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Chapter 1 General introduction 

 

 

1.1 Background 

“A piece of fabric may be supported in some parts and not supported in other parts. 

Such a fabric will be subjected to force from the supports and to the force of gravity. The 

description of the fabric deformation produced by these forces may be called the drape of 

the fabric.”1 

The drape of fabric is a physical deformation but lead to the aesthetic recognition of 

human sense, which resulted that this subject is complicated but interesting to many 

researchers. The research range today including not only the analysis of the deformation 

of fabrics in the laboratory, but also the aesthetic evaluation to the garments in my daily 

life. 

The drape of fabric is connected to the drape for garment for the factors such as luster 

and color. However, the drape of garment is more complicated than the drape for fabric 

in drape tests because of parameters such seams and ease allowance2, 3. Thus, in this 

present work, the drape is more focused on a narrow range with only the fabric 

deformation. 

In the aspect of the analysis of the deformation of fabrics, the work in this research 

field starts in 1930s. Peirce4, Chu et al.5, and Cusick1 laid the foundation in this area by 

proposing methods to evaluate drape quantitatively. Based on their research, many 

researchers, such as Hearle et al.6, Morooka and Niwa7, Postle and Postle8, and Hu and 

Chan9, investigated the relationship between drape and mechanical properties of fabrics. 

The mechanical properties of fabric, such as bending rigidity and shear stiffness, are 

usually measured with standardized apparatus such as Kawabata Evaluation System 

(KES)10 or Fabric Assurance by Simple Testing (FAST)11. According to these researches, 
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it is found that bending rigidity and shear stiffness are the main mechanical properties 

affecting fabric drape. 

Besides, many researchers focused on the simulation of the drape on computer, which 

is a highly interesting topic for the fashion industry today. The applicant of garment 

simulation considering the fabric drape started by Thalmann’s group12, 13. After the work 

of them, many developments with consideration of the mechanical properties of fabrics 

were made to improve the accuracy and the efficiency of simulation of fabric. Some 

researchers used finite element method with measured or assumed mechanical 

properties14-16. Other researchers used particle method with a spring-mass model by 

approximating the mechanical properties measured with the standardized apparatus17-20. 

Even though great efforts have been made to drape simulation, some geometrical and 

mechanical issues on drape, such as the effect of the dimension on drape and the shear 

deformation on drape, are still unclear. These questions limited the improvement of the 

accuracy of drape simulation.  

This study focused on the geometrical effect of fabric dimension and mechanical 

effects of bending and shear deformation of fabric as determined by the Fabric Research 

Laboratories (FRL) drape test5. On the one hand, for fabric drape in FRL drape test, an 

evaluation index called drape coefficient (DC) is used to evaluate the drapability of fabric. 

A piece of circular fabric is sandwiched by two circular support disks. The radii of the 

disks are smaller than the fabric’s. Holding the combination in horizontal, then the 

unsupported part of the fabric falls under weight. The DC is then determined by the areas 

in the projection to the FRL drape. Many researchers investigated the effects mechanical 

properties of fabric on drape following different testing standards, which use different 

dimensions. They also used a strip cantilever for calculating drape analytically. However, 

the effects of dimension on drape were less noted. Because the DC is related to the 

dimension, there is a necessity to discuss the impact of dimension. Moreover, for a precise 

numerical simulation of drape, it is necessary to analyze the drape shape with a model 

considering the uneven shape of drape. On the other hand, it is well-recognized that 

bending rigidity and shear stiffness affect the drape. For bending rigidity, its effect on 

drape has been investigated and been analytically discussed. But for shear stiffness, due 
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to the lack of measurement of shear deformation on FRL drape, its effect on drape is still 

vague. It is also not clear that how the bending rigidity and shear stiffness jointly affect 

the drape deformation. 

 

1.2 Purpose of this study 

To answer the geometrical and mechanical questions on drape listed above, the 

objectives of this study are: 

1) To clarify the effects of dimension in the drape test and the limits of the fabric DC 

under various combinations of the fabric and support disk radii 

2) To explore the shear deformation on drape in the view of location and degree 

3) To explain how the bending and shear properties affect drape 

 

1.3 Thesis outline 

In this study, an extensive analysis on geometrical and mechanical properties of fabric 

drape was conducted. 

Chapter 1 introduced the background to this research, as well as the purpose and 

methodology of this study. 

Chapter 2 exposed a literature review of previous studies on the general theories 

regarding drape and its relationship with the mechanical properties of fabric. Related 

researches on simulation of drape are also presented and summarized in this chapter. 

In Chapter 3, the effects of fabric dimension on drape deformation are analyzed using 

a model of a circular segment cantilever for infinite shear stiffness (upper limit) and the 

deflection of strip cantilevers in radial directions for zero shear stiffness (lower limit). 

The drape shapes are determined by nondimensional parameters K and K′ in addition to 

the parameters m and m′, which are given by the ratio of the fabric radius and segment 



6                                                                            General introduction 

 

cantilever length. K and K′ are given by the segment cantilever length for the upper limit 

and by the differences between the radii of the fabric and support disk for the lower limit, 

with weights, and bending rigidity. Drape coefficient (DC) limits of fabrics are 

theoretically obtained using the model in three cases according to the relationship of m 

and m′. Even for different fabrics, the drape shapes are similar for the same m and K, or 

m′ and K′ in each case. The effects of dimension on fabric drape are therefore clarified 

theoretically. Obtained limits are experimentally verified for eight woven fabrics and one 

sheet.  

In Chapter 4, a measuring method of shear deformation in drape using three-

dimensional scanning was proposed. Using the proposed method, the local shear angles 

in FRL drape for various woven fabrics were measured. The effects of the relative 

positions of the node to the center grainlines that cross at the fabric center, and the bending 

and shear properties of fabric on the shear angles were investigated.  

Finally, the conclusion of this thesis is described in Chapter 5, and the suggestion for 

future research is also given. 
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Chapter 2 Literature review 

 

 

2.1 Bending rigidity of fabric 

2.1.1 Introduction 

Bending rigidity, also called flexural rigidity, is defined as the pure moment required 

to bend a fixed non-rigid structure by one unit of curvature. It is used to express the 

resistance to bending deformation in the elastic region. 

In theory of strength of materials, common materials such as steel, are considered as 

elastic, linear, homogeneous, isotropic with a continuum body. The bending deformation 

of continuum body is usually considered as continuous tensile and in-plane compressive 

deformation on the cross section. Based on this hypothesis, the Hooke’s law to one 

dimension can be applied. Therefore, the bending rigidity B can be obtained from 

 B = E∙I (2.1)  

where E is Young’s modulus, I is the cross-section moment of inertia. The bending 

rigidity of those materials is usually measured by three-point bending or four-point 

bending test based on small deformation theory. 

However, not like common materials, fabrics are made of a large of fibers that have 

considerable freedom of motion relative to each other within the fabric structure. Because 

of the inter-fiber friction associated with the fiber movement1, fabrics are not continuous, 

non-linear, and anisotropic. Its deformation is very large with hysteresis phenomenon. 

These lead to that fabric cannot be treated as a continuum body when analyzing the 

deformation of fabric. Moreover, the moment of inertia of area I of fabric is impossible 
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to obtain. Thus, measuring bending rigidity B is equivalent to measuring EI for fabric. To 

obtain the bending rigidity of fabric, pure bending test is used. 

Peirce’s work2 in 1930 initiated the researches on the measurement of bending rigidity 

of fabric. He proposed an objective measurement of bending rigidity using a cantilever. 

This method tests the fabric in pure bending. Besides of the cantilever method, other 

methods, such as a heart loop method proposed by Peirce2 and Clark method3, are 

conventional methods used for the measurement of fabric bending rigidity. In addition, 

he also first recognized the importance of the relationship between the moment and 

curvature of a fabric, which gave a hint for researchers to develop measuring method 

considering the non-linearity of fabrics. 

2.1.2 Measurement of bending rigidity 

Conventional methods such as the cantilever method, loop method and Clark method, 

are based on the fabric deformation under its own weight. A typical commercial 

instrument based on this principle is Fabric Assurance by Simple Testing (FAST)4.  

Other methods focus on the moment-curvature relationship as shown in Figure 2.1 and 

measure forces, moments or energy to describe bending deformation of fabric. A typical 

commercial instrument based on this principle is Kawabata Evaluation System (KES)5. 

 

Figure 2.1 A typical moment-curvature relationship of fabric 

Curvature

Moment
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2.1.2.1 Measuring fabric deformation under its own weight 

In the Bernoulli–Euler law for a moment-curvature relationship: 

 
1
ρ

=−
M
E∙I

 (2.2) 

where ρ is the radius of curvature, M is the bending moment at any point of a cantilever, 

and E∙I is the bending rigidity. Thus, the bending rigidity can be calculated by measuring 

bending moment and the radius of curvature. 

In the work of Peirce2 to evaluate fabric handle, he introduced the objective 

measurement of the bending rigidity of woven fabrics using a cantilever as shown in 

Figure 2.2. 

 

Figure 2.2 Schematic diagram of Peirce’s cantilever principle 

He introduced bending length c, which refers to the length of fabric that bends under 

its own weight to a definite extent. The bending length is given as 

 
c = l ∙ f1(θ) , where f1(θ) =  (

cosθ
2

8 tan θ
)

1
3

 (2.3)  

where l is the overhanging length of fabric, θ is the angle of fabric deflection. 

As for the method to obtaining θ, an instrument named Flexometer developed by the 

British Cotton Industry Research Institution was employed as shown in Figure 2.3. A 1-

in.×6 in. fabric strip is prepared. The strip bends under its own weight as a cantilever and 

is projected to a platform. The angle θ between the horizontal and platform is measured. 

l

Fabric strip
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Figure 2.3 Flexometer (Source: Pierce, 19302) 

Fabric bending rigidity is the bending moment for unit curvature per unit width of strip, 

and the weight per unit area of the fabric is denoted by w, then the bending rigidity of the 

fabric can be obtained from. 

 B = w ∙ c3 (2.4)  

In 1951, Abbott6 compared the measuring methods to bending rigidity existing at that 

time, including cantilever, hear loop, and Schiefer’s Flexometer7 (Another instrument to 

measure the flexural work, flexural resilience, and bending rigidity. Different from 

Flexometer mentioned above). The results showed by cantilever and Schiefer’s 

Flexometer are the closet to subjective evaluation. Abbott8 also pointed out that for 

cantilever test, when θ was 41°, the bending length c was one-half the fabric length l. 

With more experiment conducted, researchers found using θ as 41.5° was more accurate 

than 41°. Then the Administrative Committee on Standard and the American Society for 

Testing Material9 accepted using 41.5° cantilever method as preferred method for the 

measurement to the stiffness of woven fabrics. Shirley stiffness tester (Figure 2.4) was 

then developed. Not like Flexometer using a fixed sample size and an unfixed angle of 

deflection, Shirley stiffness tester uses a fixed angle (41.5°) and sample with a fixed width 
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(1 in.) and an unfixed length. 

 

Figure 2.4 Shirley stiffness tester (Source: Cusick, 196510) 

FAST-2 bending meter4 follows the same principle of cantilever test. An advanced 

feature of this instrument is that it shows the measured bending length on its monitor 

directly.11 

 

Figure 2.5 Schematic diagram of FAST-2 bending meter (Source: De Boos and 

Tester, 19944)  
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2.1.2.2 Measuring the moment-curvature relationship in fabric 

Inspired by Peirce2, Eeg-Olofsson12 proposed an instrument as shown in Figure 2.6 to 

record moment-curvature relationship of fabric in 1959. The fabric sample is held by two 

vertical clamps: a fixed clamp C1 and a clamp C2 floating on mercury. Then the sample 

is bent to an arc of circle while recording following a chosen time-schedule the bending 

moment and the curvature. The bending rigidity of fabric is then obtained directly from 

the moment-curvature relationship with Equation (2.2). 

 

Figure 2.6 Eeg-Olofsson’s instrument (Source: Eeg-Olofsson, 195912) 

Besides, Livesey and Owen13 proposed a relatively simple mechanism to measure pure 

bending of very small fabric samples. Owen14 and Abbott and Grosberg15 adapted the 

tester of Livesey and Owen to a tensile tester, which lead that it is possible to obtain the 

bending-hysteresis relationship directly. Owen16 further improved his tester with an 

ability to obtain bending moment and curvature directly. 

In 1957, Isshi17 initially devised a bending tester capable of measuring bending 

properties of fibers, yarns and fabrics. Isshi’s bending tester could be considered as an 

embryonic model of KES-FB 2. 
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Figure 2.7 shows the principle of Isshi’s bending tester. A fabric sample is mounted by 

two clamps: a fixed clamp at O and a moving clamp Q with a fixed angle pointer. Both 

clamps are attached with one torsion spring. A slight ration occurs at the torsion spring of 

O due to the bending of the sample. However, through a linkage system of the tester, the 

rotation of the spring at O is revised to be nullified by the other spring. The deflection of 

the second spring can be recorded and is directly related the bending moment of the clamp. 

 

Figure 2.7 Principle of Isshi’s bending tester (Source: Ghosh and Zhou, 20031) 

Popper and Backer18 modified Isshi’s bending tester with a synchronous motor in order 

to obtain moment-curvature relationship continuously. The moment exerted on the sample 

is measured by a transducer, the output signal of which is used directly for recording. 

KES developed by Kawabata5 is a widely used commercial measuring instrument for 

mechanical properties of fabrics. KES-FB 2 pure bending tester is a further modification 

of Isshi’s and Popper and Backer’s work and focuses on the measurement of bending 

properties of fabric. Figure 2.8 shows the measuring principle of KES-FB 2 pure bending 

tester. Pure bending when the curvatures in the range of -2.5 cm-1 ~ 2.5 cm-1 is obtained 

at a constant curvature changing rate of 0.5 cm-1 per second. Bending rigidity B is defined 

as the slope of the moment-curvature for curvature in the range of 0.5 cm-1 ~ 1.5 cm-1 (Bf) 

or in the range of -0.5 cm-1 ~ -1.5 cm-1 (Bb). Another bending property of fabric named 

bending hysteresis 2HB, representing the recovery ability of fabric, can also be measured 

by KES-FB 2. The bending hysteresis 2HB is defined as the mean value of the hysteresis 

width in the range of curvature of 0.5 cm-1 ~ 1.5 cm-1 (2HBf) or -0.5 cm-1 ~ -1.5 cm-1 
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(2HBb). 

To summary, the characteristic values from KES-FB 2 are: 

B: Bending rigidity per unit length (unit: gf∙cm2∙cm-1) 

2HB: Moment of hysteresis per unit length (unit: gf∙cm∙cm-1) 

 

Figure 2.8 KES-FB2 pure bending test method 

(Adapted form source: Kawabata, 19805) 

 

2.2 Shear property of fabric 

2.2.1 Introduction 

Together with bending deformation, shear deformation is essential but important in 

determining the fabric deformation. 

Moment M
om

en
t, 

gf
・

cm
・

cm
-1

Curvature, cm-1

1/Curvature
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The first definition of shear strain is considered to be given by Love19 and Jagger20. 

Pure shear strain and simple shear strain are two modes of shear deformation of materials. 

Pure shear strain, as shown in Figure 2.9(a), is the deformation of a body by uniform 

extension in one direction and contraction in a perpendicular direction, so that its areas 

remains constant.21 Simple shear strain, as shown in Figure 2.9(b), is the deformation in 

which parallel planes in a body remain parallel and maintain a constant distance, while 

translating relative to each other. 

 

  
(a) Pure shear (b) Simple shear 

Figure 2.9 Two modes of shear deformation 

Shear modulus S, or modulus of rigidity, is defined as the ratio of shear stress to the 

shear strain and used to describe the material's response to shear stress. For common 

material such as steel, the shear modulus can be obtained from  

 S =  
E

2(1+ν)
 (2.5)  

where S is the shear modulus, E is the young’s modulus, and ν is the Poisson’s ratio. 

However, fabric presents a more complicated shear deformation and do not behave in 

this simple manner because of the nonlinearity and anisotropy of fabric. Because of these 

problems, the above three parameters of fabric are interconnected. 

Initiated by Peirce2, a considerable amount of work has been done for investigating 

fabric shear. Here most important works are listed. Mack and Taylor22 suggested that 

when a fabric is fitted on a surface, the deformation of the fabric can be considered to be 

composed by shearing angles of warp and weft threads. Lindberg et al.23 tested various 

Initial state Deformed state
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fabrics in shear and summarized the procedure of shear deformation of fabric: 1) shearing 

without yarn sliding; 2) shearing with low friction at cross-over points of warp and weft 

yarns and 3) shearing with the increasing friction. Skelton24 showed the definition of shear 

stiffness G of fabric as  

 

G =
Shearing couple / Unit area

Unit shear angle
 

=
Force/ Unit length
Unit shear angle

 
(2.6)  

Kawabata et al.25 proposed a linear approximation using a friction resistance item and 

an elastic resistance item to obtain the relationship between the shear force and shear 

angle. Comparing with Skelton’s complete theoretical analysis, the coefficients in the 

work of Kawabata et al. were determined by experiments. 

Other works of researchers such as Asvadi and Postle26, Mohammed et al.27, and Sun 

and Pan28 also contributed to the understanding of shear deformation of fabrics. However, 

most of the researches mentioned above focus on the two-dimensional shear deformation. 

For three-dimensional (3D) shear deformation of fabric such as drape and wrinkles, it is 

noted that Amirbayat and Hearle29 conducted a detailed analysis of formation of three-

fold buckling and simulated the complicated deformation in computer. 

2.2.2 Measurement of shear property 

The experimental approaches to shear behavior of woven fabrics can be characterized 

as three types: the bias extension test as shown in Figure 2.10 (a), the shear frame test as 

shown in Figure 2.10 (b), and the KES-FB1 shear test as shown in Figure 2.10 (c). 

The bias extension test employs the principle of uniaxial extension (45° direction to 

the warp) to determine the in-plane shear properties of fabrics. FAST – 3 extensibility 

meter4 is also designed following this measuring principle. The measuring procedure is 

simple and quick so that to be favored by many researchers30-34. However, the 

deformation of the fabric obtained from this approach includes not only shear but also 

tension, which makes it difficult to isolate pure shear deformation of the fabric. 
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The shear frame test uses the shearing of a fabric clamped by a square frame hinged at 

the frame corners. The sample is usually required at a size of 20 cm×20 cm. The picture 

frame is pulled apart at two corners with a diagonal force at a constant rate in a tensile 

testing machine27, 35, 36.  

KES-FB1 shear test5 follows the principle of test methods which were used to testing 

the shear properties for low shear angles10, 37-39. Nowadays, as a representative of these 

methods, KES-FB 1 is widely used in the textile industry. As shown in Figure 2.11, the 

fabric sample is prepared with a size of 20 cm ×5 cm and clamped along the two opposite 

long edges. The clamped edges are moved to generate shear deformation of the fabric. To 

keep the clamped edges apart, a tension is also applied with 10gf∙cm-1. The shear stiffness 

G in defined as the slope of the obtained F-ϕ curve as shown in Figure 2.11. The shear 

hysteresis is expressed by two characteristic values: 2HG, the hysteresis at shear angle 

ϕ=0.5°, and 2HG5, the hysteresis at ϕ=5°. 

The relationship among the three tests are investigated by many researchers.27, 40, 41. It 

is found that the pure shear obtained from the shear frame test is higher than the other two 

methods. 

 
  

 

(a) The bias extension test (b) The shear frame test (c) KES-FB1 shear test 

Figure 2.10 Three types of shear tests 

Clamp

Clamp

Fabric

Frame Clamp

Fabric

Tension

Shear direction
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Figure 2.11 KES-FB1 shear test method (Source: Kawabata, 19805) 

 

2.3 Drape of fabric 

2.3.1 Measurement of drape 

The study of drape starts since 1930s. Peirce2 was one of the pioneers to conduct the 

initial studies of drape. He connected the fabric handle and the mechanical properties of 

fabrics, laying the foundation for future research. He also recognized the importance of 

the objective measurement of fabrics. 

After the work of Peirce, Chu et al.42 were the pioneers who established drape 

measurements using an Fabric Research Laboratories (FRL) drape meter as shown in 

Figure 2.12. In their procedure, a fabric is clamped between two disks and then lifted. 

Under the drape, a light source under the drape is used to obtain the projection shadow of 

the fabric drape. Then, the projection shadow is captured with a pen. The diameters of the 
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drape meter are 4 inches (10.16 cm) and 5 inches (12.7 cm) for the discs and 10 inches 

(25.4 cm) for the circular fabric. They then introduced the drape coefficient (DC), defined 

as the percentage of the annular-ring area covered by the vertical projection of the draped 

sample, to compare various drape profiles according to Equation (2.7).  

 

DC (%) = 
Vertical projection area of the annular ring of draped fabric 

Area of the flat annular ring of fabric
×100% 

= 
S − πr2

πR2−πr2 × 100% 

(2.7)  

Here S is the area of the shadow, r is the radius of the disks, and R is the radius of the 

fabric. According to this definition, it is easy to understand that the DC is affected by the 

radius of the fabric and the support disk, and the projection area of the drape. 

 

Figure 2.12 Drapemeter of Chu et al. (Source: Chu et al., 195042) 

Following the research results of Chu et al., Cusick 10, 43 further simplified the drape 

meter following the same principle of the FRL drape meter as shown in Figure 2.13. A 
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parallel light source is used to obtain the projection shadow of the drape on a paper ring. 

Then the projection shape is trace on the paper ring. According to Cusick’s method, the 

definition of DC in Equation (2.7) is rewritten as  

 DC (%) = 
Weight of the paper with traced projection shadow of drape 

Weight of the paper ring
×100% (2.8)  

By testing a large range of fabrics on different support sizes, Cusick 10, 43 found that the 

most suitable combination for a drape test is a 15-cm-radius sample and 18-cm-diameter 

support disk. However, these settings are not suitable for measuring limp fabrics. In 1986, 

Cusick 44 recommended that a 12-cm-radius fabric and a-18 cm-radius fabric also be used. 

Today, BS505845 follows the rule of Cusick’s drape meter and suggests that the DC should 

be obtained using fabric samples of 15, 12, or 18 cm radius and support discs of 9 cm 

radius. 

 

Figure 2.13 Cusick’s drapemeter (Source: Cusick, 196543) 

Collier 46 found that the bending rigidity is the main property affecting the DC for a 5-

inch-diameter support disk, while the thickness and bending rigidity affect the DC 

together for a 3-inch-diameter support disk. JIS L 1096 47 suggests measuring the DC 

using a combination of 25.4-cm-diameter samples and 12.7-cm-diameter support disks as 
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shown in Figure 2.14, following the method of Chu et al. 

 

Figure 2.14 Measurement of the DC in JIS L 1096 (Source: JIS L 1096: 201047) 

In addition to the radius of the fabric and the disks, the number of the node n is also 

found to be related to the drape48. Bhatia and Phadke49 found that the DC increases as n 

decreases. Behera and Mishra50 showed that there is a negative correlation between n and 

B. 

With the development of digital image technologies, researchers51-53 simplified the 

calculation of DC by counting the number of pixels of drape in projection photographs 

rather than weighing the weight of the paper ring. Thus, the definition of DC in Equation 

(2.7) is can be expressed as 

 DC (%) = 

Total  pixels of projected drape area
Pixels per cm2  − πr2

πR2-πr2 ×100% (2.9)  

Besides the traditional DC, many researchers have used new indicators to describe the 

fabric drape objectively. Yang and Matsudaira54-56 defined new dynamic drape 

coefficients, namely the revolving drape-increase coefficient Dr, the revolving drape 

coefficient Dr  at 200 r/min D200, and the dynamic drape coefficient for swinging motion 

Dd. Mizutani et al.57 developed a new instrument for describing the mechanism of drape 

generation. They also proposed a new indicator determined by the projection shadow of 

Unit: cm
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drape to evaluate the complicity of drape shape. Yu et al.58 introduced a new indicator 

called total drape angle (TDA) based on 3D scanned fabric drape. This indicator is 

determined by the area of draped fabric and the degree of the drape angle. Thus, it is 

understanded that not only the two-dimensional projected shadow of the drape, but also 

the 3D drape shape is necessary for the understanding to the drape mechanism. 

2.3.2 Effect of mechanical properties of fabric on drape 

Many empirical studies proved that the mechanical properties affect the fabric drape. 

Chu et al.48 described the effect of Young’s modulus (E) , the cross-section moment of 

inertia (I), and fabric weight (w) on drape as  

 DC (%) = f(EI/w) (2.10)  

where the product of EI is B as mentioned in Equation (2.1).  

In addition, the work of Cusick10, 43 showed that the shear stiffness of fabric also affect 

the DC in addition to bending properties. He derived a regression equation for predicting 

DC as 

 DC (%) = 35.6c − 36.1c2 − 2.59A+0.0461A2+17.0 (2.11)  

where: 

c = the bending length measured with the Shirley Stiffness Tester and obtained from  

c = 
1
4
 (cl + c2+ 2 cb),  

where: 

cl = bending length in the weft direction 

c2 = bending length in the warp direction 

cb = bending length in the 45°-bias direction 
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A = the shearing angle at a stress of 2 g-wt∙cm/cm2. 

Morooka and Niwa59 measured the DC and mechanical properties of 138 samples of 

woven fabrics and showed that the value of (B/w)1/3 is strongly related with the DC. Niwa 

and Seto60 confirmed this result with experimental data for 145 ladies’ dress fabrics. 

Moreover, they proposed a prediction model as 

 DC (%) = -22.66+291.8√B
w

3
+387.71√2HB

w

3
-3.71√G

w

3
+30.53√2HG

w

3
 (2.12)  

Collier46 found that B, G, 2HG, and 2HG5 had high correlations with the DC. The work 

of Jeong61 and Jeong and Phillip62 suggested that the variation in drape is determined by 

the fabric cover factor, fabric structure, shear stiffness, and other mechanical properties. 

Nagai, Suda and Inagawa 63-68 showed that the FRL drape figures of different fabrics are 

predicted using a similarity using a non-dimensional parameter k = l/c, where l is the 

fabric length. 

Even though many mechanical properties are shown to be related to the drapability of 

fabric, the bending rigidity and the shear stiffness are recognized as the two main 

mechanical properties. 

2.3.3 Summary 

The factors that affect the FRL drape mechanism can be summarized as following: 

⚫ The geometrical factors of drape: 

(i) The radius of the fabric and the support disks 

(ii) The projected area of the drape 

(iii) The node number of the drape 

(iv) The 3D shape of the drape 

Factor (i) is the input parameter of the drape, which are controllable in the FRL drape 

test. 
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Factors (ii), (iii), and (iv) are the output of the drape, which are related to the 

unmanageable drape shape. 

⚫ The mechanical properties of the fabric: bending rigidity and shear stiffness 

2.4 Simulation of drape 

Since the mechanical properties of fabrics affect the drape, researchers attempted to 

quantify the effects. 

2.4.1 Numerical analysis to drape 

For numerical calculation to drape taking into account bending rigidity, in 1937, 

Bickley69 first numerically integrated the deflection of Peirce’s rectangular cantilever 

model. He derived the shape of the cantilever of equal length for various angle between 

the tangent at the end of the overhanging fabric and the horizontal, considering the effect 

of bending length c, which is related to fabric length and bending rigidity. Inspired by his 

work, Cusick10 first calculated DC under the conditions of infinite and zero shear stiffness. 

The conditions for the radius of the fabric and support disks were 15 cm and 9 cm, 

respectively. However, because of the weight distribution in drape is different, using the 

deflection of rectangular cantilever can lead to unprecise calculation results. Nevertheless, 

no additional research using other calculation model to DC after Cusick has been noted. 

Since shear stiffness is another property affecting the drape, some researchers focused 

on analysis of fabric in the view of shear. In the work of Weissenberg70 and Chadwick et 

al.71, a trellis model was described for the analysis of fabric mechanical problems. In this 

model, the fabric is assumed to be a continuum which is composed of small cells 

(trellises), consisting of two sets of parallel rigid rods mutually pinpointed where they 

cross. The cells can expand and contract in certain directions without change in length or 

form of the rods. By analyzing the relationship of stress-strain in the cells, complicated 

fabric behavior can be simplified. They also applied this model for analyzing the simple 

pulls in fabric in various direction including 45° and verified the proposed model by 

experimental evidence obtained from angle changes of trellises drawn on the fabric 

samples. 
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2.4.2 Drape modelling 

With the development of information technologies, modelling the drape on computer 

also raised interests of researchers. One of the methods to model fabric drape is the finite 

element method (FEM). FEM is the most widely used numerical method solving 

problems of engineering and mathematical models. The basic idea of FEM is to divide a 

body into finite elements, reconnect the elements at nodes, and obtain an approximate 

solution as shown in Figure 2.1572.  

For researchers in textile community, FEM is preferred in the drape simulation since 

the mechanical properties can be applied for model construction. The first successful trial 

of drape simulation using FEM could be the work of Imaoka’s group. In 1985, Okabe et 

al.73, 74 developed a 3D computer-aided-design system for simulation of skirt drape using 

FEM. Imaoka et al75 improved the system and managed to simulate garments having 

different simple styles with drape; e.g., skirts and blouses. As for the simulation for drape 

of fabric, Collier et al.76 used a geometric non-linear FEM to predict drape. They treated 

the fabric as an orthotropic shell membrane. In their model, tensile moduli in the two 

principal planar direction and Poisson’s ratio were required parameters to construct the 

drape model. Gan et al.77 used similar FEM to Collier et al. but considered the fabric as 

orthotropic and linearly elastic. Chen and Govindaraj78 proposed a FEM model for drape 

simulation taking into account four measured fabric characteristics: Young’s modulus in 

the warp and weft directions, shear modulus and Poisson’s ratio. Kang and Yu79 calculated 

drape deformation using the FEM with the measured or estimated tensile and shear 

modulus, bending rigidity, and Poisson’s ratio. Teng et al.80 and Hu et al.81 simulated 

fabric drape behavior over circular pedestals and compared the simulated drape shape 

with the experimental shape. Even though by using FEM, the drape can be reproduced on 

computer with fabric mechanical properties, it requires huge and complicated 

computation. Moreover, it is difficult to integrate large nonlinear deformation and highly 

variable collisions into finite elements, which reduces the ability of the finite-element 

model to cope with complicated geometrical problems. 



30                                                               Literature review 

 

 
Figure 2.15 Geometry, loads and finite element meshes 

(Source: Fish and Belytschko, 200972) 

  
(a) Skirt (b) Bare top blouse 

  
(c) Long collared blouse (d) Short collared blouse with a pocket 

Figure 2.16 Garments simulated using the apparel CAD system of Imaoka et al.75 
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Another method called a particle method using a mass-spring model is an easier 

alternative to simulate fabric drape for modeling and animation. In the particle-spring 

model as shown in Figure 2.17, particles connected by linear springs to form square 

elements on the surface. These elements are allowed to have in and out of plane distortion 

for fabric deformation and the springs are used to simulate the mechanical properties of 

the fabric82. 

 

(a) plain weave                    (b) particle representation 

Figure 2.17 Particle representation of a plain weave(Source: Breen et al.83, 1992) 

Weil84 uses a geometric approach that first approximates the folds in a constrained 

piece of square cloth with catenary curves. Terzopoulos and Fleischer85 and Aono86 

created 3D fabric-liked structures that can bend, fold, wrinkle, and tear. Based on the 

fundamental research, in 1991, Lafleur et al.87 successfully simulated clothing in 

animation as shown in Figure 2.18 with the particle model. By now, researchers on 

computer-graphic community managed to simulate the shape and the complex 

deformation of the fabric. However, the mechanical properties of fabric itself were not 

fully considered. 

Breen et al.83, 88, 89 improved the particle method with more accurate drape simulation. 

They used KES mechanical curves and converted them to necessary energy functions for 

simulation. Their simulation results showed great similarity to actual drape intuitively as 

shown in Figure 2.19. 

The work of Breen et al. inspired the researchers in both computer-graphic community 

Weft
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and textile community to improve the simulation accuracy. For computer-graphic 

community, Eberhardt et al.90 used a Lagrange dynamics reformulation of the basic 

energy equations in the model of Breen et al., which improved the computation time and 

making the simulation results more precise. Volino et al.91 investigated pleating, buckling, 

and creasing, and developed a set of techniques for solving collisions in the fabric itself, 

which allowed the simulation of deformable surfaces in various mechanical situations. 

For textile community, Mitsui et al.92 improved Breen’s particle model by considering the 

nonlinearity and anisotropy of fabric mechanical properties. A precise collision and 

repulsion mechanism were included in their model. They compared their results with 

Breen’s method in bending and shear recovering forces. Dai et al.93, 94 simulated drape 

considering the bending and shear properties, fabric twist, and force and displacement 

relationships of various types of deformation. Their results showed agreement for the 

shape and essential features. In addition to improve the accuracy in the view of 

mechanical properties of fabrics, Fan et al.95 proposed a method using a fuzzy-neural 

network system based on drape images to predict the drape of lady’s dress in the view of 

the drape shape. Comparing with conventional drape simulation methods based on fabric 

mechanics, this approach enabled to obtain the predicted drape as an image with a very 

fast computation rate, even though the image was not exactly the actual drape image of 

the garment. 
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Figure 2.18 ‘FlashBack’: early virtual garments used context-dependent 

simulation of simplified cloth models (Source: Volino et al., 200096) 
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Figure 2.19 The comparison between actual and simulated fabric drape 

(Source: Breen et al., 199488) 
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2.4.3 Summary 

Numerical analysis of drape is a kind of fundamental drape simulation. For bending 

deformation in drape, cantilever model is a traditional method to calculate the deflection 

of drape. Bending length, weight, and the fabric length are the parameters for the model 

construction. For shear deformation in drape, a trellis model is an alternative analyzing 

method. 

Drape modelling in computer can be achieved by two methods: FEM and particle 

model. FEM is preferred by textile researchers since it based on the strength of textile 

materials. However, using FEM to simulate drape requires large computation time. 

Particle model is proposed by computer-graphic researchers. It starts from the idea of 

simulating the shape of fabric deformation. Even though had been improved by 

considering the mechanical properties of fabric, the accuracy of the simulation results 

cannot be evaluated due to the lack of measuring method to the local deformation in 3D 

drape. 
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Chapter 3 Effect of fabric dimension on limits of the 

drape coefficient 

 

 

3.1 Introduction 

Fabric drape is an important factor to consider when selecting fabrics for clothing 

design. Drape is a complex deformation resulting from gravity and the mechanical 

properties of the fabric. The drape coefficient (DC) was proposed by Chu et. al.1 is 

standardized by a drape meter in Fabric Research Laboratories (FRL) drape tests, and is 

widely used in evaluating fabric drapability2-4. The DC is defined as the ratio of the 

projected area of a circular fabric before and after draping:  

where S1 and Ad are respectively the areas of the projected shadow of the fabric sample 

before and after draping and S2 is the area of the support disk in the drape test. In the FRL 

drape test, the sample radius (R) is 5 inches (12.7 cm) and the radius of the support disc 

(r) is either 2 inches (5.08 cm) or 2.5 inches (6.35 cm). Cusick5 proposed using r of 9 cm 

and R of 12 and 18 cm instead of R of 15 cm when measuring the DCs of very stiff and 

very limp fabrics with the FRL drape meter. Today, the British Standard (BS5058)3 and 

International Organization for Standardization (ISO 9073-9:2008)4 use Cusick’s method. 

Meanwhile, R is 12.7 cm and r is half of R in the Japanese Industrial Standard (JIS) L 

1096 drape test2.  

To obtain the DC efficiently, digital image analysis of the DC has been developed6-9. 

Many other indicators for drapability have been introduced for the evaluation of drape10. 

In addition, garments have been simulated for the quantitative assessment of fabric 

 DC (%)= 
Ad  −  S2

S1  −  S2
×100%, (3.1) 
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drapability11-13 and garment drape12, 14-17. However, the principle of measuring drapability 

has not changed and the DC is still the most widely used indicator.  

Fabric structural properties affect the drapability of fabric. The relationship between 

structural properties and fabric mechanical properties has been studied by many 

researchers, such as Hearle et al18, Hearle and Shanahan19, and Zheng et al.20. Fabric 

structural properties affect the mechanical properties of fabric, such as bending, shearing, 

and anisotropy. Those mechanical properties affect the fabric drape. Thus, investigating 

drape deformation using the mechanical properties instead of using yarn and structural 

properties is more practical21.  

Many studies5, 22-25 have investigated the effects of mechanical properties of the fabric 

on the DC. In experimental analysis, Collier22 found that the bending rigidity is the main 

property affecting the DC for a 5-inch-diameter (12.7-cm-diameter) support disk, while 

the thickness and bending rigidity together affect the DC for a 3-inch-diameter (7.62-cm-

diameter) support disk. Morooka and Niwa23 and Niwa and Seto24 investigated 

relationships of mechanical properties of the fabric and the DC by measuring the DC 

following JIS procedures26 while Hu and Chan25 investigated the relationships by 

measuring the DC following BS 5058 procedures27. They showed that the bending and 

shear properties are major factors determining the DC and obtained experimental 

relationships between the mechanical properties and DC. However, they did not present 

a theoretical analysis or consider the effects of dimensions. In theoretical analysis, 

Cusick5, 28, 29 studied the mechanism of fabric drape taking into account the shear effect 

in addition to bending. Cusick28 investigated the DC for zero and infinite shear stiffness 

with specified dimensions of r = 9 cm and R = 15 cm. The limits of the DC are derived 

with these values of stiffness. Moreover, Cusick28 presented the relationship among the 

bending length, c, and the DC limits for different node numbers of drape under specified 

dimensions. However, Cusick did not discuss the effects of dimensions on the limits of 

the DC. 

Dimensions affect the DC because the DC is a ratio of areas. Table 3.1 summarizes the 

various dimensions used in previous research. Although many studies investigated the 

relationships between mechanical properties and the DC, they did not mention the effects 
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of dimensions on the DC. It is thus necessary to discuss the effects of dimensions on DC. 

If the DC using single or a few of parameters that includes the dimensional effect can be 

predicted, it will help unify the results of drape test with various dimensions. It will also 

benefit the simulation of fabric drape for different dimensions. To express the DC with as 

few independent variables as possible, a theoretical relationship between the DC and 

fabric mechanical properties and dimension is analyzed. 

Peirce30 defined the bending length (c) in a fabric cantilever test as (B/w′)1/3, where B 

is the bending rigidity for the unit width and w′ is the weight per unit area of the fabric 

strip. In a cantilever test, the dimension effect has been incorporated into a 

nondimensional parameter k 31, 32 as  

 , (3.2) 

where l is the fabric length. For the same value of k, cantilevers of different fabrics 

have similar bending shapes. However, because fabric drape has a circular shape in 

contrast to the cantilever, it is necessary to introduce a new parameter for fabric drape 

theoretically. If a similarity rule using this parameter for the fabric drape is found, the 

DCs for different dimensions can be predicted. A similarity rule for the FRL drape test 

using k was investigated by Nagai et al.33-35. They conducted a drape test while changing 

the dimensions but keeping the ratio of R and r at 2. They experimentally showed that 

fabrics with the same k values had similar drape forms and that the shear modulus affects 

the drape form in the case of the same k. However, they did not present a theoretical 

analysis and did not show the relationship between k and the limits of the DC. The 

relationship of k and the limits of the DC will help clarify how drape changes in response 

to a dimensional change and the mechanism of drape. It is therefore necessary to 

investigate the limits of the DC for different dimensions of fabrics taking into account the 

effects of shear.  

The present paper, as a detailed investigation on fabric drape, aims to clarify the effects 

of dimension in drape test and the limits of the fabric DC under various combinations of 

the fabric and support disk radii. A theory of the DC limit taking into account bending, 

weight, and fabric dimensions for infinite and zero shear stiffness, which can be 

3
'

B
wl

c
lk ==
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analytically obtained, is proposed.  

The theoretical limits are verified with experimental results obtained for eight fabric 

drapes and one sheet having different dimensions. The present study is a basic theoretical 

investigation of the mechanism of drape and its findings will benefit the further 

investigation of drape deformation. 

Table 3.1 Dimensions of FRL drape tests and those pros and cons 

Developer/ 

Researcher 

Radii in the FRL 

drape test Achievement Pros Cons 

R (cm) r (cm) 

BS5058 

ISO 9073-

9:2008 

12, 15, 

and 18 
9 

Standardized Cusick 

(1968)’s proposal 
Widely used 

Compatibility for other 

dimensions is unknown 

JIS L 1096 12.7 6.35 
Standardized Chu et al.’s 

proposal 
Widely used 

Compatibility for other 

dimensions is unknown 

Chu et al. 

1950 
12.7 

5.8 and 

6.35 

Invented the first drape 

meter, proposed the DC 

Was the first attempt to 

evaluate fabric drapability 

quantitatively 

A few of fabric samples 

were used 

Cusick 1962 15 9 
Proposed a mechanism 

of fabric drape 

Investigated the 

relationship of DC and 

bending length; 

Considered the shear 

effects on DC 

Used strip cantilever to 

calculate the theoretical DC 

and did not discuss the 

effects of dimensions on the 

limits of the DC 

Cusick 1968 
12, 15, 

and 18 
9 

Developed the cut and 

weigh method of the 

drape meter using 

different sample sizes for 

precise measurement 

Increased the accuracy of 

measured DC; 

Proposed that DC should 

be measured according to 

fabric stiffness 

Did not change the 

measuring principle of DC 

Morooka 

and Niwa 

1976 

12.7 6.35 
Found that the DC is 

related with (B/w)1/3 

Investigated the 

relationship between DC 

and mechanical properties 

of bending measured by 

KES system 

experimentally 

Did not discussed other 

properties such as shear 
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Table 3.1 Continued 

Developer/ 
Researcher 

Radii in the FRL 
drape test Achievement Pros Cons 

R (cm) r (cm) 

Niwa and 
Seto 1986 

12.7 6.35 

Obtained an 
experimental regression 
equation using (B/w)1/3, 
(2HB/w)1/3, (G/w)1/3, and 
(2HG̅̅ ̅̅̅/w)1/3 as parameters 

Investigated the 
relationship between DC 
and mechanical properties 
of bending, shear, and 
hysteresis measured by 
KES system 
experimentally 

Did not discussed them 
theoretically 

Collier 1991 
Not 
clear 

3.81 
and 
6.35 

Found that mechanical 
properties have different 
functions using support 
disks of different size 

Discussed the effects of 
dimensions on DC 
experimentally 

Only two kinds of sizes 
were considered 

Hu and Chan 
1998 

15 9 

Obtained regression 
equations different from 
Niwa and Seto’s results 
even when using the 
same parameters 

Was the first attempt to 
find the relationship of full 
KES properties and DC 

Used different dimensions 
but the same parameters 
with Niwa and Seto’s 
research but obtained 
different results 

Mizutani et 
al. 2005 36 

12.7 6.35 
Developed a drape 
elevator 

High accuracy of 
measurements 

Compatibility for other 
dimensions is unknown 

Nagai et al. 
2008 

2r 

r for k 
= 3, 

3.5, 4, 
and 4.5 

Investigated the effects 
of shear and bending on 
fabric drape, 
defined drape forms 
using the term (w/E)2/3 

Experimentally showed the 
relationship of k values 
and drape forms 

Not theoretically discussed 
the effects of dimension on 
drape 

 

3.2 Theoretical details 

Cusick28 proposed a model of fabric drape for different node numbers (n) to investigate 

the limit of the DC in the case that r is 9 cm and R is 15 cm. He discussed the relationship 

between c and the DC in the case of infinite and zero values of shear stiffness, G. For 

infinite shear stiffness, the drape deforms only because of bending. Cusick used the 

approximate deflection of Bickley31 for a strip cantilever instead of using the deflection 

of a circular segment cantilever in calculating an approximate DC. The calculated DC 

values are smaller than the actual DC values obtained with circular segment cantilevers 

owing to the different weights and shapes. For precise calculation, it is necessary to 

consider the DC using a circular segment cantilever that is considered to have infinite 
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shear stiffness in the case of only considering bending rigidity. Moreover, Cusick did not 

discuss the effect of dimensions on DC.  

Therefore, the DC for infinite shear stiffness (upper limit) is recalculated using a 

circular segment cantilever. For zero shear stiffness, the deformation can be represented 

by a circular array of independent strip cantilevers28. To obtain the limit of the DC for 

zero shear stiffness (lower limit), the DC is calculated by taking the sum over narrow strip 

cantilevers following Cusick’s method18, 28 of using cantilevers of equal length in all radial 

directions but applying numerical integration to the differential equation. Using these 

results, the drape limits considering the effect of dimensions on the drape tester are 

discussed. 

3.2.1 Theoretical deformation of the drape shape for the upper 

limit of the DC 

According to Cusick’s model in which drape deforms only because of bending, the 

circular fabric deformation is divided into flat areas and segment cantilevers. In the case 

of the upper limit of the DC, Figure 3.1(a) shows the coordinate system of the fabric drape 

for infinite shear stiffness in the initial state. A circular segment of a circular sector from 

h0 to R bends as a circular segment cantilever as shown in Figure 3.1 (b). I assume drape 

can be divided into n congruent circular segment cantilevers. Figure 3.1 shows one 

segment of drape for n = 3.  
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(a)                                           (b) 

Figure 3.1 Coordinate system for the fabric drape: (a) initial state and (b) 

deformed state. 

The following notations are used.  

O: origin of coordinates (i.e., center of the circular fabric) 

x, y: orthogonal coordinates on the initial plane of the circular fabric 

R: radius of the fabric sample 

r: radius of the support disk 

O’: x coordinate of the fixed end of the circular segment cantilever 

x′, z′: orthogonal coordinates with origin at O′ 

h0: distance from O to O′ 

B: bending rigidity of the fabric per unit width 

s′: arc length of the cantilever at an arbitrary position relative to O′  

θ: angle between the tangent of the cantilever and the vertical at s′ 

φ: half the central angle of a sector at s′ 
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φ0: half the central angle of a sector at s′ = 0; φ0= cos-1 h0
R

 

b: width of a circular segment at s′ 

w′: weight per unit area of the fabric 

w: weight per unit length of the fabric at s′; w = bw′ 

A: area of the circular segment cantilever 

m: ratio of the radii of the fabric and support disk; m = R/r 

m′: ratio of radii of the circumscribed and inscribed circles of an n-gon 

L: difference between the radii of the fabric and support disk; L = R – r 

L′: length of the segment cantilever; L′ = R – h0 

k: non-dimensional parameter for a strip cantilever 

K: non-dimensional parameter for a segment cantilever in Cases I and II 

K’: non-dimensional parameter for a segment cantilever in Cases III 

For any point on the arc of the circular segment at φ, 

 . (3.3) 

A small area dA of the flat circular segment cantilever at x is then expressed as 

 dA = bdx =− 2R2 sin2 φ dφ. (3.4) 

The area of the circular segment Ax-R from x to R can thus be described as 

  A𝑥-R = ∫ dAR
𝑥

 = − 2R2 ∫ sin2 φdφ0
φ= cos-1𝑥

𝑅

, (3.5) 

  = − 2R2 φ − 12 sin 2φ

2
|

0

cos-1 x

R

, (3.6) 
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 = R2 [cos-1 x
R
−

1
2

sin (2 cos-1 x
R
)]. (3.7) 

For large deformation of a cantilever, analysis usually begins with the Bernoulli–Euler 

law:  

 
1
ρ

=−
M
bB

=
dθ
ds'

 (3.8) 

where M is the bending moment at any point of the cantilever and ρ is the radius of 

curvature at s′. b is the width of a circular segment at s′. 

Differentiating Equation (3.8) yields 

 d2θ

ds'2
=−

1
bB

∙
dM
ds'

. (3.9) 

The equilibrium of the local moment of the segment cantilever32, 37 yields 

 dM
ds'

=  w'Ax-R sin θ . (3.10) 

From Equations (3.9) and (3.10), I obtain the differential equation  

 –bB
d2θ

ds'2
=w'Ax-R sin θ. (3.11) 

For a strip cantilever, b is constant and Ax-R = (L – s′)·b, where L is the length of the 

cantilever. In this case, Equation (3.11) can be rewritten as  

 –B
d2θ

ds'2
=w'(L – s') sin θ. (3.12) 

For a segment cantilever, b is given by  

 𝑏 = 2R sin φ = 2R√1−
x2

R2. 
(3.13) 
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I use x = s' + h0 to obtain x from s′. Here, h0 is the radius of the inscribed circle in a 

regular n-gon given by  

 h0 = R'cos
π
n
 , (3.14) 

where R' is the radius of the circumscribed circle of the regular n-gon.  

Substituting Equations (3.7) and (3.13) and x = s' + h0 into Equation (3.11), I obtain 

a differential equation for the deflection of a circular segment: 

 
−2B

d2θ
ds'2

=w' R

√1− (s'+ℎ0
R )

2
[cos-1 s'+ℎ0

R
−

1
2

sin(2 cos-1 s'+ℎ0
R

)] sin θ. 
(3.15) 

3.2.1.1 The model in three cases according to the relationship of m and m′ 

The segment cantilever area in the drape test depends on the relation of R and r, or the 

relation of R′ and h0 as follows. 

When the ratio of the radii of the fabric and support disk, m, is defined as  

 m = 
R
r
  (3.16) 

and the ratio of radii of the circumscribed and inscribed circles of the n-gon, m′, is 

defined as  

 m' = 
R'
h0

 = sec
π
n
, (3.17) 

the segment cantilever area can be described with the relation of m and m′ in the following 

three cases. 

Case I: When R = R', h0 = r = 1
m

R = 1
m'

R; i.e., m′ = m, as shown in Figure 3.2 (a). In this 

case, the dimensions of the circumscribed and inscribed circles are the same with the 

dimensions of the fabric and support disk. 
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Case II: When R < R', h0 = r = 1
m

R > 1
m'

R; i.e., m′ > m, as shown in Figure 3.2 (b). In 

this case, the fabric is smaller than the circumscribed circle, while the dimensions of the 

inscribed circle and the support disk are the same.  

Case III: When R = R′, h0 = 1
m'

R > r = 1
m

R; i.e., m′ < m, as shown in Figure 3.2 (c) and 

Figure 3.3. In this case, the support disk is smaller than the inscribed circle, while the 

dimensions of the circumscribed circle and the fabric are the same. 

Case I is a typical case of Cases II and III. In this study, I first analyze Case I and then 

generalize to Cases II and III. 

Cusick presented a model28 of infinite shear stiffness and discussed the drape shape 

and the relation of c and DC when R is 15 cm and r is 9 cm. His model belongs to Case 

II when n is 3 and Case III when n is 4 or 5. 

   

(a) Case I: R = R', h0 = r = 
1
2
R 

(b) Case II: R < R', h0 = r > 
1
2
R 

(c) Case III: R = R’, h0 = 
1
2
R > r 

Figure 3.2 Drape forming lines depending on the ratio of the radii for various m 

with n = 3 and m′ = 2. 

R=R’ 

R’

R
R<R’ 

R=R’ 

L

L’
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(a) n = 4 (b) n = 5 (c) n = 6 

Figure 3.3 Drape forming lines of various n and m′, with m = 2 for Case III (R = 

R′ ( and h0 =R′cos π
n
 > r). 

3.2.1.2 Deflection calculation for the segment cantilever in Cases I and II 

In Case I, the chord of the circular segment is a tangent of the support disk. By 

substituting h0 = r = 1
m

R, Equation (3.15) is rewritten as 

 
−2B

d2θ

ds'2
=w' R

√1− (s'

R + 1
m)

2
{cos-1 (

s'

R
+

1
m
) −

1
2

sin [2 cos-1 (
s'

R
+

1
m
)]} sin θ. 

(3.18) 

The interval of integration for s′ is [0, R − h0] = [0, m−1
m

R], which represents the arc 

length from the fixed end to the free end of the circular segment cantilever. 

I introduce the normalized arc length q to normalize s′ by the arc length: 

 q=
s'

m – 1
m R

=
m

m – 1
∙
s'
R
. (3.19) 

The second derivative of θ in Equation (3.18) can then be expressed as   

 
d2θ
ds'2

=
d

ds'(
dθ
ds')= (

m
m− 1)

2
∙

1
R2 ∙

d2θ
dq2 . 

(3.20) 

 

L L’
L L’

L’L
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Substituting Equation (3.20) into Equation (3.18) gives 

 

d2θ
dq2 =

w'R
B

3
(

m-1
m )

3 1

−2 (m-1
m )√1− (

s'
R + 1

m)
2
{cos-1 (

s'
R +

1
m)

−
1
2 sin [2 cos-1 (

s'
R +

1
m)]} sin θ. 

(3.21) 

 

In this case, the length of the segment cantilever L′ is  

 L′ = L = R – r = m − 1
m

R. (3.22) 

Substituting Equation (3.22) into Equation (3.2) gives 

 
. (3.23) 

Substituting Equation (3.23) into Equation (3.21) gives 

 

d2θ
dq2 = − K3

1

2 (m − 1
m
)√1− (

m − 1
m

q+
1
m
)

2
{cos-1 (

m − 1

m
q+

1

m
)

−
1

2
sin [2 cos-1 (

m − 1

m
q+

1

m
)]} sin θ. 

(3.24) 

The interval of integration for q is [0, 1]. The deflection of the segment cantilever is 

therefore determined by m and K.  

The boundary conditions are θ = 0 at q = 0 and dθ
dq

 = 0 at q = 1. Integrating Equation 

(3.24) using the fourth-order Runge–Kutta method with respect to q, I obtain a 

relationship between q and θ. The orthogonal coordinates of the deflection curve can be 

obtained according to 

 x'=∫ sin θ
s'

0
ds',   z' = ∫ cos θ

s'

0
ds'. (3.25) 

The orthogonal coordinates of the edges of the segment cantilever y' at s′ are 

3 '1
B
w

m
mRK 
−

=
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determined by b, which is given by Equation (3.13). 

Using the normalized arc length q given by Equations (3.19) and (3.25), I obtain the 

normalized coordinates  

 x'=
m–1
m R∫ sin θ

q

0
dq,   z'= 

m–1
m R∫ cos θ

q

0
dq. (3.26) 

Normalized coordinates x′/R and z′/R are therefore given by  

 
x'
R =

m–1
m ∫ sin θ

q

0
dq,   

z'
R = 

m–1
m ∫ cos θ

q

0
dq. (3.27) 

The normalized coordinates of the deflection curve are obtained through the numerical 

integration of Equation (3.27) with respect to q. 

The projected area of the circular segment cantilever on the xy plane, Aseg, is given by 

 Aseg = ∫ bdx'𝐿′

s'=0 . (3.28) 

Here, coordinates of the deflection curve x' and the width of a circular segment b are 

functions of s'. 

Combining the normalized coordinate x'/R with the normalized width b/R, the 

normalized projected area of the circular segment cantilever on the xy plane can be written 

as 

 Aseg
R2  = ∫ b

R
d x'

R
s'=𝐿′=𝐿

s'=0  . (3.29) 

The normalized projected area can therefore be numerically calculated using Equation 

(3.29) and x'
R
 calculated using Equation (3.27). The calculated normalized projected area 

will be used for the DC calculation.  

In Case II, as in Case I, L′ is equal to m – 1
m

R. The deformation of the segment cantilever 

can thus be calculated using Equations (3.27) and (3.29). 
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3.2.1.3 Calculation of the deflection of the segment cantilever in Case III 

In Case III, R = R'; hence, h0 is given by R/m′. L' is smaller than L because h0 is larger 

than r. Thus, K shown in Equation (3.23) is reconsidered as K', which is determined by 

L' = R – h0. Under this condition, K' is defined as  

 . (3.30) 

The deflection of the segment cantilever is determined by m' and K' in this case. 

Using K′ and m′ instead of K and m in Equation (3.24), I obtain normalized coordinates 

in cooperating K′ and m′ as shown in Equation (3.31). The normalized projected area can 

be numerically calculated according to 

 
x'
R =

m'–1
m' ∫ sin θ

q

0
dq,   

z'
R = 

m'–1
m' ∫ cos θ

q

0
dq, (3.31) 

 Aseg
R2  = ∫ b

R
d x'

R
s'= L'=R–h0

s' =0  . (3.32) 

3.2.2 Theoretical deformation of the drape shape for the lower 

limits of the DC 

In the calculation of the lower limit using a strip cantilever, I use Equation (3.12) 

following Cusick’s method as shown in Figure 3.4. To normalize L − s′ by fabric length, 

I introduce the normalized fabric length t, expressed as 

 t = 
L – s'

L
. (3.33) 

The normalized differential equation for the deflection of the strip cantilever in 

Equation (3.12) is then given by  

 d2θ
d𝑡2  = – w'L3

B
t sin θ =− K3t sin θ. (3.34) 

To compare upper and lower limits in Case III, it is necessary to obtain the relation of 

3
'

'
1''

B
w

m
mRK 
−

=
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K and K'. Equations (3.23) and (3.30) give the relation as 

 . (3.35) 

 

  

(a) Wedge-shaped cantilevers  
(b) Approximation treatment of wedge-

shaped cantilevers as strip cantilevers 

 

(c) Strip cantilevers bending over to define drape diagram 

Figure 3.4 Lower limit for drape of zero shear stiffness  

(Source: Hearle et al., 196918 ) 

3.2.3 Calculation of the DC 

In Cases I and II, because the DC is a ratio of the projected area of the fabric before 

and after draping, the expression for the DC in Equation (3.1) can be rewritten as  

 DC(%) = 
nAseg + An-gon − S2

S1 − S2
×100%, (3.36) 

m
m

m
m

K
K 1

1'
'

'
−


−

=
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                         = 
nAseg + nR2 cosπ

n sinπ
n − π

R2

m2

πR2(1 − 1
m2)

×100%, (3.37) 

 = 
nAseg

R2  + n2 sin2π
n  − π 1

m2

π(1 −  1
m2)

×100%, (3.38) 

where An-gon is the area of the polygon. Thus, for given n and m, the DC can be determined 

using Equation (3.38) and the normalized projection area in Equation (3.29). The 

minimum DC for infinite shear stiffness can be obtained by substituting zero into Aseg. 

In Cases I and II, Aseg is calculated using Equations (3.27) and (3.29), and the DC is 

therefore related to m. In Case III, Aseg is calculated using Equations (3.31) and (3.32) and 

the DC is therefore related to m′, but m is also needed to calculate the DC. The DC is thus 

related to both m and m′ in Case III. 

The DC for zero shear stiffness is obtained using Equation (3.12). 

 

3.3 Experimental details 

To verify the proposed theoretical model for fabric drape deformation, 1392 drape tests 

(for nine types of sample, four nodes, 14 types of dimension, and three measurements) 

were performed on eight different fabrics and a sheet while changing the radii of the 

support disk and sample. The radius r of the support disk was set from 1.5 to 8 cm at 

intervals of 0.5 cm. For each disk radius, the sample radius R was set as twice the disk 

radius r; i.e., R = 2r. The disk radius r is thus equal to the sample length L in this case. 

The node number n of the drapes was manually set at 3, 4, 5, and 6. To calculate the DC, 

photographs (6016  4016 pixels, NIKON D750) were taken from a position 200 cm 

above the drape tester. DCs of the samples were calculated by counting the pixels of the 

fabric drape in each photograph using Photoshop CC (Adobe Systems Co., Ltd., CA, 

USA). To count the pixels of the drape, the Pen Tool in Photoshop was used to select the 

area of the drape including the disk area in the photograph. Then, the pixel value of the 
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selected area could be read in the Histogram panel. Using Equation (2.9), the DC can then 

be obtained. The DC of each sample was measured three times for each n and the average 

value taken. 

Specifications of the fabric and sheet samples are listed in Table 3.2. The bending 
rigidity and shear stiffness of the samples were respectively measured employing a KES-
FB2 pure bending tester and KES-FB1 tensile and shear tester (Kato Tech Co. Ltd., Kyoto, 
Japan).  

The theoretical and experimental drapes were compared in terms of the K–DC and K′–

DC relationships and projected drape shape. In the theoretical analysis, the K and K′ 

values were obtained using Equation (3.23) for Cases I and II and using Equation (3.30) 

for Case III. 

In the experimental analysis, K values of the samples were calculated using Equation 

(3.23) while K′ values of the samples were calculated using Equations (3.23) and (3.35). 

The average of the measured bending rigidity in warp, weft, and 45º bias directions was 

used for B. 



Effect of fabric dimension on limits of the drape coefficient                                        63 

 

 

T
able 3.2 Specifications of sam

ples 

 

*1CO: cotton; WO: wool; AF: other; PL: polyester; TA: triacetate; SI: silicon rubber 

*2P: plain; T: twill 
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3.4 Results and discussion 

3.4.1 Theoretical fabric deformation 

3.4.1.1 Relationship between the DC and K or K’ for different n  

Figure 3.5 shows the theoretical deformation of drape upper limits for different values 

of K in Case I with n = 3 and K′ in Case III with n = 4, 5, and 6 obtained using the obtained 

orthogonal coordinates in Equations (3.27) and (3.31). n segments of the drape shape are 

arranged around the center. When m and K differ from m' and K', the deflections are 

different as shown in Figure 3.5. As K and K′ increase, the projected segment area reduces 

irrespectively of n. With greater n, the projected segment areas also reduce with increasing 

K and K′. 
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(a) Top view of the theoretical drape 

when n = 3 (m′ = 2) for different values 

of K 

(b) Side view of the theoretical drape 

when n = 3 (m′ = 2) for different values 

of K 

  

(c) Top view of the theoretical drape 

when n = 4 (m′ = 1.414) for different 

values of K′ 

(d) Side view of the theoretical drape 

when n = 4 (m′ = 1.414) for different 

values of K′ 

Support disk

Flat fabric ( K or K’ = 0 )

K or K’ = 1
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(e) Top view of the theoretical drape 

when n = 5 (m′ = 1.236) for different 

values of K′ 

(f) Side view of the theoretical drape 

when n = 5 (m′ = 1.236) for different 

values of K′ 

  

(g) Top view of the theoretical drape 

when n = 6 (m′ = 1.155) for different 

values of K′ 

(h) Side view of the theoretical drape 

when n = 6 (m′ = 1.155) for different 

values of K′ 

Figure 3.5 Top and side views of calculated drape shapes for different K or K′. 
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3.4.1.2 Relationship between the DC and K or K’ for n = 3 

Figure 3.6 shows the relationship between the DC and K for n = 3 with different values 

of m for upper (G = ∞) and lower (G = 0) limits. This situation refers to Cases I and II. 

The curves of the upper limit of the DC versus K fall notably as m increases while the 

curves of the lower limit of the DC versus K are similar for all m. Both DC limits decrease 

as m increases while the difference between the two limits decreases with increasing m 

for the same K. Table 3.3 gives the minimum DC values for infinite K and different values 

of m. The minimum DC for the upper limit decreases as m increases while that for the 

lower limit is zero irrespective of m. 

 

Figure 3.6 Upper and lower limits of the calculated DC versus K for m ≤ 2 when n 

= 3 (Cases I (m = 2) and II (m = 1.1–1.9)). 
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Table 3.3 Minimum DCs for different m ≤ 2 when n = 3 

n m G Minimum DC (%) 

3 1.1 ∞ 71.95 

3 1.2 ∞ 60.92 

3 1.3 ∞ 52.84 

3 1.4 ∞ 46.33 

3 1.5 ∞ 40.84 

3 1.6 ∞ 36.10 

3 1.7 ∞ 31.92 

3 1.8 ∞ 29.20 

3 1.9 ∞ 24.84 

3 2 ∞ 21.80 

3 – 0 0 

Figure 3.7 shows the upper and lower limits of the DC according to K′ for different 

values of m when n = 3 and m′ = 2. This situation refers to Case III. Irrespective of the 

value of m, both the upper and lower limits of the DC decrease with increasing K′. As m 

increases, the curves of the upper limit rise while the curves of the lower limit fall. Table 

3.4 gives the minimum DC values for infinite K′ and different m. The minimum DC for 

the upper limit increases as m increases while that for the lower limit is zero irrespective 

of m. 
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Figure 3.7 Upper and lower limits of the calculated DC versus K′ for different m 

when n = 3 and m′ = 2 (Case III). 

Table 3.4 Minimum DCs for different m when n = 3 

n m m′ G Minimum DC (%) 

3 2 2 ∞ 21.80 

3 3 2 ∞ 34.02 

3 4 2 ∞ 37.44 

3 5 2 ∞ 38.91 

3 10 2 ∞ 40.76 

3 – 2 0 0 
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In terms of the upper limits for all cases in Figure 3.6 and Figure 3.7, the DC decreases 

with increasing K or K′. In Case I, the area of the circular fabric is the same as that of the 

circumscribed circle and the DC has the smallest value among all cases. In Case II, the 

circumscribed circle is larger than the circular fabric. In this case, the deflection area of 

the fabric decreases with decreasing m. This means that the projected area of the fabric is 

larger than all the areas for DC determination. This explains why the DC in Case II is 

larger than the DC in Case I. In Case III, the inscribed circle is larger than the support 

disk. In this case, the difference between the area of the support disk and the circular 

fabric is large. This explains why the DC in Case III is larger than the DC in Case I. 

In terms of the lower limits for all cases in Figure 3.6 and Figure 3.7, the DC increases 

with decreasing m. The DC approaches 0% with increasing K or K′ irrespective of m for 

all cases. 

Comparing upper and lower limits in Cases I and II, the DC–K curves in Figure 3.6 

show a similar tendency for increasing m when the node number is the same. Meanwhile, 

comparing upper and lower limits in Case III, the DC-K′ curves in Figure 3.7 show 

different tendencies for increasing m when the node number is the same. The DC 

increases with increasing m for the upper limits in Case III while the DC decreases with 

increasing m for the lower limits in Case III. In the case of the upper limits, with greater 

m, the flat area of the n-gon becomes larger. This leads to a larger DC according to 

Equation (3.38). In the case of the lower limits, the calculated DC is only affected by the 

deflection of strip cantilever. With greater m, the projected area of deflection decreases, 

leading to a smaller DC.  

3.4.1.3 Relationship between the DC and K or K’ for different n and m’ 

Figure 3.8 shows the upper and lower limits of the DC according to K or K′ for different 

n and m′ when m = 2. The curves of the upper limit increase with increasing n. The curves 

of the lower limit decrease with increasing n owing to the smaller K′. Table 3.5 gives the 

minimum DC values for infinite K and different n. The minimum DC for the upper limit 

decreases as m′ increases while that for the lower limit is the same as zero irrespective of 

m′. 
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Figure 3.8 Upper and lower limits of the calculated DC versus K or K′ for different 

n when m = 2 (Case III). 

Table 3.5 Minimum DCs for different n when m = 2 

m n m′ G Minimum DC (%) 

2 3 2 ∞ 21.80 
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3.4.2 Comparison of calculated and experimental projected 

drape shapes 

Figure 3.9 shows the superposed drape shapes of the calculated and experimental 

drapes. K or K′ values of the samples having different bending rigidities and weights are 

normalized with the dimension respectively calculated using Equation (3.23) for K, or 

Equation (3.23) with Equation (3.35) for K′. To compare the experimental and calculated 

shapes with K or K′ values, experimental K or K′ values close to the calculated values are 

used with about 5% difference. In the cases of K ≈ 1, 2, and 3 and n = 3, the experimental 

shapes are similar to the shapes of the calculated upper limit as shown in Figure 3.9 (a), 

(b), and (c). In the case of K′ ≈ 1 and n = 4, the experimental shapes are similar to the 

shapes of the calculated upper limit as shown in Figure 3.9 (d). However, in the cases of 

K′ ≈ 2 and 3 and n = 4, the experimental shapes are closer to the shapes of the calculated 

lower limits as shown in Figure 3.9 (e) and (f). In the cases of n = 5 and 6 for K′, the 

experimental shapes are closer to the shapes of the lower limits calculated with larger K′ 

values. 

Drape depressions between adjacent nodes or double-curvature bending have been 

observed38. However, the fabrics deform in an area that is assumed to be not deformable 

in theory. Therefore, the experimental shapes of some samples do not agree with the 

calculated shapes owing to the presence of depressions. These results could be due to 

different values of shear stiffness. 
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(a) K ≈ 1 and n = 3 (b) K ≈ 2 and n = 3 (c) K ≈ 3 and n = 3 

   

(d) K′ ≈ 1 and n = 4 (e) K′ ≈ 2 and n = 4 (f) K′ ≈ 3 and n = 4 

   
(g) K′ ≈ 0.5 and n = 5 (h) K′ ≈ 1 and n = 5 (i) K′ ≈ 1.5 and n = 5 

  
(j) K′ ≈ 0.5 and n = 6 (k) K′ ≈ 1 and n = 6 

Figure 3.9 Comparison of theoretical and experimental drape shapes 

according to K.  
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3.4.3 Comparison of experimental and calculated DCs for K or 

K′ 

Figure 3.10 compares the calculated limits and experimental DC–K or DC–K′ curves 

for different n. Irrespective of n, the DC–K or DC–K′ curves of most of the samples are 

between the two limits.  

When n = 3 as shown in Figure 3.10 (a), the experimental curves of chiffon georgette 

1 and triacetate fabric are lower than the lower limit. These samples have lower shear 

stiffness than the other samples as shown in Table 3.2. For samples with lower shear 

stiffness, the fabrics depress between adjacent nodes and there is bending deformation in 

the circumferential direction with buckling, and the curves are thus close to the lower 

limit. On the other hand, the experimental curves of broadcloth 1 and denim 3 exceed the 

upper limits. Broadcloth 1 and denim 3 have lower bending rigidity and higher shear 

stiffness than the other samples as shown in Table 3.2. For these samples, the depression 

in the middle of two adjacent nodes and bending deformation to the opposite side near 

the nodes occurs at the same time. Besides, the actual fabric would not compose a regular 

triangle every time due to the anisotropy. Those reasons lead to the actual projection area 

are larger than the theoretical projection area. Hence, the experimental lines of them are 

above the upper limits. 

When n ≥ 4 as shown in Figure 3.10 (b), (c), and (d), irrespective of n, the DC–K′ 

curves of the samples are between the two limits except chiffon georgette 1 and triacetate 

fabric. The experimental curves are close to the lower limit rather than the upper limit. 

As the same as the results when n = 3, the curves of chiffon georgette 1 and triacetate 

fabric are lower than the lower limit. The reason of the exceeding results is due to the 

double curvature occurred in the area where are assumed to be not deformable in the 

theory as I mentioned in 3.4.2 Comparison of calculated and experimental projected 

drape shapes.  

The DC decreases with increasing n for all samples. With increasing n, fabrics undergo 

more depression, which leads to a lower DC as shown in Figure 3.9 (h) and (k).  

Although there were some differences between the theoretical and experimental results, 

most results were between the lower and upper limits, which validate the model. 
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(c) n = 5 

 

(d) n = 6 

Figure 3.10 Comparison of DC–K or DC–K′ curves from theory and experiment 

for m = 2. 
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Figure 3.11 shows the relationship of the root-mean-square error (RMSE) of the 

theoretical drape (i.e., DC) relative to the experimental drape versus shear stiffness of the 

samples. It is seen that the RMSEs for the upper limit and lower limit decrease with 

decreasing n.  

The RMSE for the upper limit decreases with increasing G while the RMSE for the 

lower limit increases with increasing G except in the case of silicon rubber. Chiffon 

georgette 1 and triacetate fabric have a larger RMSE of the upper limit and a smaller 

RMSE of the lower limit than other fabrics. This is due to their lower shear stiffness.  

Silicon rubber has a large RMSE. Compared with other fabrics, silicon rubber has 

lower bending rigidity and higher shear stiffness, which makes it easier to bend in a 

circular direction. There is thus buckling and bending deformation in the circular direction, 

resulting in the larger RMSE. This is a topic of future study.  

 

Figure 3.11 Relationship between the RMSE of the DC and shear stiffness 
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3.4.4 Comparison with Cusick’s results  

To compare my results with Cusick’s results, I calculated the theoretical limits using 

Cusick’s dimensions. Cusick28 used R = 15 cm and r = 9 cm, which means L′ is 6 cm for 

n = 3 and 6. Cusick gave the relationship between the theoretical DC limit and c = (B/w′)1/3. 

The c value in my model corresponds to c = L′/K according to Equations (3.22) and (3.23) 

for Case II or c = L′/K′ according to L' = R – h0 and Equation (3.30) for Case III.  

Figure 3.12 compares c–DC curves between the results of Cusick and the present study 

for lower limit and upper limits when n = 3, 4, 5, and 6. For the lower limit (G = 0), the 

present model provides results similar to those of Cusick’s model when c > 2. There are 

differences between the two models when c < 2 owing to the error introduced by Cusick’s 

approximation of using a strip cantilever.  

Cusick presented the relationship between the upper limit of the DC and c for n = 3 

and 6. There are differences between Cusick’s results and my results. For n = 6, Cusick’s 

results are smaller than mine. For n = 3, Cusick’s results are again smaller than mine but 

with larger differences than for n = 6. This is because my model is based on the deflection 

of a segment cantilever while Cusick’s is based on the deflection of a strip cantilever as 

mentioned in 3.1 Introduction. For n = 4 and 5, curves are between those for n = 3 and 6. 

 

Figure 3.12 Comparison of DC–c curves obtained using Cusick’s theory28 and 

the presented model when m = 5/3 and L′ = 6 cm. 
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3.5 Conclusion 

To investigate the effect of fabric dimension on drape deformation, fabric drapes under 

various conditions of fabric and support disk radii were numerically analyzed considering 

the bending rigidity for infinite and zero shear stiffness. A segment cantilever was 

employed in the theoretical upper-limit calculation of infinite shear stiffness. In the 

theoretical lower-limit calculation of zero shear stiffness, strip cantilevers of equal length 

in all radial directions were used in the numerical integration of a differential equation. 

For the upper-limit calculation of drape deflection, the drape deformation was 

categorized into three cases according to the parameters m and m′, which are obtained 

using the relationship between the fabric radius and segment cantilever length. The effects 

of the segment cantilever length, weight, and bending rigidity are expressed as 

nondimensional parameters K for Cases I and II and K′ for Case III. The normalized 

deflections are determined by m and K in Cases I and II, and by m′ and K′ in Case III. For 

the lower-limit calculation of drape deflection, the deflection is determined by K. The 

upper and lower limits were compared for the same K or K′ in different cases. For Cases 

I and II, the K values of lower limits can be used directly; for Case III, the K values of 

lower limits are converted into K′. Even for different fabrics, a similar drape shape is 

obtained when m and K, or m′ and K′, are equal in each case. The effects of dimensions 

on the fabric drape were therefore clarified theoretically. Comparing with Cusick’s drape 

calculation using a strip cantilever, the proposed calculation method using a segment 

cantilever is more appropriate. 

The proposed calculation method was verified with drapes experimentally obtained for 

eight woven fabrics and one sheet with 14 conditions of radii of the fabric and support 

disk. The DCs of fabrics, except fabrics having shear stiffness lower than 40 cN•m-

1•degree-1 among the samples, were between the theoretical upper and lower limit curves 

for infinite and zero shear stiffness. The DCs of fabric with lower shear stiffness were 

below but close to the lower limit. When n = 3, experimental DCs were close to the upper 

limit except for fabrics with shear stiffness lower than 40 cN•m-1•degree-1 among the 

samples, the values of which were close to the lower limit. For n ≥ 4, all experimental 

DCs approached the lower limit. This is due to double-curvature deformation resulting 
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from shear stiffness.  

Consequently, the effects of dimensions in the drape test considering bending rigidity 

for infinite and zero shear stiffness were clarified theoretically and experimentally. From 

the theoretical and experimental results, for both upper and lower limits, with the increase 

in the dimensionless parameters m and K, or m′ and K′, the fabric DCs decrease. This is 

because of the increased own weight of fabric along to the increases in dimensions. In the 

experimental results, although the fabric DCs are varied due to the differences in bending 

and shear properties, they are between the upper and lower limits. Hence, the DCs of 

different fabric with different dimensions can be predict using m and K, or m′ and K′. The 

results in this study will help unify the results of drape test with various dimensions and 

benefit the simulation of fabric drape for different dimensions. Those results will also 

help clarify the mechanism of drape and further investigate drape deformation.  

A limitation of the present research was that the calculation did not consider the effects 

of shear stiffness (except for infinite and zero shear stiffness), anisotropy, and structural 

properties, which are important to drape, but difficult to be obtained with an analytical 

form. For such calculations, it is necessary to adopt methods such as the finite element 

method using the results of this study. 
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Chapter 4 Measurement of local shear deformation in 

fabric drape using three-dimensional scanning 

 

 

4.1 Introduction 

Drape is the large three-dimensional (3D) deformation of fabric that results from 

gravity and the mechanical properties of fabric. The drapability of fabric is important to 

a garment's appearance and thus the selection of fabric. The relationship between the 

drapability and mechanical properties of fabric has been studied since the 1950s. In 1950, 

Chu et al.1 proposed the Fabric Research Laboratories (FRL) drape test and defined the 

drape coefficient (DC), which is an index widely used to evaluate drapability 

quantitatively. In 1960, they reported that the drapability of fabric was affected by fabric 

weight, and Young’s modulus and the moment of inertia of area, the product of which is 

the bending rigidity.2 Cusick3 investigated the dependence of drape on the bending 

rigidity and shear stiffness by statistically analyzing the relationship between the DC 

and those mechanical properties. He showed that both bending and shear properties 

affect drape where the drape has curvature in more than one direction. Morooka and 

Niwa4 investigated the effect of the bending rigidity of fabric on drape in the warp, weft, 

and 45° bias directions. They conducted multiple regressions to express the DC using 

the bending rigidity and weight. Niwa and Seto5 examined the DC using both shear and 

bending properties, and indicated the effect of shear and bending hysteresis on the DC. 

Nagai et al.6 investigated the effects of shear and bending on fabric drape and showed 

the effect of weight and Young’s modulus in the 45° bias direction, which represents the 

shear stiffness. These studies revealed that drape deformation is affected by the bending 

rigidity, shear stiffness, and weight. Drape should thus be composed of bending and 

shear deformation. Whenever bending occurs in more than one direction, because of the 

double curvature in drape, shear deformation definitely occurs and the deformation 



88         Measurement of local shear deformation in fabric drape using three-dimensional scanning 

 

could be unequal7. Thus, it is necessary to discuss the effects of bending and shear on 

fabric drape simultaneously.  

These effects on fabric drape have been theoretically analyzed using numerical 

calculation under appropriate assumptions and restrictions. Cusick8 calculated the DC 

using the bending deformation model of a strip cantilever under the conditions of infinite 

and zero shear stiffness. In Chapter 3, the effect of the fabric dimension on drape 

deformation has been analyzed using the model of a circular segment cantilever for 

infinite shear stiffness and the deflection of strip cantilevers in radial directions for zero 

shear stiffness. Although they showed the effect of shear deformation on drape, it was 

only discussed for two cases: infinite shear stiffness and zero shear stiffness because of 

the limitation of theoretical analysis.  

To overcome this limitation, many researchers have analyzed fabric drape using the 

finite element method (FEM) with the measured and/or assumed mechanical properties 

of fabric. Imaoka et al.9 and Kang et al.10 calculated drape deformation using the FEM 

with the measured or estimated tensile and shear modulus, bending rigidity, and 

Poisson’s ratio. They compared the shapes and contour lines of experimental and 

calculated drapes. Teng et al.11 and Hu et al.12 simulated fabric drape behavior over 

circular pedestals and compared the simulated drape shape with the experimental shape. 

Although these researchers were able to calculate drape shape, neither study discussed 

the local deformation on drape. 

By contrast, a particle method using a mass-spring model has also been used to 

simulate fabric drape for modeling and animation. Lafleur et al.13 were pioneers of 

clothing animation using a particle model. Breen et al.14 conducted drape simulation 

with approximated bending and shear curves derived from bending and shear properties. 

Based on their method, many researchers have developed fabric drape models by 

considering the mechanical properties of fabric. Mitsui et al.15 calculated fabric drape 

considering the nonlinearity and anisotropy of fabric. They compared their results with 

Breen’s method from the perspective of bending and shear recovering forces. Dai et al.16 

simulated fabric drape from a drape model by reflecting the mechanical properties of 

fabric. In addition to bending and shear properties, Dai et al.17 accounted for fabric twist, 
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and force and displacement relationships of various types of deformation. They 

simulated fabric in heart-loop tests and compared it with actual fabric. However, they 

showed the agreement of only the shape and essential features, and local deformation in 

drape was not verified because of the lack of a measurement method for local shear 

deformation.  

The drape simulations were conducted based on the measured or estimated 

mechanical properties. By contrast, some researchers have estimated fabric deformation 

theoretically or geometrically. Mack and Taylor18, Shinohara and Uchida19, and 

Moriguchi and Sato20 presented fitting equations based on the shearing behavior of 

woven fabric on spherical surfaces. For other 3D deformation of fabric, some 

researchers have proposed algorithms for covering or fitting 3D objects, such as 

spherical and tubular surfaces, considering the shear deformation of fabric. Heisey et 

al.21, 22 proposed a projection method by projecting a known 3D fabric surface onto a 

two-dimensional surface. Van Der Weeën23 introduced algorithms for drape fabrics on 

doubly curved surfaces. Potluri et al.24 developed a comprehensive drape model for 3D 

tubular surfaces using existing drape algorithms, but not the fabric drape. Vanclooster et 

al.25 conducted forming simulations of woven textile composites using an explicit FEM. 

Cho et al.26 proposed a 3D covering algorithm for individual pattern making. 

Mohammed et al.27 and Kim et al.28 investigated the shear deformation of fabric on a 

spherical surface. Despite many researchers21-28 proposing calculating algorithms for 

shear deformation to form composites or for pattern making for garments, the 

applicability of these algorithms to fabric drape has not been verified.  

By applying these algorithms to drape shapes, it will be possible to measure the local 

deformation of draped fabric. However, researchers have focused on the outline of the 

drape shape and, to the best of my knowledge, there have been no studies on the 

measurement of local deformation on draped fabric. To compare the shape of simulated 

and actual drape, May-Plumlee et al.29, Kenkare et al.30, and Pandurangan et al.31 

measured 3D drape shape using 3D scanning technologies. Although they compared the 

shapes, they focused on the outline of the drape shape and did not discuss the local 

deformation on drape. 
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To clarify the effects of shear deformation on drape, in the present paper, I investigate 

local shear deformation in drape by measuring shear deformation in drape quantitatively, 

adopting 3D scanning and geometrical covering. My fabric model covers the scanned 3D 

drape geometrically to allow shear and bending (out-of-plane pin joint rotation) 

deformation. I calculate the shear angles in the fabric model.26, 32 By adopting this method, 

I managed to measure local shear angles in FRL drape, which had not been measured yet. 

I clarified the locations where the angle of shear deformation occurs in drapes. I also 

investigated the effects of the relative positions of the node to grainlines that cross at the 

fabric center (center grainlines), and the bending and shear properties of fabric on local 

shear deformation. Through this study, the local shear deformation and effect of shear 

deformation on FRL drape can be clarifed. 

 

4.2 Calculating method for shear deformation 

The method for calculating shear deformation is based on the 3D fitting of a woven 

fabric model to a surface proposed by Cho et al.26 A 3D scanned surface composed of triangle 

patches is covered with a fabric model, which is composed of square cells at an interval 

of r1. To construct the fabric model that covers the surface, two crossing grainlines are 

assigned on the surface. From the crossing point of the two grainlines, the cells start to be 

constructed by allowing trellis (pin-joint) shear deformation, without elongation in the 

yarn direction. Because compared with shear deformation, the deformation of a woven 

fabric in the yarn direction under low tension is negligible, thus I assumed no elongation 

in the yarn direction in my method.7 Then, the construction of cells repeats at a regular 

interval of r1 along the grainlines. It can be used as the covering fabric model. 

Consequently, the fabric model that covers the surface can be obtained by setting the two 

grainlines. The fitting algorithm is as follows: Consider a triangle patch △ABC of a 3D 

scanned surface that has the vertices A, B, and C in 3D space, as shown in Figure 4.1. The 

assigned grainlines provide three points, P0, P1, and P2, on the surface, where P0 is the 

intersection of the two grainlines, and P1 and P2 are given by points along each grainline 
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with a distance r1 from P0. To create a cell on △ABC, it is necessary to determine a point 

P3 that meets the following conditions: (a) it is at an equal distance r1 from P1 and P2; and 

(b) it is located in △ABC. 

To determine P3, I assume two spheres of center points P1 and P2, with radius r1. These 

two spheres intersect with a plane including P0. The intersection plane is called Plane Π. 

This plane includes a circle with the center point Q and radius r2. Then, P3 is determined 

to be a point located on the circle except P0. The position vector Q of Q can then be 

expressed using the position vectors P1 and P2 of points P1 and P2: 

Q =
P1+P2

2
 = 

2P1+P12

2
,  P12 = P2 − P1, 

(4.1) 

where P12 is a normal vector to Plane Π. 

To investigate which edge of △ABC intersects Plane Π, the scalar products of the 

vectors QA⃗⃗ ⃗⃗  ⃗, QB⃗⃗ ⃗⃗  ⃗, and QC⃗⃗⃗⃗⃗⃗ ,with P12, are introduced. 

Three conditions need to be discussed: 

I: QA⃗⃗ ⃗⃗  ⃗ ∙ P12 ≥ 0 

II: QB⃗⃗ ⃗⃗  ⃗ ∙ P12 ≥ 0 

III: QC⃗⃗⃗⃗⃗⃗  ∙ P12 ≥ 0 

1. Either condition I is satisfied or condition II and condition III both are satisfied. △

ABC is separated by Plane Π, with A on one side, and B, C on the other side; that 
is, edges AB and AC intersect Plane Π. 

2. Either condition II is satisfied or condition I and condition III both are satisfied. △

ABC is separated by Plane Π, with B on one side, and A, C on the other side; that 
is, edges AB and BC intersect Plane Π. 

3. Either condition III is satisfied or condition I and condition II both are satisfied. △

ABC is separated by Plane Π with C on one side, and A, B on the other side; that is, 
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edges AC and BC intersect Plane Π. 

4. Otherwise, △ABC is parallel to Plane Π; that is, no edge intersects Plane Π. 

Based on the above conditions, two intersections E, F of △ABC and Plane Π are 

defined33. Thus, if I want to confirm whether P3 is located in △ABC, it is necessary to 

investigate whether P3 is located on line EF. 

Because the point F is unknown, to find F, I introduce direction vector L and position 

vector E of E to express EF⃗⃗⃗⃗  ⃗ as 

EF⃗⃗⃗⃗  ⃗= E + Lt, (4.2) 

where t is located at a distance r2 from Q. 

Thus, if P3 is on EF, it needs to meet the condition that the distance from Q to line EF 

is r2. Therefore, the position of P3 on the surface is determined if the point meets the 

condition. Then, the cell can be fitted to the curved surface. By repeating the process, a 

fabric model is obtained that covers the entire surface. The covering process stops when 

P3 cannot be found on the surface.  

 

Figure 4.1 Fitting method 
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With the obtained fabric model, the shear angle of each cell can be calculated. 

Regarding the calculation of the shear deformation of one cell, because trellis shear is 

assumed, shear angle θ of each fabric model cell is defined, as shown in Figure 4.2. 

Among the four angles of each fabric model cell, shear angle θ close to the crossing 

position of the center grainline is obtained. 

To calculate shear angle θ, let P0, P2, P3o, and P1o be the position vectors of the vertices 

for the initial state of a fabric model cell. When P3o and P1o of the cell are deformed to P3 

and P1, shear angle θ at P0 is obtained according to the scalar products of two vectors as 

cos (
π
2

- θ)=
(P1-P0)∙(P2-P0)
|P1-P0||P2-P0|

. (4.3) 

When θ ≥ 0, the cell has shear deformation with elongation in the P0 – P3 direction, 

as shown in Figure 4.2; and when θ < 0, the cell has shear deformation with elongation 

in the P2 − P1 direction.  

The absolute value of shear angle θ is used to represent the shear deformation of each 

fabric cell. The elongated direction is indicated in each cell using its diagonal line. 

 

Figure 4.2 Calculation of shear angle θ 
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4.3 Experimental method and validation of the proposed method 

4.3.1 Validation experiment 1: Comparison of the square cells’ 

deformation and position for the calculation and fabric 

To confirm the validity of the proposed method, the FRL drape test was performed 

when the node number (n) was 4 for a woven fabric of wool gabardine as shown in Table 

4.1.. In the FRL drape test, the fabric radius (R) of 14 cm and disk radius (r) of 7 cm were 

used according to Yang et al.34 

The warp and weft grainlines of the circular sample fabrics were traced as crossing at 

the center. These grainlines are defined as the center grainlines. Square cells with 

dimensions of 1 cm × 1 cm were drawn on the fabric parallelly along the center grainlines. 

The fabric was sandwiched between two disks with the radius of 7 cm. Then, draped 

fabric with drawn lattices was obtained. 

Figure 4.3 shows the coordinate system and the measuring method of drape. The draped 

shape of the sample was scanned using a portable structured light 3D scanner (Artec Eva 

Lite, Artec 3D, Luxembourg, Luxembourg)35. The scanner had two geometry-capturing 

cameras, one texture-capturing camera, and one light generator. The structured light 

pattern generated by the light generator was projected onto an object. Then, the two 

geometry cameras captured the object image with the deformed light pattern, and the 

texture camera captured the object photo image without the light pattern, which is called 

the texture. The triangulation of the object was performed using a structured light tracking 

algorithm based on the captured images. The ability of a scanning system to resolve detail 

in the scanned object was up to 0.5 mm. 
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Figure 4.3 Drape test and 3D scanning 

Scanning was conducted from multiple directions by moving the scanner around the 

drape shape manually, as shown in Figure 4.3 A 3D polygon mesh of drape (drape mesh) 

with texture (photographic image of the surface) was obtained using Artec Studio v9.2 

software (Artec 3D, Luxembourg, Luxembourg). At this stage, the obtained drape mesh 

could not be used because of noise on the surface. To remove noise, a smoothing process 

was applied to the drape mesh, and a new smoothed drape mesh was obtained, but the 

texture disappeared. To set the grainlines on the smoothed 3D drape mesh, it was 

necessary to confirm the position of the grainlines using the texture on the smoothed drape 

mesh. Thus, screen images of the drape mesh with texture were captured from multiple 

angles in advance and the captured images were superposed on the surface of the 

smoothed drape mesh at the same scale. A smooth drape mesh with texture was thus 

obtained. The unnecessary thickness of the disk was removed. By tracing the center 

grainlines on the texture, the center grainlines on the smoothed drape mesh were set. Then, 

the obtained drape mesh was covered with the fabric model, which had a cell size of 1cm 

× 1cm. Simultaneously, the shear angle of each fabric model cell was calculated. 

r = 7cm
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Then to evaluate the accuracy of fitting of the square fabric model cells on the 3D drape 

mesh, the lattices marked on the drape mesh and the fabric model cells were compared in 

terms of shape and position. I compared the coordinates of crossing points of the lattice 

on the scanned 3D drape mesh and crossing points of the square cells in the fabric model, 

in the areas of the four nodes where the texture can be clearly obtained. I calculated the 

root mean square deviation (RMSD) of the coordinates and the distances of the 

corresponded points to evaluate the error.  

Results 

Figure 4.4(a) shows the 3D drape mesh with lattices after the disk was cut. Figure 

4.4(b) shows the superposed results of lattices marked on the 3D drape mesh and the 

fabric model cells. Figure 4.4(c) shows the proposed fabric model, with colors 

representing the shear angle in each cell. As shown in Figure 4.4(b), the fabric model cells 

coincide with the lattices drawn on the fabric in terms of both the deformed shape and 

position.  

Using x, y, z coordinate system shown in Figure 4.3, I obtained 203 sets of coordinate 

values for the crossing points of the lattice on the scanned 3D drape mesh and compared 

them with corresponded coordinate values for the crossing points of square fabric cells. 

Figure 4.5 shows the comparison of the coordinate values. The results showed a good 

agreement between the points of scanned 3D drape mesh and the points of square fabric 

cells. In terms of x, y, and z coordinate values, all of them had high coefficients of 

determination of 0.99. Those average differences of x, y, and z components are 0.60 mm, 

0.98 mm, and 0.59 mm. The RMSDs are 0.30, 0.70, and 0.30, respectively. The average 

distance between the corresponded points is 0.86 mm. The RSMD is 0.93. The deviation 

of them is considered due to the error of the 3D scanner (0.5mm). Thus, the validity of 

the method is demonstrated. Therefore, by determining two center grainlines on the drape 

surface, local shear deformation was obtained. 
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(a) 3D fabric drape mesh with lattices after the disk 

was cut 

(b) Superposed results of marked lattices on the 

3D fabric drape mesh and the fabric model cells 

     

(c) Fabric model with square cells (Color indicates shear angle.) 

Figure 4.4 Lattice marked on the fabric and square fabric model cells 

Center grainline (Warp)
Center grainline (Weft)

Square cells of fabric model
Lattice marked on fabric
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(a) x-coordinate (b) y-coordinate 

 

(c) z-coordinate 

Figure 4.5 Comparison of the coordinate values for the crossing points of 

marked lattice on the scanned 3D drape mesh and the corresponding points on 

square fabric cells 
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4.3.2 Validation experiment 2: Effect of the cell size on the 

fabric model calculation 

To evaluate the effect of the square cell size, the calculated shear angles of cotton 

broadcloth as shown in Table 4.1 were compared for n = 3, but with different cell sizes of 

3 mm, 5 mm, and 10 mm. The difference between shear angles for different cell sizes was 

evaluated using the shear angle ratio of each angle range defined as follows: 

 

Shear angle ratio in a given angle range (%)  

= 
Number of cells in the given angle range

Total number of cells – Number of square cells in the disk area
 × 100. 

(4.4) 

Because the shear angle of the fabric was considered to be below 10º, the shear angle 

range was divided into 10 groups.  

Results 

Figure 4.6 shows a comparison of the obtained shear angle ratio for the same sample 

but with different cell sizes. The average of three sizes and the standard deviation among 

the obtained shear angle ratio for the three cell sizes are also shown. The maximum 

standard deviation was 2.31% for shear angles in the range of 1º–2º, which means that 

the difference caused by the linear approximation of a cell was small. 
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Figure 4.6 Comparison of the shear angle ratio for broadcloth (n =3) but with 

different square cell sizes in the fabric model  

 

4.4 Measurement of local shear deformation on FRL drape for 

various node numbers 

Because I demonstrated the validity of the proposed method, I investigated the local 

shear deformation on FRL drape using the proposed method.  

FRL drape tests were performed using four types of woven fabric (broadcloth, taffeta, 

satin, and denim) to measure the shear angle of draped fabrics. The experimental 

conditions for the radii of the fabric sample and disks were the same as those in 4.3.1 

Validation experiment 1. The node number (n) in the tests was manually set to 3, 4, 5, and 

6.34 To investigate the effect of the grainline direction on local shear deformation, the 

node locations of n=4 were controlled with respect to the grainlines; that is, along the 

center grainline directions and in the bias directions. Then, the scanning process was 

conducted to obtain the drape mesh. 

The obtained drape mesh was covered with the fabric model, which had cell sizes of 
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0.5cm × 0.5cm. Simultaneously, the shear angle of each fabric model cell was calculated. 

To investigate local shear deformation, the shear angle ratios for each drape mesh were 

calculated for the same nine groups using Equation (4). 

The sample properties are presented in Table 4.1. The bending rigidity and shear 

stiffness of the samples were measured using the Kawabata Evaluation System for Fabrics 

(KES-FB, Kato Tech., Kyoto).36  

Table 4.1 Sample specifications 

Sample Material Weave  
Thickness(

mm) 

Area 

density w 

(gm−2) 

Bending rigidity B 

(10−4 cNm2m−1) 

Shear stiffness G 

(cNm−1degree-1) 

Warpwise Weftwise Bias(45º) Mean 

Sliding 

in warp 

direction 

Sliding 

in weft 

direction 

Mean 

Gabardine  
Wool 

100% 
Twill 0.509 188 8.91 5.33 6.74 6.99 54.9 75.5 65.2 

Broadcloth  
Cotton 

100% 
Plain 0.431 112 5.23 4.01 3.47 4.24 68.6 91.1 79.9 

Taffeta 
Polyester 

100% 
Plain 0.199 82.6 11.1 10.0 6.05 6.50 227 175 201 

Satin 
Polyester 

100% 
Satin 0.435 187 10.6 67.0 19.4 32.3 139 110 125 

Denim 
Cotton 

100% 
Twill 1.07 226 13.2 2.83 4.74 6.91 109 124 116 

 

4.5 Results and discussion 

4.5.1 Local shear deformation in FRL drape 

Figures 4.7- 4.10 show colored cells according to the calculated shear angles of the 

sample fabrics in drapes and those depicted on the initial flattened patterns for various 

node numbers (n). The shear angle range was divided into 10 groups with an interval of 



102         Measurement of local shear deformation in fabric drape using three-dimensional scanning 

 

1° using the same method used in 4.3.2 Validation experiment 2. Figure 4.11 shows the 

shear angle ratio of the samples binned with a shear interval of 1° for different node 

numbers.  

Figure 4.11 shows that the shear angle ratio in the shear angle range 0°–1° was highest; 

over 40% for all fabrics, except denim, which was over 30%. Then, the shear angle ratio 

decreased as the shear angle ranges increased for all samples. Relatively large shear 

angles over 3º were below 16% for all samples. Among the same shear angle ranges for 

different node numbers for a shear angle ratio for shear angles >1°, no obvious increase 

nor decrease was observed. However, the shear angle ratio in the range 0°–1° increased 

from n = 3 to n = 4 and then decreased from n = 4 to n = 6. The percentage of node 

numbers along the center grainlines for all nodes when n = 4 in the center grainlines (4/4 

= 100%) was higher than that when n = 3 (1/3 = 33%), 5 (1/5 = 20%), and 6 (2/6 = 33%). 

Therefore, the shear angle ratio is related to the node position relative to the center 

grainlines.  

From Figures 4.7- 4.10, irrespective of the value of n and the fabric, most of the shear 

deformation with shear angles in the range 0º–3º was observed in the areas along the 

center grainlines, such as the two sides of a single node and the depressed area between 

adjacent nodes along those directions. Shear deformation with a shear angle >3º occurred 

for nodes and the depressed area in the bias directions, and along the tangents to the 

support disk. The results demonstrated that discontinuous deformation occurred in these 

areas of drape, such as buckling wrinkles. In Figure 4.7 (b-2) and Figure 4.10 (d-2), larger 

shear angles over 7º occurred on the edges of the fabric circle. This could be because of 

the large depression at the edge by double curvature. 

From the observations obtained from Figures 4.7- 4.10, a drape surface is classified 

into four areas for shear deformation, as shown in Figure 4.12.  

• Area a: area without deformation; that is, the area of the support disk plane such 
that there is no bending nor shear deformation. 

• Polygon edge b: polygonal edges connected with tangents to the support disk 
with a relatively large shear deformation. There is a sudden change of fabric 
deformation, such as wrinkling, which could lead to discontinuous shear and bending 
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deformation. 

• Area c1: areas along the center grainlines with relatively low shear angle 
deformation. These areas are not planar, so they could deform with single curvature 
bending, which is bending deformation with zero Gaussian curvature. These areas are 
divided into two areas, Area c1-c and Area c1-d, which are the convex area of the 
node and the depressed area between adjacent nodes, respectively.  

• Area c2: areas not along the center grainlines with non-uniform and relatively 
large shear angle deformation. It could deform with double curvature bending and is 
not in a developable surface that requires elongation and/or contraction to form. 
Therefore, fabric could be elongated in the bias directions because it is easy to shear. 
These areas are also divided into two areas: Area c2-c and Area c2-d, which are the 
convex area of the node and the depressed area between two adjacent nodes, 
respectively.  

From these local shear deformations, the results demonstrate that drape deformation is 

characterized by four areas according to shear deformation. Consequently, the results 

clarify that the relative node positions along the center grainlines affect local shear 

deformation. 
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(a-1) Shear angles in drape for n = 3  
(a-2) Shear angles depicted to the plane  

for n = 3  

 

 

 

(b-1) Shear angles in drape for n = 4 

(nodes along the center grainline 

directions) 

 

(b-2) Shear angles depicted to the plane  

for n = 4 

(nodes along the center grainline 

directions) 

Shear angle ranges

0º-1º 1º-2º 2º-3º 3º-4º 4º-5º 5º-6º 6º-7º 7º-8º 8º-9º >9º

Warp grainline Weft grainline Disk
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(c-1) Shear angles in drape for n = 4 

(nodes in the bias directions) 
 

(c-2) Shear angles depicted to the plane  

for n = 4 

(nodes in the bias directions) 

 

 

 

(d-1) Shear angles in drape for n = 5  
(d-2) Shear angles depicted to the plane  

for n = 5 
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(e-1) Shear angles in drape for n = 6  
(e-2) Shear angles depicted to the plane  

for n = 6 

Figure 4.7 Calculated shear angles for draped broadcloth and those depicted on 

the initial flattened patterns for various node numbers (n)  
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(a-1) Shear angles in drape for n = 3  
(a-2) Shear angles depicted to the plane  

for n = 3  

 

 

 

(b-1) Shear angles in drape for n = 4 

(nodes along the center grainline 

directions) 

 

(b-2) Shear angles depicted to the plane  

for n = 4 

(nodes along the center grainline 

directions) 

Shear angle ranges

0º-1º 1º-2º 2º-3º 3º-4º 4º-5º 5º-6º 6º-7º 7º-8º 8º-9º >9º

Warp grainline Weft grainline Disk
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(c-1) Shear angles in drape for n = 4 

(nodes in the bias directions) 
 

(c-2) Shear angles depicted to the plane  

for n = 4 

(nodes in the bias directions) 

 

 

 

(d-1) Shear angles in drape for n = 5  
(d-2) Shear angles depicted to the plane  

for n = 5 
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(e-1) Shear angles in drape for n = 6  
(e-2) Shear angles depicted to the plane  

for n = 6 

Figure 4.8 Calculated shear angles for draped taffeta and those depicted on the 

initial flattened patterns for various node numbers (n) 
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(a-1) Shear angles in drape for n = 3  
(a-2) Shear angles depicted to the plane  

for n = 3  

 

 

 

(b-1) Shear angles in drape for n = 4 

(nodes along the center grainline 

directions) 

 

(b-2) Shear angles depicted to the plane  

for n = 4 

(nodes along the center grainline 

directions) 

Shear angle ranges

0º-1º 1º-2º 2º-3º 3º-4º 4º-5º 5º-6º 6º-7º 7º-8º 8º-9º >9º

Warp grainline Weft grainline Disk
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(c-1) Shear angles in drape for n = 4 

(nodes in the bias directions) 
 

(c-2) Shear angles depicted to the plane  

for n = 4 

(nodes in the bias directions) 

 

 

 

(d-1) Shear angles in drape for n = 5  
(d-2) Shear angles depicted to the plane  

for n = 5 
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(e-1) Shear angles in drape for n = 6  
(e-2) Shear angles depicted to the plane  

for n = 6 

Figure 4.9 Calculated shear angles for draped satin and those depicted on the 

initial flattened patterns for various node numbers (n) 
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(a-1) Shear angles in drape for n = 3  
(a-2) Shear angles depicted to the plane  

for n = 3  

 

 

 

(b-1) Shear angles in drape for n = 4 

(nodes along the center grainline 

directions) 

 

(b-2) Shear angles depicted to the plane  

for n = 4 

(nodes along the center grainline 

directions) 

Shear angle ranges

0º-1º 1º-2º 2º-3º 3º-4º 4º-5º 5º-6º 6º-7º 7º-8º 8º-9º >9º

Warp grainline Weft grainline Disk
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(c-1) Shear angles in drape for n = 4 

(nodes in the bias directions) 
 

(c-2) Shear angles depicted to the plane  

for n = 4 

(nodes in the bias directions) 

 

 

 

(d-1) Shear angles in drape for n = 5  
(d-2) Shear angles depicted to the plane  

for n = 5 
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(e-1) Shear angles in drape for n = 6  
(e-2) Shear angles depicted to the plane  

for n = 6 

Figure 4.10 Calculated shear angles for draped denim and those depicted on the 

initial flattened patterns for various node numbers (n) 
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(a) Broadcloth 

 
(b) Taffeta 

 
(c) Satin 
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(d) Denim 

Figure 4.11 Shear distributions for different samples 

 

  

Figure 4.12 Areas for bending and shear deformation in drape 
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4.5.2 Effects of mechanical properties on local shear 

deformation 

To clarify the relationship between shear deformation and mechanical properties, the 

relationships between the obtained shear angles, and bending rigidity and shear stiffness 

of fabrics were investigated. Yang et al. 34 and many researchers have shown that the 

mechanical parameter (B/w)1/3 is a fundamental parameter related to the drape test. Niwa 

and Seto5 added the mechanical parameter (G/w)1/3 to investigate the relationship between 

the drape test and mechanical properties from the analogy of (B/w)1/3. Thus, the 

relationships between the shear angle ratio for shear angle >3 º to (G/w)1/3 in Figure 4.13, 

and to (B/w)1/3 in Figure 4.14, respectively, were investigated. For G and B, the mean 

values of the shear stiffness and bending rigidity of the sample fabrics shown in Table 4.1 

were used. The regression equations and corresponding coefficients of determination of 

the shear angle ratio for shear angle >3 º to (G/w)1/3 and (B/w)1/3 are shown in Table 4.2. 

Figure 4.13, for n = 3, 5, and 6, shows that the higher the shear stiffness, the lower the 

shear angle ratio for shear angle >3 º. This means that fabrics with high shear stiffness 

were less deformed by large shear angles. However, for n = 4, irrespective of the node 

positions and the center grainline direction, no apparent relationship between the shear 

angle ratio for shear angle >3 º and shear rigidity was observed. This is because drape 

shapes can be formed without large shear deformation and are less related to the shear 

stiffness. It could be more related to the bending rigidity. As shown in Figure 4.14, 

irrespective of n, the higher the bending rigidity, the lower the shear angle ratio for shear 

angle >3º. Therefore, it is clarified that local shear deformation in drape is affected by not 

only the shear stiffness, but also the bending rigidity. 
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Figure 4.13 Relationships between the shear angle ratio for shear angle >3 º and 

(G/w)1/3 

 

 

Figure 4.14 Relationships between the shear angle ratio for shear angle >3 º and 

(B/w)1/3  
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Table 4.2 Regression equations and coefficients of determination for Shear angle 

ratio for shear angle >3 ºand mechanical parameters 

Relationships 

 

Number of  

nodes 

Shear angle ratio for 

shear angle >3 º (y) and (G/w)1/3 (x) 

Shear angle ratio for 

shear angle >3 º (y) and (B/w)1/3 (x) 

Regression 

equation 

Coefficient 

of 

determination 

Regression 

equation 

Coefficient 

of 

determination 

n = 3 y = -4.26x + 20.10 0.60 y ＝-5.96x + 27.0 0.43 

n = 4  

(Node in the center 

grainline direction) 

y = -0.334x + 3.90 0.027 y = -3.02x + 9.47 0.80 

n = 4 

(Node in the bias 

direction) 

y = 1.05x + 8.00 0.16 y = -3.00x + 15.1 0.32 

n = 5 y = -6.70x + 22.5 0.45 y = -13.8x + 42.0 0.75 

n = 6 y = -3.43x + 14.0 0.60 y = -6.06x + 21.9 0.68 
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4.6 Conclusion 

I investigated the relationship between the local shear angles in drapes, the node 

numbers, and mechanical properties of fabric by measuring the local shear angles in FRL 

drape tests for four different fabrics with three to six nodes using the proposed method. 

The findings are summarized below: 

• Place and type of deformation in drape 

FRL drape can be characterized by three areas, except for the flat areas of the support 

disks:  

1) Areas along the center grainlines with zero or small shear angles within 3º, which 

could result from single curvature bending. 

2) Areas along the bias directions with relatively large shear angles over 3º, which 

could result from double curvature bending. 

3) Polygon edges connected with tangents of the support disk in the FRL drape test 

with a relatively larger shear angle than the surroundings, which could result from both 

bending and shear deformations, such as folding and wrinkles. 

• Relationship between the shear angle and the node position relative to the center 
grainlines 

Node areas along the center grainline had smaller shear angles than the nodes in the 

bias direction. Therefore, I found that local shear deformation in drape is affected by the 

relative position of the node to the center grainline of fabric, regardless of the node 

numbers.  

• Relationship between shear deformation and mechanical properties 

When n was 3, 5, and 6, the shear angles were related to both the shear stiffness and 

bending rigidity. Fabric with high shear stiffness and high bending rigidity form drape 

without large shear angles. However, when n was 4, the large shear angles occurred with 

small bending rigidity, regardless of the shear stiffness. Thus, the bending rigidity 

indirectly affects shear deformation in drape.  
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Consequently, using the proposed method, I successfully measured local shear 

deformation in FRL drape of woven fabrics, which has not been measured yet. I also 

clarified the effects of the node positions relative to the center grainlines, and the 

mechanical properties of fabric on local shear deformation. The advantage of the 

proposed method is that by tracing the loci of the two center grainlines, the shear 

deformation of the entire surface can be measured. The method provides a new means for 

analyzing the complicated deformation of woven fabrics. However, because the method 

is based on the assumption that fabric does not stretch along the yarn direction, for fabric 

that can stretch regardless of shear deformation, such as knitted fabric, the method cannot 

be applied. 

The results of the present study deepen the understanding of the shear deformation of 

woven fabric in drape, by clarifying the relationship among local shear deformation, the 

node position relative to the center grainlines, and the mechanical properties of fabric in 

drape. These results will help to verify the simulation of woven fabric behavior 

considering shear deformation.  
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Chapter 5 Conclusion 

Geometrical effects caused by fabric dimension and mechanical issues of bending and 

shear deformation on drape have been discussed in the presented study. 

To clarify the geometrical effects, fabric drapes under various conditions of fabric and 

support disk radii were numerically analyzed considering the bending rigidity for infinite 

and zero shear stiffness. In the theoretical upper-limit calculation of infinite shear stiffness, 

unlike traditional method using a strip cantilever, a segment cantilever was used in this 

study. In the theoretical lower-limit calculation of zero shear stiffness, strip cantilevers of 

equal length in all radial directions were used. The two theoretical limits were verified 

with eight kinds of woven fabrics and one sheet, with different combination of fabric radii 

and disk radii. It is found that the DCs of samples are between the two theoretical limits 

although there are variations for even the same K or K′. The variations might be due to 

depressions between adjacent nodes or the presence of double-curvature deformation due 

to lower shear stiffness. The effects of dimensions in the drape test considering bending 

rigidity for infinite and zero shear stiffness are thus clarified theoretically and 

experimentally. 

To investigate the local shear deformation in drape, by measuring the local shear angles, 

the relationship between the local shear angles and the node numbers and the mechanical 

was clarified. It is found that the FRL drape can be characterized by three areas, except 

for the flat areas of the support disks: 1) areas along the center grainlines with zero or 

small shear angles within 3º, which could result from single curvature bending, 2) areas 

in the bias directions with relatively large shear angles over 3º, which could result from 

double curvature bending, and 3) polygon edges connected by tangents of the support 

disk with relatively larger shear angles than their surroundings, which could result from 

both bending and shear deformation, such as folding and wrinkles.  

By investigating the relationships between areas with large shear angles and the 

bending rigidity/shear stiffness, it is also clarified that the bending rigidity indirectly 

affects the local shear deformation of drape has been clarified. 
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This study demonstrated the geometrical and mechanical effects on drape, which had 

not been clarified until now. The results could be helpful for drape simulation in both 

views of the drape shape and deformation of fabrics. 

In future studies, it could be interesting to develop a numerical model for drape 

prediction with parameters not only the bending rigidity but also the shear stiffness under 

the conditions of various fabric lengths. This study also shows a research interest to 

compare the deformation between simulation and actual fabric or garment, which could 

lead to the improvement for a more accurate apparel simulation system. 
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