monopole data using Eq.(10). The
results are shown in Table 1 and in Fig. 1. As is seen from Table 1, conditions that |p− 1| << 1
and |δ(p, x)| ≤ |p− 1|/p << 1 are satisfied. Then, we can expand Eq. (10) as

U(x, p) = CB/(e
x/p− 1)− CB δ(x, p)/(ex/p− 1)2. (11)
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Table 1. Analysis of the NASA COBE monopole data by Eq.(10).

T (K) (p− 1) χ2/N F

2.72501± 3× 10−5 (1.1± 3.5)× 10−5 45.0/41
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Figure 1. Analysis of the COBE monopole
data by Eq. (10). x = 0.528ν.
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Figure 2. Contribution of first and second
terms on the right hand side of Eq. (11).

From the Analysis with Eq.(11), we obtain the same results with those in Table 1. Contribution
from the first and second terms on the right hand side of Eq. (11) with parameter values in
Table 1 are shown in Fig. 2.

As the ratio of the second term to the first term on the right hand side of Eq. (11) becomes
δ(x, p)/(ex/p− 1) < 2× 10−6 over the range of the COBE monopole data, 1.20 ≤ x ≤ 11.26, we
can approximate Eq. (11) as,

U(x, p) ≃ CB/(e
x/p− 1) = CB/(e

x−ln p − 1). (12)

Comparing Eq.(1) and Eq.(12), we obtain an analytic relation, µ = − ln p.

3. Concluding remarks
1) If the Caputo fractional derivative is introduced into Eq. (4), contrary to the case of Riemann-
Liouville fractional derivative [11], we have fractional Bose-Einstein, Fermi-Dirac and Maxwell-
Boltzmann distributions, where function ex is replaced by the ML function, Ep(x

p).

2) Under the condition that |p − 1| << 1, we can show that the analytic relation, µ = − ln p,
is satisfied. In other words, the fractional parameter p, where a kind of memory effect of the
expanding universe would be included, has a role of inverse fugacity to the dimensionless chemical
potential µ.

3) Extension of statistical distributions has already been investigated from the non-extensive
statistical approach [10], where parameter q is included. We would like to study how fractional
parameter p is related to q and other approaches.
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Appendix A. Application of the Caputo fractional derivative to Eq. (5)
The Caputo fractional derivative [4, 5] of function f(x) for m = 1, 2, . . . is defined as

C
0D

p
xf(x) =

1

Γ(m− p)

∫ x

0
(x− τ)m−p−1f (m)(τ)dτ, m− 1 < p < m, (A.1)

where f (m)(τ) = dmf(τ)/dτm. We consider the following equation,

C
0D

p
xR(x) = aR(x) + b. (A.2)

The Laplace transform of function R(x) is defined as, R̃(s) = L[R(x); s] =

∫ ∞

0
e−sxR(x)dx.

Applying the Laplace transform to Eq. (A.2), we obtain the following equation,

R̃(s) = b/{s(sp − a)}+
m−1∑
k=0

R(m−k−1)(0)sk−ν/(sp − a). (A.3)

Using the formula [5],

L[xβ−1Eα,β(γx
α); s] = sα−β/(sα − γ), Re(s) > |a|1/α, (A.4)

Eα,β(z) =

∞∑
k=0

zk/Γ(αk + β), α > 0, β > 0, (A.5)

where Eα,β(z) is the two parameter ML function, we have

R(x) = b{Ep(ax
p)− 1}+R(0)Ep(ax

p) +

m−1∑
k=1

R(m−k)(0)xm−k−1Ep,m−k+1(ax
p). (A.6)

Solutions R(x) according to the values of a, b, and the initial conditions are shown in Table A1.

Table A1. Solutions of Eq.(A.2).

(a, b) Initial conditions R(x) f(x) = 1/R(x)

(1, 1) R(0) = · · · = R(m−1)(0) = 0 Ep(x
p)− 1 1/(Ep(x

p)− 1)

(1,−1) R(0) = 2, R(1)(0) = · · · = R(m−1)(0) = 0 Ep(x
p) + 1 1/(Ep(x

p) + 1)

(1, 0) R(0) = 1, R(1)(0) = · · · = R(m−1)(0) = 0 Ep(x
p) 1/Ep(x

p)
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