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Abstract

Evolutionary algorithms can solve complex optimization problems in science and engineering.
However, increasing problem size and complexity demand constant improvement. On
the other hand, their automatic configuration and selection given a problem instance is
also a pending task. Both tasks require a deeper understanding and way to characterize
their behavior and performance on a problem instance. This work proposes Dynamic
Compartmental Models as a step forward in both tasks. The model allows analyzing,
comparing, and configuring evolutionary algorithms. Inspired by epidemiological models,
they track population changes modeling them as exchanges between compartments. Each
compartment contains part of the population, and the rules to assign them are based on Pareto
dominance, recentness, and membership to the Pareto Optimal Set or the Non-dominated
solution set. Given the size for each compartment, the model can estimate their change
over time. The behavior of an algorithm with its configuration on a problem instance is
represented by one set of parameters. Small and large instances of the MNK-landscape
problem solved by representative multi- and many-objective algorithms generate the data
to train and test the models. In small instances, the trained models’ estimations follow the
trend of the data. Using the models’ parameters and equations to explain how algorithms
can keep discovering good solutions when the population is full, gave an example for
algorithm analysis. Finding a correlation between one of the compartments’ change and
the hypervolume, a performance metric, created a way to use them for comparison between
algorithms. For algorithm configuration, an instance was created and solved with one
algorithm but several configurations. However, only some sample configurations were used
to create models. The remaining configurations’ models were obtained through interpolating
the parameter of the sampled configurations’ models. The results showed that both trained
and interpolated models obtain estimations that can help decide a user which configuration
to choose. In larger instances, a different compartment definition around only the non-
dominated set was used. This also demanded the creation of an auxiliary model that links
these compartments to the growth of the hypervolume to be able to compare and select
between algorithms and configurations. The results indicate that these new features are also
able to capture the changes in the population, even on unseen problem instances.
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Chapter 1

Introduction

1.1 Background

In engineering, science, and industry there are times where finding a solution is not enough.
For example, in product design, machine scheduling, or in determining the route to make
deliveries, it is also desired that costs and time be minimized while quality, output, cargo
is maximized. These types of situations fall under optimization problems, and when more
than one objective needs to be fulfilled simultaneously then they become multi-objective
optimization problems. While the consideration of multiple objectives seems trivial on paper,
it has some important effects on the search space. The relationship between objectives can
make the search harder, for example, a good solution for one objective can evaluate poorly in
another. Several objectives naturally demand the existence of more than one good solution,
and they will variate in the degree they fulfill each objective.

To cope with these and other difficulties, multi-objective evolutionary algorithms (MOEAs)
have been created and successfully applied to a variety of domains [1, 2], with most of them
focusing on 2 and 3 objectives ones [3]. However, industry needs and the interest of the
research community to push boundaries have motivated the exploration of problems with a
larger number of objectives [4–8]. Although it may seem that any multi-objective algorithm
will keep is efficiency and effectiveness regardless of the number of objectives involved,
dimensionality of the objective space has shown important effects on both qualities. It is
well known in the literature that the performance of several classes of MOEAs reduces
in problems with 4 or more objectives [9–13], which made the community make a clear
distinction between these two cases, Multi-Objecive up to 3 objectives and Many-Objective
optimization [14] for 4 or more.

Recent years had brought new algorithms, design components and tuning procedures
with the aim to improve performance on many-objective problems [15, 16], increasing the
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options available for users. To decide which algorithm to apply for a particular problem,
quality indicators [17] are used to measure their success on a problem as their ability to reach
a good approximation set on different criteria.

While this may be enough for some users, these indicators alone do not provide much
insight into how and why a particular algorithm is working or failing in a given problem,
which is valuable information to researchers making these algorithms, and users that wish to
fine-tune them for their application. Getting the required insight demands looking beyond
final results and shift the focus to the dynamics of the search process. An analysis of how
different classes of algorithms behave on a problem or even a class of problems could lead to
a better understanding of their inner workings, the discovery of strengths and weaknesses,
determining the impact of design choices, and improve current algorithm or learn what needs
to be done to create better ones. All of these are subjects of high relevance as the number of
algorithms keeps increasing and real world problems scale in the number of variables and
objectives.

Moreover, more knowledge on the algorithm themselves can be consolidated into frame-
works that could, in an automated fashion, properly select and configure them for a particular
task; that is, finding the algorithm that best solves a given problem instance. The road to
this particular application can be broken into two complementary tasks. The first one is to
characterize problems and classify them into different categories using features. This may
help to extend matches of a given algorithm and a problem to the sub-class it belongs to or
determine the specific features that make the algorithm perform well on it. The second one is
to characterize the performance of algorithms in classes of problems, which in recent years
has gained traction [18–21].

1.2 Proposal

This work focuses on the task of characterizing the performance of algorithms in instances
and classes of problems. It does so by first considering the algorithm’s behavior and trying to
capture it into models, to later use this information to infer or directly estimate performance.
Models are key since they allow to do analysis and can provide estimations to guide selection
or configuration of algorithms, in some cases before having to run the algorithm itself.

Dynamic Compartmental Models (DCMs) track population dynamics in Multi- and
Many-Objective Evolutionary Algorithm (MOEAs). DCMs are based on the epidemiology
SIR model [22, 23]. The SIR model computes an estimate of the spread of an infectious
disease in a closed population, by dividing the population in compartments depending on
the health status of the individuals, i.e. Susceptible (can contract the disease), Infected (has
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the decease) and Recovered (has been cured and cannot be infected again), which gives
the model its name. The changes in the sizes of the compartments as time progresses is
captured by the model equations and parameters. Similarly, to analyze and understand the
dynamics of multi- and many-objective algorithms during the evolutionary process, a more
general compartmental model is used, combined with features that divide the population into
compartments. Multi-objective algorithms, independently of their inner workings, aim to
find a good approximation of the Pareto Optimal Set (POS), which is a set of non dominated
solutions, by operating on their population. Thus, measuring these changes through features
and using a model to estimate them is a valid approach to this task. Features, at their most
basic form, are defined around the dominance or non dominance status of solutions in the
current population only. Adding granularity to them, by comparing the non dominated set in
the current population with the ones in previous generations, or keep track of when solutions
appear during the process, allows exploring the same algorithm with its configuration on a
problem from other perspectives. Some particular sets of features can be correlated and used
as performance estimators, while others in combination with an auxiliary model provide a
direct estimation of a more common performance indicator value such as the hypervolume.

The models and their parameters form a compact representation of the dynamics of an
algorithm with its configuration in a problem instance. This can be used to analyze them
and explain their behavior in a quantitative fashion, as well as to explore variations in their
configuration and the impact on their performance. Estimations on how the composition of
the population will change are also possible without having to run the algorithm when the
models are available for a given problem instance. In some cases, depending on the features
used, ranking and selection between algorithms and their configurations can be made. In
this work, it will be explored how these models can be used to characterize the algorithms,
perform analysis and configuration in small and large problem instances and motivate their
use as part of tools and frameworks that can deliver automatic algorithm configuration and
selection and knowledge to improve evolutionary algorithms.

1.3 Contribution

The contributions of this work are:

• Use generational search assessment indices as features capable of capturing algorithms’
population dynamics.

• Introduce compartmental models with two and three compartments to track MOEAs
population changes.
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• Show how to use features and model’s parameters for analysis on small instances.

• Relate features indirectly to performance using an example with the accumulated
number of Pareto optimal solutions and the Hypervolume.

• Compare representative MOEAs through features and models of population dynamics.

• Introduce interpolation as methodology to extract new models from existing data.

• Use models as a tool to select between configurations for an algorithm.

• Propose a feature set to be used on large instances where the Pareto Optimal Set is not
known.

• Create a model to directly estimate performance based on the features changes.

1.4 Related Works

Complementing this introduction, a brief summary on algorithm configuration and selection
methods applied in evolutionary computation is presented, followed by some remarks on
where the proposal would fall with respect to previous works, as well as some distinctions
that can be made with respect to them.

Algorithm Configuration
Evolutionary algorithms require a set of parameters to be tuned by the user depending

on the problem to be solved, such as the population size, operator type (selection, mutation,
crossover), and the associated probabilities. Although success in a problem instance or class
depends on finding a good setting [24], the default settings of some algorithms may provide
sufficiently good performance on certain classes of problems [25]. When this is not the
case, or resources and time allow for a more precise tuning, the community has developed
methods that fall try to solve the per-set algorithm configuration problem which can be stated
formally as, given an algorithm A with parameters p = (p1, . . . , pk), a set C of possible values
or configurations for p, a set of problem instances I and a performance metric m, find a
configuration c∗ ∈ C of A that achieves optimal performance on I according to m.

This problem is also referred in literature as parameter control. Depending on how the
parameters are determined [26] the method can be classified as deterministic or uninformed
if the parameters are set without information from the algorithm, based solely on time,
similar to the idea behind simulated annealing [27]. Some examples are the work of Eiben
et.al [28] where the population size changes during execution in response to the overall
improvement in the individuals. Bäck et.al [29] use a time-dependent mutation rate schedule
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on genetic algorithms with better results than setting a fixed value. Mezura-Montes et.al [30]
changed differential evolution [31] and constraint handling parameters to solve constrained
optimization problems using a mix of scheduling and self-adaptation.

If during the search for the optimal solutions, the algorithm also tries to find its optimal
parameter values, the scheme is called self-adaptive. Some algorithms include the parameters
as part of the solution, taking advantage of the evolutionary operators, good solutions may
be the product of a good parameter setting. Evolutionary strategies are good examples of
parameter self-adaptation [32, 33]. Bäck et.al [34] built a parameterless genetic algorithm
where crossover and mutation rates are self-adapted during the search. Farmani et.al [35]
use a self-adaptive fitness formulation to handle constrained problems. Hansen et.al [36]
proposed the CMA-ES that uses as the name indicates adapts the covariance matrix of the
distribution used to sample new candidate solutions.

Finally, if the method to find the optimal parameters is decoupled from the search,
the scheme is called adaptive or dynamic. Here the method looks at some property of
each algorithm run and decides how the parameters should change to obtain improvements.
Thierens [37] proposed an adaptive pursuit strategy to change the probability values of a set
of evolutionary operators. The algorithm tries to distribute the probabilities of the operators
to match the reward from the environment, the quality of generated solutions. Schlierkamp-
Voosen et.al [38] modifies the Breeder Genetic Algorithm to change its parameters using
competing sub-populations. Each population implements a different strategy (parameters)
and the best performing ones are rewarded (can increase their size). The best individuals can
migrate from time to time from bad sub-populations to better ones. Igel et.al [39] used online
adaptation to change the evolutionary strategy (choice of variation operators, its parameters,
population size) to search for neural networks topologies.

Algorithm Selection

While algorithm configuration deals with finding the parameters for a particular algorithm
and searches its configuration space, algorithm selection on the other hand chooses only in
algorithm space without worrying about their configurations. In fact, algorithm configuration
can be seen as a generalization if each possible configuration is taken as a different algorithm.

More formally, given a set I of instances from a problem P, a set A = {A1, . . . ,An} of
algorithms that can solve P and a metric m : A× I→ R that gives the performance of Ai ∈ A
on the set I, build a selector S that for any problem instance i∈ I selects an algorithm S(i)∈A
so the overall performance of S on I according to the metric m is optimal [40].

One key aspect of algorithm selection is obtaining information on the problem computing
features to determine its characteristics, usually termed as exploratory landscape analysis [41]
to feed the selection framework.
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Some successful approaches for combinatorial problems are SATzilla by Xu et.al [42] that
is used to solve portfolios of SAT (satisfiability) problem using empirical hardness models
to decide which solver assign to each instance. AutoFolio by Lindauer et.al [43] where
an algorithm configuration scheme SMAC [44] is applied to decide the parameters of the
algorithm selection framework CLASPFOLIO2 [45] to solve ASP (answer set programming)
problems. On continuous problems, Bischl et.al [46] extracts low-level features by sampling
the problem and treats the selection of an algorithm from the portfolio as cost-sensitive
learning, using to solve this one-sided support vector regression [47]. Kerschke et.al [20]
use exploratory landscape analysis and combine it with machine learning approaches (classi-
fication, regression, and pair-wise regression) to select the best solver for instances in the
Black-Box Optimization Benchmark(BBOB) [48].

Proposal in context of Algorithm Configuration and Selection
Using the algorithm configuration classification the proposed models in this work can be

put under adaptive methods, since a property on the algorithm run, the composition of the
population, is used to feed the model and create predictions that can lead to choosing one
parameter set over another.

However, the proposed models here differ from previous methods and schemes in the
sense that the dynamics of the algorithms is introduced as part of the process. Instead of
predicting the performance of the algorithm or a configuration directly, the model predicts
the changes in the composition of the population, which is later connected to performance.
In terms of algorithm configuration, this opens the proposal of this work to not only focus on
the performance but analyze the behavior of the algorithm in the problems (Section 5.3.2).
It also allows it to include information on the initial population to make decisions (Section
6.5). The models can also be extended for new configurations (Section 5.4.3) or predict the
behavior and performance on larger budgets (Section 5.4.4). In terms of algorithm selection,
similar to previous approaches, information about the problem instance needs to be collected
first to choose which trained models to use, the ones for the problem sub-class (Section 6.4)
or a close enough (Section 6.5) one, to select which algorithm is the best choice.

1.5 Outline

• Chapter 2 introduces the necessary concepts on multi-objective evolutionary opti-
mization as well as the present challenges in the area.

• Chapter 3 describes the proposed features and models in this work to capture and
analyze MOEA behavior and performance.



1.5 Outline 7

• Chapter 4 covers the algorithms, their experimental settings, as well as the test
problem generator and the datasets created to show how the features and models work.

• Chapter 5 concentrates on the use of the model with features based on the Pareto
Optimal Set, exploring how analysis, comparison and configuration algorithms is done.

• Chapter 6 showcases the model with features based on the Non Dominated Set and
its ability to be applied in small and large problems. It also presents the use of the
performance estimation model that gives results in a commonly used metric, the
hypervolume. A new fitting process is introduced, as well as testing the quality of the
estimations on unseen data. How configuration and comparison tasks can be performed
is also discussed.

• Chapter 7 summarizes the obtained results with the models, the different types of
features sets and proposes directions on how to expand them.





Chapter 2

Multi- and Many-Objective Evolutionary
Optimization

This chapter introduces the basic concepts in many- and multi-objective optimization and
evolutionary computation.

2.1 Multi-Objective Optimization

Let x be a decision variables vector and f a collection of functions, where each element
represents an objective function fi that takes x and gives an evaluation in terms of performance
criteria described by the function. A Multi-Objective Optimization Problem (MOP) can be
defined as finding an x that fulfills any problem restriction while optimizing (maximizes or
minimizes) f . In most cases some of fi in f are in conflict, i.e small improvements in one
fi represents a degradation for the other objectives in f [49, 50]. More formally it can be
defined as follows.

Definition 2.1 (Multi-Objective Optimization Problem). Given a vector x = [x1, . . . ,xn]
T , of

n decision variables xi, that fulfills the following r = a+b restrictions:

g(x) = [g1(x), ...,ga]≥ 0 (2.1)

h(x) = [h1(x), ...,hb] = 0 (2.2)

and optimizes the vector of functions:

f (x) = [ f1(x), ..., fm]
T (2.3)
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The word optimize could indicate minimizing or maximizing the value of each objective
function, which will depend on the problem at hand.

A Multi-Objective Optimization Problem becomes Many-Objective when, using the
above definition, m ≥ 4. Due to the challenges these problems present to multi-objective
solvers, they have been assigned this separate class [14, 51].

Definition 2.2 (Feasible decision space). Is composed by all the vectors x that fulfill restric-
tions g(x) and h(x). This means that they are contained in the decision variables space.

Ω = {x ∈ Rn | g(x)≥ 0∧h(x) = 0}

Definition 2.3 (Feasible solution space). Is composed by the image of the Ω set and is
contained inside the objective function space:

Ω0 = { f (x) ∈ Rm | x ∈Ω}

2.2 Pareto Optimality

The origin of Multi-Objective Optimization research begins with the concepts around the
Pareto optimum, formulated by Vilfrido Pareto in the XIX century [52, 53]. This section
will give the concepts of Pareto dominance, Pareto optimality, Pareto set, and Pareto front as
defined in [54, 55].

Definition 2.4 (Pareto dominance). Given two decision vectors u=(u1, . . . ,un), v=(v1, . . . ,vn):

u⪯ v

u dominates v

u∼ v

u and v are non dominated

if and only if fi(u)≤ fi(v) ∀i ∈ (1, . . . ,m)

and f j(u)< f j(v) ∃ j ∈ (1, . . . ,m)

if and only if fi(u)≰ fi(v)∧ fi(u)≰ fi(v)

∀i ∈ (1, . . . ,m)

Although these definitions are expressed in terms of minimization for all objectives, is
easy to redefine the operators for maximization problems (⪰,∼).

Definition 2.5 (Pareto optimum). Given a decision vector u, it can be said that it is Pareto
optimal if and only if: u ∈Ω | ¬∃ v ∈Ω | f (v)⪯ f (u)

A decision vector that is Pareto optimal cannot be improved in any objective without
inflicting a degradation in at least one other objective.
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Definition 2.6 (Pareto optimal set). Is defined as P∗ = {u ∈Ω | ¬∃ v ∈Ω | f (v)⪯ f (u)}.
The Pareto optimal set is part of the decision variable space.

Definition 2.7 (Pareto front). Given a Multi-Objective Optimization problem y = f (x) and a
Pareto optimal set P∗, the Pareto front (PF) is defined as:

PF = {y = f = ( f 1(x), ..., f m(x)) | x ∈ P∗}
The Pareto front is part of the solution space.

2.3 Multi-Objective Evolutionary Algorithms (MOEAs)

Simultaneously optimizing for several objectives is not an easy task, and while some tra-
ditional techniques can still be applied by transforming the multi-objective problem into a
mono-objective version, this not always will yield good results. On the other hand, Evolu-
tionary Algorithms (EAs) had continuously shown their capacity to handle them by solving
this type of problems in different areas [1, 2].

Evolutionary algorithms are based on the concepts of Neo-Darwinism, which explains
life on the planet by a combination of the following mechanisms [55].

Reproduction The mechanism that allows genetic material to be passed down from one
generation to the next one.

Mutation An arbitrary error that can happen when genetic material is copied to the next
generation during reproduction, which could be beneficial by introducing a change
that improves adaptability.

Selection The survival of the fittest. Individuals that are able to adapt to their environment
survive and have a chance to reproduce.

They take these mechanisms and pose the problem of finding an optimal solution or a set
of them as, the evolution of a population of solutions over the course of several iterations,
referred to as generations. A solution is an individual that with the help of the aforementioned
mechanisms evolves toward becoming an optimal solution to the problem. The algorithm
goal is to bring the population closer to the Pareto front or a good approximation of it.

Adaptation to the environment or fitness is how the algorithm measures the performance
of a solution. Note that in some cases this function and the objective functions are one and the
same. More specifically, an objective function defines the optimality of a solution according
to the problem, so it belongs to the problem domain, while the fitness function measures how
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1 t← 0
2 Initialize population P0 of size n randomly
3 Evaluate(P0)
4 while ¬ StoppingCondition() do
5 Qt ← Crossover(Pt)
6 Mutation(Qt)
7 Evaluate(Qt)
8 Pt+1← Selection(Pt ∪Qt)
9 t← t +1

10 end
11 return Best individual in Pt

Figure 2.1: Pseudo code of a generic evolutionary algorithm.

well that solution satisfies that and belongs to the algorithm domain. Their basic structure
can be seen in Figure 2.1 as pseudo-code.

Compared to traditional methods, there are some significant advantages to evolutionary
algorithms [55, 54].

• Search of compromise solutions in partially sorted spaces. Solutions that may neglect
one objective to be better at another one.

• Produce a set of optimized solutions (population) simultaneously, versus one optimal
solution per run in traditional methods.

• Specific knowledge about the problem is not necessary, just a way to validate solutions
and evaluated them according to the problem.

• Simple in concept and offer large applicability.

• Due to their nature they are ideal to exploit parallel architectures.

• By searching using a set of solutions instead of a single one they are less susceptible to
be trapped in local optima.

• They offer more robustness to dynamic changes, and in some cases the adaptation of
their own parameters its part of the evolutionary process.
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2.4 Many-Objective Evolutionary Optimization and its chal-
lenges

While some algorithms will present no issues on multi-objective problems with up to three
objectives, studies have shown that for many-objective problems, i.e. four or more objectives,
commonly used EAs that rely on Pareto dominance will present the following issues [51, 56,
57]:

Search ability deterioration: In standard Pareto dominance algorithms such as SPEA [58,
59] or NSGAII [60], when the number of objectives rises, almost all solutions inside
the population become non dominated. This reduces the selection pressure towards the
Pareto Front, which in turn deteriorates the algorithm’s convergence.

Exponential increment of non dominated solutions: Since EA’s objective is to find an
approximation of the Pareto front, if the hypersurface in the objective space grows
in dimensionality, the number of solutions required to approximate it also will. This
could mean that thousands of solutions, maybe more than the size of commonly set
population sizes, may be required.

Difficulty in the visualization of the solution set: Since usually the final selection of solu-
tion relies on the decision maker1 preference, the increment in number of objectives
obfuscates the visualization of the non dominated set of solutions found, which in turn
could difficult the selection of a solution.

The previously described issues have been termed as the curse of dimensionality [56, 61],
in the context of many-objective problems. Nevertheless, new and improved strategies have
been developed to try to avoid or counter these difficulties. Here we list some of the most
relevant of them:

Pareto Dominance Relaxation: The goal here is to modify the dominance relation to be
able to make decisions around solutions previously seen as incomparable. Some
algorithms rely on a mapping function to expand the dominance area of some non
dominated solutions. These kinds of methods also induce a spacing between solutions
that benefits diversity [62–65].

Decomposition: These algorithms decompose the problem in various single-objective ones
using scalarization functions, assuming a priori the distribution of the Pareto front,
which are solved simultaneously [66].

1The one that takes the final decision, in other words, which solution will be implemented.
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Performance Indicators: Relying on the properties of performance indicators and their
capacity to include preference information, these algorithms transform the many-
objective problem into a single-objective one where the goal is to optimize the indica-
tor [67].



Chapter 3

Models and Features for studying
MOEA Behavior

This chapter introduces the concept behind the dynamic compartmental models used in this
work to study MOEA’s behavior and estimate performance. Here are also presented the
features that allow the models to work, and how their combination defines what it is capable
of capturing about the algorithms.

3.1 Dynamic Compartmental Models (DCMs)

Dynamic Comparmental Models (DCM) track the changes in the composition of the pop-
ulation of a multi- or many-objective evolutionary algorithm throughout the generations,
aim to characterize its behavior, and have a better understanding of their working principles.
They achieve this by breaking down the population in two or more types of individuals
that belong each to a different compartment, and through simulation using mathematical
equations, the change in composition of the population is described as the interaction between
the compartments.

DCMs where inspired by and based on epidemiological compartmental models [22, 23],
in particular the SIR model. Their goal is to track an infectious decease spread in a population
through time. As per the model name, each compartment is defined using the health status
of the individuals (Susceptible, Infectious, Recovered) to stratify the population without
overlapping. Learning through data the parameters of these models, allows to understand
how the decease behaves and make estimations to help in its control.

In order to obtain a similar tool for MOEAs, here compartments are defined in terms of
the Pareto dominance status of individuals and its changes throughout several generations,
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capturing the evolution of the population and therefore the dynamics of the algorithm. The
model is based on the following assumptions:

(i) The population can be split into two or more groups that do not share elements using
an appropriate set of rules.

(ii) The size of groups is considered to vary linearly while the total sum (population size)
always remains constant.

(iii) The model gives the proportion of individuals from the population that belongs to each
group at a given time t.

(iv) The model tracks how many individuals are part of each group, it does not track
individuals by themselves.

With them, the parameters of the model offer a compact representation of the interactions
between compartments, which can serve as means for algorithm comparison or employed to
complement explanations about their behavior. Another useful result of having the parameters
is being able to estimate how the compartments sizes and the composition of the population
will look in future generations from a given initial state, which could aid in making decisions
about the algorithm configuration or its use in a particular problem.

These parameters must be learned by fitting them to the changes observed in the popula-
tion during the run of a MOEA, with a particular configuration, in a given problem. They
are linked to algorithm, configuration and problem instance or if trained on several ones, the
problem subclass. Thus, at what point in the algorithm process the data is taken plays an
important role of what can be captured.

In this work, were elitist MOEA are studied, the composition of the population is
measured on the truncated population obtained after joining the current population and
the offspring population. This should make the DCMs capture the collective effects of
evolutionary operators, including variation, parent selection and truncation selection.

While Pareto dominance is mentioned as the main rule to create the compartments, other
properties of the individuals can be added to study the population from different aspects.
However, it must be noted that using dominance as the base does not exclude any of the
different classes of MOEA. When the composition of the population is measured for the
models, this does not affect the contents, can be performed either online or offline, provided
that it has been stored at each generation, and is completely independent of the selection and
variation operators used to evolve it. It can be said that DCMs are similar to performance
metrics commonly used in the field.
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equations that describe the three compartment model in a time-discrete form are as follows:
xt+1 = (1− (α +β ))xt + ᾱyt + β̄ zt

yt+1 = αxt +(1− (ᾱ + γ))yt + γ̄zt

zt+1 = βxt + γyt +(1− (β̄ + γ̄))zt

xt + yt + zt ,= 1

(3.2)

where α and β are coefficients that describe the loss in xt that becomes a gain for yt and zt ,
respectively. Likewise, ᾱ and γ are coefficients that describe the loss in yt that becomes a
gain for xt and zt , respectively. Similarly, β̄ and γ̄ are coefficients that describe the loss in zt

that becomes a gain for xt and yt , respectively.

3.2 Population Features

Defined as generational search-assessment indices in Aguirre et al. [68], they combine Pareto
dominance status and recentness of a solution in the population to create features that can be
used to track the search progress in an MOEA. Table 3.1 contains a subset of them that can
be paired with DCMs. All features or indices range in the interval [0,|P|], where |P| denotes
the population size.

Pareto dominance was introduced in a previous chapter, while the concept of recentness
used in this work can be defined as follows:

{x : x ∈R(t)∧ x ̸∈ ∪t−1
i=s R(i)} is new to the population

{x : x ∈R(t)∧ x ∈ ∪t−1
i=s R(i)} has been present before in the population

(3.3)

where ∪t−1
k=sR(k)} is the union of all previous sets of R found by the algorithm from

a generation s to the previous one t − 1, where the presence of a solution x is checked.
Recentness is used to create features that can determine how much of the population is
composed of newly discovered solutions, while also looking at the ability of the algorithm to
retain previously found solutions or rediscover them during the search.

Before describing what DCMs can be obtained with the above features, for a better
organization they are divided into POS or NDS based ones depending if the set of Pareto
Optimal or the set of Non Dominated solutions is used to define the feature.
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Table 3.1: Generational search-assessment indices. Measures are taken on non dominated
population F1(t) with respect to F1(t−1) and/or the POS.

Name Abbreviation Formula
Non Dominated ND {x : x ∈F1(t)}
Dominated DOM {x : x ∈ P∧ x /∈F1(t)}
Pareto Optimal PO {x : x ∈F1(t)∧ x ∈ POS}
Pareto Optimal Old POold {x : x ∈F1(t)∧ x ∈F1(t−1)∧ x ∈ POS}
PO Possibly New POpnew {x : x ∈F1(t)∧ x ̸∈F1(t−1)∧ x ∈ POS}
PO Absolutely New POA {x : x ∈F1(t)∧ x ̸∈ ∪t−1

k=1F1(k)∧ x ∈ POS}
PO Not Absolutely New PON {x : x ∈F1(t)∧ x ∈ ∪t−1

k=1F1(k)∧ x ∈ POS}
Non Dominated Non PO NDNP {x : x ∈F1(t)∧ x /∈ POS}
Non Pareto Optimal NPO {x : x ∈ P∧ x /∈ POS}
Non Dominated New NDNew {x : x ∈F1(t)∧ x ̸∈ ∪t−1

k=1F1(k)}
Non Dominated Old NDOld {x : x ∈F1(t)∧ x ∈ ∪t−1

k=1F1(k)}

3.2.1 POS based features

As the name implies, if the Pareto Optimal Set for the problem to be solved is available or
can be found by enumeration or other method, the features PO, POpnew, POold, POA, PON,
NDNP and NPO can be computed.

Pareto Optimal (PO) solutions, count all the solutions in the current generation that
are part of the POS. Pareto Optimal Probably New (POpnew), checks for recentness and
considers solutions that while part of the POS, also appeared in generation t but not in t−1.
On the other hand, Pareto Optimal Old (POold) counts a solution if it appeared in generation
t and also t−1. Similarly, Pareto Optimal Absolutely New (POA) considers solutions that
are part of the POS and only appeared in the current generation t, while Pareto Optimal
Not Absolutely New (PON) counts a solution if it appeared in t and also in any previous
generations from 0 to t−1, being a more restrictive version of the previous feature.

Non Dominated Non Pareto Optimal (NDNP) counts the solutions that are non domi-
nated but also not part of the POS in the current generation. Finally, Non Pareto Optimal
(NPO) includes all solutions that are not Pareto optimal, whether they are dominated or non
dominated.

With the previous features a two compartment model PO-NPO that can track the presence
of PO solutions the population can be created. Other possible and more interesting models are
availble in a three compartment configuration such as PO-NDNP-DOM that tracks both the
number of Pareto Optimal and regular Non Dominated solutions. The POpnew-POold-NPO
can track the ability of the algorithm to retain PO solutions found just one generation before
with the POold feature, while the POA-PON-NPO with is more restrictive application of
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the recentness of solutions can give a more detailed tracking. PON conveys the ability of
the algorithm of keeping Pareto Optimal solutions in its population and POA its ability to
discover never previously seen solutions.

One interesting note on POA is that the feature can be used to obtain the total number
of found PO solutions of the algorithm, which can later be employed to rank the algorithm
against others on the same problem.

3.2.2 NDS based features

For problems where the POS is not available, DCMs can still be employed with features
defined around a more general set as one formed by only Non Dominated solutions in the
population. Those features are, ND, NDNew, NDOld and DOM.

Non Dominated (ND) solutions, which are simply the solutions that are according to
Pareto dominance, not dominated by any other solution in the population. If recentness is
introduced, then Non Dominated New (NDNew) can be defined as a solution that is non
dominated in generation t and is not present in previous generations populations from 0
to t− 1. Otherwise, the solution is considered Non Dominated Old (NDOld). Finally, if
the solution is dominated by any other in the population, it will be counted as Dominated
(DOM).

Using these features one possible two compartmental model is a simple ND-DOM that
only tracks the change in non dominated solutions in the population. Going to three compart-
mental configuration the distinction between when a non dominated solution appeared can
be properly track with an NDNew-NDOld-DOM model.

One important note about this last model is what NDNew measures each time. While
with POS based features the reference set is unique for the problem, for NDS features the
considered set is the most recent set of non dominated solutions in the population. Thus,
NDNew will count as new solutions some that eventually will be part of the approximation
set found by the algorithm, as well as some solutions that initially appeared as non dominated
but later became dominated.

Is possible to create a more robust NDS, by joining all the non dominated solutions found
at each generation and eliminated the ones that become dominated, in order to have a more
absolute version of NDNew. However, from experiments with the performance estimation
model introduced later, it seems the current definition for the NDS manages to give good
results while been simple and faster to compute, even allowing its measuring in an online
fashion.

All the above mentioned models based on both types of sets can be seen summarized in
Table 3.2.
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Table 3.2: Possible models from different combinations of generational search assessment
indices.

Two and three compartment models
xt yt zt Model No.

ND DOM - 2C-1
PO NPO - 2C-2
PO NDNP DOM 3C-1

POA PON NPO 3C-2
POpnew POold NPO 3C-3
NDnew NDold DOM 3C-4

3.3 Performance Estimation Model

In the previous section it was mentioned that a model with the feature POA can compute the
total amount of PO solutions found by the algorithm, and this value later be used to rank
algorithms and compare their performance. Using NDS features this is not directly possible,
being necessary the introduction of another model that uses them to estimate a performance
metric.

3.3.1 Relating Hypervolume to Population Features

Here is proposed the performance estimation model that from the changes in non dominated
solutions estimates the hypervolume [58]. More specifically, the hypervolume measured at
generation t (HVt) over all non dominated solutions found so far by the algorithm; that is,
from the non dominated set extracted after joining all non dominated sets F1(i), i∈ {0, · · · , t}.
When measured on such a set at each generation, the hypervolume is known to increase
monotonically [69, 70], which is necessary for the proposed model.

A monotonic increment can be represented by a model of the form HVt+1 = HVt +

∆HVt+1. The HV value at generation t +1 is estimated as the HV value at generation t, plus
the growth of the metric at generation t + 1, which can be estimated as a function of the
newly found non dominated solutions. As such, ∆HVt+1 can be approximated by a constant
parameter µ and some combination of NDS features at generation t.

Searching for an expression that can work as the proposed model is done using Grammat-
ical Evolution (GE) [71]. GE requires an objective function and a grammar. The quality of
the expression found by GE is computed as the mean square error between the estimation
produced by the model and the hypervolume measured on the joint non dominated set, as
explained above. The grammar is defined as shown in Figure 3.3. GE is implemented using
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as illustrated in Figure 3.4. Note that NDNew is also expected to reduce as the algorithm
approaches the POS. The parameter µ represents how much the hypervolume increases per
newly found non dominated solution, is estimated by fitting the model, and depends on the
algorithm and the problem. Note that NDOld is not included in the expression to compute
HVt+1 because it is already accounted in HVt , as illustrated in the right side of Figure 3.4.

While for the previous DCM is clear that a estate of the compartments sizes the only
input data needed to make estimations, with this new introduced model some extra steps are
necessary.

When the model needs to be used to estimate the hypervolume, an initial population is
created and on it the hypervolume HV0 together with the NDS features NDNew0, NDOld0,
and DOM0 is measured. Then, DCM estimates the NDS features, particularly NDNewt for
t > 0 until tmax generations. Next, the hypervolume estimation model estimates HVt+1 for
t > 0 until tmax generations, using as input HVt estimated by the hypervolume estimation
model (except for t = 0 where the measured HV0 is used) and NDNewt+1 estimated by
DCM.

Comparing with the DCM with POS based features there is one extra model to fit and
use, nevertheless the resulting performance estimation is obtained in a more common metric
such as the hypervolume.

3.3.2 Considerations about the model

Choosing the hypervolume as the performance metric to estimate forces the user to take into
account some considerations when using the model. The first one is related to the reference
point used in the computation of the hypervolume. Early empirical results, with other
problems not discussed in this work, had brought to attention the importance of choosing an
appropriate reference point so the hypervolume value is in a numerical range that eases the
fitting process. In some cases, it may be necessary and easier to normalize the hypervolume
to a [0,1] range. For a more detailed discussion on how to choose the reference point, the
reader is referred to [73].

The second consideration is related to the computational cost of calculating the hyper-
volume on some problems. Since the model is shown the changes of this value on the
accumulated non dominated population until each generation, there is the cost of computing
this joint non dominated front for several iterations. The difficulty increases with both the
number of objectives and solutions in the population, which is common when dealing with
many-objective problems. Interest in the hypervolume metric and its extended use ensures
that research on how to overcome these difficulties will arise in time, meanwhile, the reader
is advised to look at some implementations and recommendations detailed [74].





Chapter 4

Algorithms and Experimental Settings

This chapter describes the experimental settings used to create the data to train the models.
The first section briefly describes the main characteristic of each algorithm and its out-of-
the-box configuration. The second section focused on the problem generator and the created
instances, which are separated into datasets, that latter chapters will use to show different use
cases for the models.

4.1 Representative Evolutionary Algorithms

In this section, the EAs selected for this work will be described briefly. Each one of
them represents a different paradigm: Pareto Dominance, Pareto Dominance Relaxation,
Decomposition, and Performance Indicators.

4.1.1 NSGAII

The Non dominated Sorting Genetic Algorithm II is an elitist1 multi-objective evolutionary
algorithm that uses Pareto dominance and density estimation, through crowding distance,
to determine which solutions are retained and how parents are determined for the next
generation.

During each generation, from the current population Pt , the equally sized Qt that contains
the generated offspring is created. After evaluating both sets according to the objectives func-
tions, they are joint to be classified in non dominated Fronts = {Front1,Front2, . . . ,Frontn}.
Inside each Fronts a value called crowding distance is calculated that allows estimating for a
particular solution the density of solutions surrounding it. To create the new population Pt+1

solutions in each Fronti are merged into Pt+1 if this operation does not overfill it. If one of

1Preserves the best solutions found so far.
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them will cause it, that Fronti is sorted according to its crowding distance, and the necessary
number of solutions to complete the population size are copied.

Fitness is determined by a tuple formed by the Front number that the solution belongs,
and its crowding distance. Lower Front numbers, which indicate a better rank are preferred,
and in case of a tie, higher crowding distance is preferred. This allows the retaining of
solutions that cover a zone in the objective space with a low density of solutions. Selection
of parents is done by binary tournament between randomly chosen individuals from the
population using rank and crowding distance information. In Figure 4.1 the algorithm is
presented in pseudo-code. For a more detailed explanation of the algorithm, in particular
how the fast non dominated sorting procedure is done, please consult Deb et.al [60].

4.1.2 AεSεH

The Adaptive ε-Selection ε-Hood Genetic Algorithm is a Many-objective optimization
algorithm that uses Pareto dominance relaxation in the form of ε-dominance to determine
which solutions are retained and how parents are determined for the next generation. There
is not an explicit method for fitness assignment in this algorithm.

Similarly to NSGAII, during each generation, the current population Pt and the generated
offsprings Qt are joined and classified in Fronts according to standard non-domination. If
|Front1|< popSize then the procedure continues normally as in NSGAII, where solutions
are copied from the Fronts, and if a Fronti were to cause an overfill, solutions are selected
randomly from this last front until Pt has the correct size.

However, in the more common case of |Front1|> popSize in Many-objective optimiza-
tion, ε-sampling with εs as parameter is done. This function samples randomly solutions from
Front1, copying them into Pt+1 and eliminating from Front1 all the ε-dominated solutions
by the chosen sample. If Pt+1 were to be overfilled, solutions are randomly eliminated until
it reaches the correct size. Otherwise, if Pt+1 still is not complete, the remaining solutions
are randomly chosen from the previously discarded ε-dominated ones.

For parent selection, first ε-hood creation creates a cluster of solutions in objective
space, which is done by selecting a solution randomly from the population and creating a
neighborhood around it, composed by all the ε-dominated solutions using εh. This process is
done until all solutions belong to a neighborhood. Then the function ε-mating visits each
neighborhood in round-robin, selecting randomly two parents from each one of them. This
assures that even solutions in low populated neighborhoods have the same reproduction
probability.

At each generation, the εs used during selection and the εh used during the neighborhood
creation are adapted taking into account a step size ∆ and the population size. In particular,



4.1 Representative Evolutionary Algorithms 27

1 t← 0
2 P0← InitializePopulation(popSize)
3 Evaluate(P0)
4 NonDominatedSort(P0)
5 while ¬ StoppingCondition() do
6 Parents← SelectParentsByRankAndDistance(Pt)
7 Qt ← CrossoverAndMutation(Parents)
8 Evaluate(Qt)
9 Rt ← Pt ∪Qt

10 Fronts←FastNonDominatedSort(Rt)
11 Pt+1← /0
12 L← 0
13 while Fronti ∈ Fronts do
14 if Size(Pt+1)+Size(Fronti) > popSize then
15 L← i
16 break()
17 end
18 else
19 Pt+1←Merge(Pt+1,Fronti)
20 end
21 end
22 if Size(Pt+1) < popSize then
23 FrontL← SortByRankAndDistance(FrontL)
24 for j to popSize-Size(FrontL) do
25 Pt+1← FrontL[i]
26 end
27 end
28 t = t +1
29 end
30 return Front1

Figure 4.1: Pseudo code of NSGAII.
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εh is adapted so the number of neighborhoods is closer to the one specified by the user NRe f
h .

Pseudo-code of the algorithm can be found in Figure 4.2. For a more detailed explanation of
the algorithm, please consult Aguirre et.al [65].

4.1.3 IBEA

The Indicator-Based Evolutionary Algorithm is a Many-objective optimization algorithm that
relies on performance indicators to determine which solutions remain in the population. The
fitness for each individual represents the loss of quality that will be incurred if this solutions
were to be eliminated from the population, calculated as Fitness(x) = ∑x′∈P\{x}−e−I(x′,x)/k,
where x is an individual, I() the indicator function and k > 0 a scaling factor set by the user.

For each generation, the current population P, and its offspring Q are joint and the fitness
for each individual is calculated. Then solutions with the lowest fitness are eliminated until
the size of the population reaches the correct size. When a solution is removed from the
population, an update is done to reflect the new fitness without the eliminated solution.

During the parent selection, a binary tournament-based on fitness is done between
randomly selected solutions from the current population.

Note that IBEA transforms the original optimization problem into one, where the main
goal is to obtain an improvement in the overall performance of the population according to
the selected indicator.

In this work, the following two indicators are used in conjunction with IBEA. The binary
additive ε-indicator (Iε+) and the binary Hypervolume difference-indicator (IHD).

Iε+(x′,x) = maxi∈{1,...,n}{ fi(x)− fi(x′)} (4.1)

IHD(x,x′) =

H(x′)−H(x) if x′ ⪰ x or x⪰ x′

H(x+ x′)−H(x) otherwise
(4.2)

where x⪰ x′ indicates that x dominates x′ in a Pareto sense.

Iε+(x,x′) gives the minimum value by which a solution x needs to be translated in the
objective space so it can weekly dominate x′. H(x) gives the multidimensional volume of the
objective space that is dominated by x. IHD(x,x′) gives the hypervolume that x′ dominates,
but not by x. The algorithm in pseudo-code is presented in Figure 4.3. Further information
about the algorithm or the Performance indicators used here can be found in the work done
by Zitzler et.al [67].
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1 t← 0
2 NRe f

h ← popSize/HRe f
size // Set reference number of neighborhoods

3 εs,εh← 0
4 ∆s,∆h← ∆s0,∆h0 // Set step adaptation
5 P = /0
6 Q← InitializePopulation(popSize)
7 while ¬ StoppingCondition() do
8 Evaluate(Q)
9 R← P∪Q

10 Fronts←FastNonDominatedSort(R)
11 if Size(Front1) < popSize then
12 while Fronti ∈ Fronts do
13 if Size(Pt+1)+Size(Fronti) > popSize then
14 L← i
15 break()
16 end
17 else
18 Pt+1←Merge(Parents,Fronti)
19 end
20 end
21 if Size(Pt+1) < popSize then
22 for j to popSize-Size(FrontL) do
23 Pt+1← FrontL[random()]
24 end
25 end
26 end
27 else
28 Pt+1,Ns← epsilonSampling(Front1,εs,popSize)
29 adapt(εs,∆s,popSize,Ns)
30 end
31 H,Nh← epsilonHoodCreation(Pt+1,εh) //H = {H1,H2, . . . ,HNh}
32 adapt(εh,∆h,NRe f

h ,Nh)
33 Parents← epsilonHoodMating(H,popSize)
34 Q← CrossoverAndMutation(Parents)
35 t = t +1
36 end
37 return F1

Figure 4.2: Pseudo code of AεSεH.
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1 t← 0
2 Initialize population P of size n randomly
3 while ¬ StoppingCondition() do
4 EvaluateUsingIndicator(P)
5 if Size(P) > popSize then
6 RemoveLowestFitnessIndividual(P)
7 UpdateFitness(P)
8 end
9 Parents← Selection(P)

10 Q← CrossoverAndMutation(Parents)
11 EvaluateUsingIndicator(Q)
12 P←Merge(P∪Q)
13 t← t +1
14 end
15 A← NonDominated(P)
16 return A

Figure 4.3: Pseudo code of IBEA.

4.1.4 MOEA/D

The Multi-objective Evolutionary Algorithm Based on Decomposition, as the name suggests,
decomposes the problem into single-objective ones using scalarization functions and opti-
mizing them simultaneously. Subproblems are optimized using the surrounding solutions
that belong to their neighborhood.

The algorithm requires a set of weigh vectors Λ ← {λ1,λ2, . . . ,λN} defined by the
user, a scalarization function, in this case is considered the Tchebycheff function, and
a NeighborhoodSize. First, a population of P of N individuals is created and evaluated,
followed by assigning each xi ∈ P to a particular weigh vector λi. Neighborhoods are created
by calculating the Euclidean distance between any pair of weigh vectors and clustering
the NeighborhoodSize ones that are closer. The reference point needed for the scalarization
function is initialized, using a problem specific technique or setting the value for each
objective as the best one according to the current population.

During each generation, for each subproblem with a weigh vector λi, a new individual x′i
is created by applying genetic operators to parents selected randomly inside the neighborhood
Neig(i). If the solution dominates some in the neighborhood a replacement is done, otherwise,
it is discarded. The reference point is updated, as the external population. This process is
repeated until all the subproblems have being visited and updated. The algorithm terminates
when its stopping condition is met.
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1 t← 0
2 externalP← /0
3 Λ←{λ1,λ2, . . . ,λN}
4 Initialize population P of size N randomly
5 Evaluate(P)
6 Randomly assign each weight λi a solution from P = {x1, . . . ,xN}
7 Neig← CreateNeighborhoods(λ ,NeighborhoodSize)
8 Initialize the reference point z = (z1, . . . ,zm)
9 while ¬ StoppingCondition() do

10 for λi ∈ Λ do
11 Parents← SelectParents(Neig(i))
12 x′i← CrossoverMutation(Parents)
13 Evaluate(x′i)
14 UpdateReferencePoint(z)
15 UpdateNeighbors(x′i,Neig(i))
16 Update(externalP)
17 end
18 t← t +1
19 end
20 return externalP

Figure 4.4: Pseudo code of a MOEA/D.

An important note here is that the replacement is done the moment a better solution is
found and it could replace any of the ones in its neighborhoods. This means that, since
neighborhoods overlap, the next subproblem is working with the best solutions found so far.

The pseudo-code of the algorithm is shown in Figure 4.4. More details of the algorithm
and other possible scalarization functions can be found in Zhang et.al [66].

4.2 Test Problem Generator

The dynamic compartmental models study the behavior of an algorithm while solving a
problem instance, so is important to choose a versatile problem generator to create instances
that can test the model abilities. MNK-Landscapes [75] is a multiobjective extension of
Kauffman’s NK-Landscapes[76] that can generate adjustable instances of multi- and many-
objective optimization problems given some parameters. The number of objectives can be
controlled with M, N defines the number of bits of the string that represents the decision
variables, while K controls the ruggedness of the landscape by determining the epistatic
interactions between the decision variables.
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and x6 = z(2,3)2 . For the example, N = 8 since there are 8 decision variables and K = 2 since
each xi effect on the fitness function depends on other two variables.

It can be seen from the table that if x2 and x4 keep their values as well as x1 and x6, 0 is
a good value for x3, making its contribution to f1(·) be 0.67 and f2(·) be 0.48. If a bit flip
were to happen, then the contributions will reduce to 0.60 and 0.23, respectively. However,
evolutionary algorithms sometimes use operators that affect multiple bits at once that may
or not be contiguous, so when they are not aware of these interactions is easy to see how
quickly a flip could bring the fitness contribution of x3 on both objectives down. Learning
these interactions, while solving the problem is not always a straightforward task but several
techniques exist [77].

Using this problem generator, several small and large instances were generated and solved
with the algorithms described in this chapter. To explore different aspects of the models
and the features, they were collected into three different datasets, described below. In cases
where one or more algorithms were run with different configurations, it will be specified
which instances were used.

4.2.1 Datasets

Dataset 1
This dataset has been created to test the models’ ability to do analysis and estimation

on small instances, specifically with the features related to the Pareto Optimal Set present
in models 3C-1 and 3C-2. It consists of four instances of MNK-landscapes problems with
different numbers of objectives, M = 3, 4, 5, and 6, but the same number of variables N = 20,
and the epistasis set to K = 1. The low number of variables allows finding the Pareto Optimal
Set by enumeration, which is key to compute all the POS related features.

All the algorithms were used to solve each instance 30 times, initializing the population
with different seeds. For each instance, different configurations, that is, different population
sizes were tried as Table 4.1 indicates, and in all runs the maximum number of generations
was set to 100. The sizes were chosen so as to follow the indications in Aguirre et.al [78].

Dataset 2
In this second dataset, the goal was to use the model 3C-2 to select a population size

between several options, so only one instance was created with M = 5, N = 20, and K = 1 of
an MNK-landscape. Again, the choice of a low N allowed the problem to be enumerated and
obtain the Pareto Optimal Set.

The algorithm selected to solve the instance is the AεSεH, which was run 30 times with
different seeds to initialize its initial population on different configurations. The population
sizes considered are in the [150,750] interval, with increments of 50. To train the models,
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Table 4.1: Population Sizes considered per instance. A “✓” indicates that the population size
was used for the instance.

Instance Population Size

M 50 100 200 500 1000 2000 4000 5600

3 ✓ ✓ ✓ - - - - -
4 ✓ ✓ ✓ ✓ ✓ - - -
5 ✓ ✓ ✓ - - ✓ ✓ -
6 ✓ ✓ ✓ - - - - ✓

only the population sizes 150, 350, 550 and 750 are considered, while the models for the
intervals [200,250,300], [400,450,500] and [600,650,700] are obtained by interpolation,
as discussed in Chapter 5. Nevertheless, to be able to compare the interpolated models’
estimations, the algorithms are run on all the population sizes listed here. One difference with
the previous dataset is that all configurations are executed for the same number of function
evaluations (FE). In evolutionary algorithms terms, is the number of calls to the function
that evaluates the solution. Since the number of solutions varies for each configuration, the
maximum number of generations is defined as MaxGen = FE/PopSize. The algorithms were
run until 15000 FE.

Dataset 3
This third dataset contains landscapes with N = 20 bits, K=1 epistatic bits, and M = 3, 4,

5, objectives. In total 30 instances per sub-class are independently generated and the chosen
algorithm, AεSεH, is run for a budget of 200000 (FE), with population sizes 50, 100, and
200. This dataset will be used to test both, DCM with POS and NDS features, which forced
the choice of a reasonable number of variables so the POS can be obtained by enumeration.

Dataset 4
The fourth dataset is the most interesting one since it emulates the use of models in a

more general setting. The instances created have M = 3, N = 100, and K = 5, so the problem
is large and not enumerable, but perfect to test the model 3C-4 features. For this problem
50 instances were created, reserving 30 to train the models and 20 as unseen data to test the
model estimations and ability to generalize. As with the previous dataset, four configurations
were considered, population sizes of 3000, 5500, 8000, 10500, all run until 800000 FE. Each
instance was run a single time per configuration with the AεSεH algorithm. There is an
exception for one instance from the testing set, where a total of 30 runs were made to also
see how the model copes with the variability that comes from different initial populations.
The results obtained on this dataset are discussed in Chapter 6.
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Dataset 5
The final dataset created for this work contains more variations in terms of number of

objectives, variables, and interaction between variables in order to test if model trained on
one problem sub-class are able to obtain good estimations for sub-classes close in those
dimensions. To test transferability in the objectives domain the sub-classes with N = 100,
K =5, and M = 3, 4, and 5 objectives were generated. For transferability on the variables
domain the sub-classes M = 4, K =5 and N = 90, 100 and 110 were generated. Finally, to test
the same but on the variable interactions domain, the sub-classes M = 3, N = 100, and K = 3,
5, 10 were also generated. Per sub-class 30 instances were created, and solved using AεSεH
with population 200.

4.2.2 On the use with other problems

In this manuscript, models were created on data generated by solving instances of MNK-
Landscapes due to its ability to generate easily problems with a different number of objectives,
variables, or even number of interactions that directly impact their difficulty. However, since
the models themselves learn the behavior through data of the algorithm run, namely the
composition of the population, the only limit to apply the model for other types of problem
generators, benchmarks, or even real-world instances would be the ability of the chosen
algorithm to solve the problem. In particular, is important that the algorithm run data fed to
the models shows that it is converging or has converged already. Empirical tests have shown
that when this is not the case, the fitted model estimations will deviate from the mean of the
runs and misrepresent the algorithm’s behavior.





Chapter 5

DCMs based on POS features and
estimation of Accumulated PO solutions

This chapter covers the use of dynamic compartmental models on small and enumerable
landscapes by using features that require the Pareto Optimal Set to be known. First is given
an example of one method to fit the models and how the learned parameters can be used
to analyze algorithms. The remaining of this chapter explores how new models can be
discovered from learned ones and use this information to guide the algorithm’s configuration.

5.1 Model Fitting

Obtaining the model’s parameters can be done in several ways, for some models, it is
possible to arrive at a closed-form solution and solve it analytically, while for others fitting
the equations using experimental data is a better approach. Here, the latter approach is taken
with some transformations on the original equations of the model to facilitate the process.
The transformation decouples the system of equations, so each equation does not depend on
the others’ output [79].

The example here is based on Eq. (3.2), but the same steps apply for Eq. (3.1). Rewriting
the system in matrix form.

Xt+1 = AXt (5.1)

where
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A =

1− (α +β ) ᾱ β̄

α 1− (ᾱ + γ) γ̄

β γ 1− (β̄ + γ̄)

 Xt =

xt

yt

zt


Assuming that X∞ is an equilibrium point of the system Xt . This is true if and only if

X∞ = AX∞ and X∞ is an eigenvector associated to the eigenvalue 1 of A. Based on this, A has
to be diagonalizable, and at least one of its eigenvalue is known and is 1. Parting from this
assumption, the system can be decoupled and its eigenvalues and eigenvectors are used to
rewrite the system.

Diagonalizing A as KLK−1 where L is a diagonal matrix with A’s eigenvalues λ1,λ2

and λ3 as the diagonal elements and K is a matrix whose columns are A’s eigenvectors
k1 = [k11,k21,k31]

⊺, k2 = [k12,k22,k32]
⊺ and k3 = [k13,k23,k33]

⊺.
Therefore, the system is now:

xt = k11λ t
1 + k12λ t

2 + k13λ t
3

yt = k21λ t
1 + k22λ t

2 + k23λ t
3

zt = k31λ t
1 + k32λ t

2 + k33λ t
3.

(5.2)

Using Eq. (5.2), the model is fit against the data. To express them again in the original
system terms, the estimated values for the eigenvectors k1,k2,k3 and eigenvalues λ1,λ2,λ3

are arranged in matrix form.

K =

k11 k12 k13

k21 k22 k23

k31 k32 k33

 L =

λ1 0 0
0 λ2 0
0 0 λ3


And A can be obtained back as:

KLK−1 = A (5.3)

For the fitting process, finding the system Eq. (5.2) parameter values is formulated as
an optimization problem and using data on the number of individuals that belong to each
compartment. The goal is to find the best set of parameters that produces values close to the
ones observed in the experimental data obtained by running the algorithms. This is performed
by minimizing the mean square error mse = 1

n ∑
n
i=1(Dpi− D̄mi)

2, where n is the number
of observations (generations) in the experimental data, Dpi is the prediction made by the
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model, and D̄mi is the average measured values across all runs for the i-th generation where
i = 0,1, . . . ,100.

Looking at it in other terms, the model is learning the expected value of each feature.
This comes from the fact that MOEAs are stochastic (randomly generated initial population,
crossover, mutation probabilities, parent selection strategies), so each run of the algorithm
will give different traces in terms of the features. However, the results produced by these
algorithms should be of similar quality, so the traces difference are within a reasonable range.
If the model fitting is done properly, it is expected that when given the model the features
(x0,y0,z0) measured on different initial populations, will produce an estimation that reflects
some of the variance found on that particular MOEA.

This optimization problem is solved using the Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES)[36], a recognized single-objective numerical optimizer. The initial
parameters are set at random. The process will stop when there is no improvement in the
mse or the max number of iterations maxiter = d2×100 have been reached, where d is the
number of parameters. The coefficient of determination or R2 ∈ [0,1] is computed to measure
the goodness of the fit, i.e. the proportion of variability in the dependent variable explained
by the independent variable of the model. If the R2 given by the model is smaller than 0.95,
the optimization is resumed until its improvement is smaller than 0.001.

Be noted that each equality in Eq. (5.2) is related to a particular compartment and could
be fitted separately. However, since the parameters λ are common in all equations, they are
fitted only once, reusing their values for the two remaining groups. To further reduce the
number of parameters to fit, using the assumption made earlier, at least one eigenvalue has to
be 1, therefore λ1 is set to 1 when fitting the model.

5.2 Model Quality

We fit models 2C-1, 3C-1 and 3C-2 for problems with 3, 4, 5, 6 objectives and all population
sizes described in Table 4.1 from Section 4.2.1. To generate the prediction, we set the initial
state of each compartment (t = 0) with the data from the initial population (generation 0), for
each run of each configuration, and use the model to generate estimates for all generations
(t = 1, . . . ,100), using the values estimated at time t as input to estimate the state at t + 1.
Using these predictions, we again calculate the R2 for each run and compute its average.
Tables 5.1 and 5.2 illustrate the average R2 for all the models mentioned on the data obtained
from the three objective problem solved using a population size of 200. Figures 5.1-5.3 show
the measured values in black and the prediction of the model in red. For space reasons, these
figures only include results corresponding to three compartment model 3C-2.
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From these tables, we can see that in the two compartment model 2C-1 all algorithms,
except MOEA/D, show very high R2 values on all features. In the three compartment models,
again MOEA/D shows lower R2 values on all features. In addition, all algorithms show
relatively low R2 values on features NDNP and POA in models 3C-1 and 3C-2, respectively.

The reason why MOEA/D achieves lower scores is due to its higher variance in the data
from run to run. However, note that the model follows the average of the runs without issues.
The NDNP feature, not shown here, is characterized by a sharp peak between generations
5 and 10, also with a large variance in the data. For the POA feature, we can see in Figure
5.1 that the change in the data is small and concentrated on the first 20 generations, with a
relatively large variance in the data, making the learning of this particular section difficult.
The model follows the general shape of the set of runs but may underestimate some. In all
cases where R2 is lower than 0.95, we see that the model still provides a good idea of where
each group will end after some generations. This is significant, more so if it is considered
that only one actual measured value at t = 0 was used to make the estimations.

Notice that the accumulated PO can be obtained by having the PO Abs New values at
each generation. By doing a cumulative sum of this value, we obtain Figure 5.4. Note here
that the under- and overestimation of our model (red) becomes more noticeable compared to
the actual measured data (black). But in each case, we see that the prediction gets closer to
the real values by the final generations.

Table 5.1: Two Compartment Model. Average R2 of individuals runs for M=3, Pop=200.

Model 2C-1

Algorithm ND DOM

NSGA-II 0.963 0.963
AεSεH 0.972 0.972
IBEAHV 0.957 0.957
IBEAε+ 0.963 0.963
MOEA/D 0.641 0.641

5.3 Parameter and Feature Analysis

This section will focus on the parameters and their role in different types of analysis. The
key element is their ability to encapsulate the dynamics of the population composition in a
small set of values.
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reduces in NDNP. In the above example, α > 0 can be interpreted as negative feedback of
PO on itself, whereas α < 0 has positive feedback of PO on itself.

It is important to clarify that changes in the numbers in each compartment do not imply
the transition of the individuals themselves, since one of the assumptions of the model is that
individuals are not tracked, only how many are present at each compartment. However, it
remains true that a loss (decrease in number) in one compartment is correlated to an equal
gain (increase in number) in another compartment by the corresponding parameter of the
model.

5.3.2 Model based Population Dynamic’s Analysis

The differential equations model the influence between compartments using two parameters
per pair of compartments. Thus, in a three compartment model, the equation for each
compartment is specified by 2×2 parameters. This allows observing in detail the mutual
influence between compartments. It is possible also to capture these influences in a compact
and visual form using the graphical representation shown in Figure 3.2.

To illustrate how the model can enrich the analysis, in this section the focus will be
on AεSεH and MOEA/D using the Dataset 1 which details can be found in Chapter 4.
Using the estimated values of the parameters and simplifying the equations, is shown how
each compartment depends on itself and the two other compartments. This allows a better
understanding of the overall compartments’ dynamics. In the following, the equations marked
with A should be considered as the ones for AεSεH and with M the ones for MOEA/D.

The first analysis is done on the three compartment models 3C-1, composed of compart-
ments for Pareto Optimal (PO), Non Dominated Non PO (NDNP), and Dominated (DOM)
solutions for three (M3) and six (M6) objectives with population size 50 (P50) and 200
(P200), respectively.

Starting with the model M3P50 3C-1 which simplified equations are as follows:

M3P50 3C-1

POA
t+1 = 0.998POA

t +0.105NDNPA
t −0.043DOMA

t

POM
t+1 = 0.984POM

t +0.136NDNPM
t −0.029DOMM

t

NDNPA
t+1 = 0.892NDNPA

t +0.003POA
t +0.165DOMA

t

NDNPM
t+1 = 0.706NDNPM

t −0.103POM
t +0.127DOMM

t
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DOMA
t+1 = 0.878DOMA

t −0.001POA
t +0.003NDNPA

t

DOMM
t+1 = 0.902DOMM

t +0.119POM
t +0.158NDNPM

t

For 3-objectives problems, by randomly sampling a subset of solutions, it is very unlikely
to generate a PO solution. Thus, it can be considered that there are no PO solutions in
the initial population, POt=0 is 0, and all solutions are either DOM or NDNP, which is in
accordance with the data. Looking at different initial populations it can be observed that for
3 objectives more solutions are DOM than NDNP. In the case of P50, 84% are DOM and
16% are NDNP.

Starting from these initial conditions, an analysis of the compartments’ dynamics can be
done. From the PO equations, an increase of PO solutions in AεSεH and MOEA/D can be
seen to depend mostly on PO itself and in a small fraction on NDNP solutions. Since POt=0

is 0 and NDNPt=0 is small, it is expected that PO would remain 0 for some generations.

From the NDNP equations, it can be noted in both algorithms that, only a fraction of
NDNP remains at each generation, but NDNP gains a fraction of DOM. Since DOM >

NDNP the number of solutions gained from DOM is greater than those lost from NDNP, so
both algorithms should be gaining NDNP solutions during the initial generations, being the
gain faster in AεSεH than in MOEA/D as indicated by the coefficients, i.e. 0.892 > 0.706
and 0.165 > 0.127. However, from the DOM equations, notice that during the same initial
generations both algorithms should lose DOM solutions (DOMt coefficients < 1 in both
algorithms), being the loss faster in AεSεH than in MOEA/D.

As detailed above, in the initial generations for both algorithms DOM decreases while
NDNP is increasing. After a few generations, the situation starts changing, as DOM size
becomes so small that is unable to sustain the growth of NDNP. Therefore NDNP will reach a
peak and then decrease on both algorithms. The effect should be more noticeable in AεSεH
since DOM decreases faster. PO starts increasing when the gain from NDNP surpasses the
loss from DOM and remains high as most of PO solutions are retained according to the
coefficients in both algorithms.

It is important to note that for AεSεH, the coefficients indicate that DOM would decrease
continuously and approach 0. For MOEA/D, on the other hand, the losses from DOM
are compensated from the gains from PO and NDNP. Furthermore, NDNP also gets some
contribution from DOM. Thus, DOM will reduce up to a point and then stabilize in a value
greater than the one in AεSεH. Something similar happens with NDNP, where NDNP in
MOEA/D stabilizes in a value larger than in AεSεH.

Now the same compartmental model is considered but with 6 objectives (M6) and
population 200 (P200), the equations are the following:
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M6P200 3C-1

POA
t+1 = 0.991POA

t +0.121NDNPA
t −0.346DOMA

t

POM
t+1 = 0.907POM

t +0.246NDNPM
t −0.107DOMM

t

NDNPA
t+1 = 0.904NDNPA

t +0.006POA
t +0.857DOMA

t

NDNPM
t+1 = 0.580NDNPM

t +0.06POM
t +0.458DOMM

t

DOMA
t+1 = 0.178DOMA

t +0.003POA
t −0.025NDNPA

t

DOMM
t+1 = 0.649DOMM

t +0.033POM
t +0.174NDNPM

t

The likelihood of generating non dominated solutions and finding some PO solutions
by random sampling increases in small landscapes with 6 objectives. Indeed, analyzing the
composition of different initial populations for M6 and P200 it is observed that 1% are PO
solutions, 47% are NDNP solutions and the remaining 52% are DOM solutions.

From the equations of DOM, it can be expected a steady shrink for both algorithms. In
particular, AεSεH will be more aggressive since at each generation it will retain less than
18% of the total amount of DOM solutions according to the coefficient of DOMt . On the
opposite, MOEA/D will retain around 65%. NDNP equations show that NDNP solutions
will grow in the beginning in both algorithms, while DOM numbers are still able to substitute
the loss in this compartment, with AεSεH clearly growing more than MOEA/D. As for PO
equations, notice that both algorithms lose some solutions depending on the size of DOM.
However, from the DOM equation, it can be known that the number of DOM solutions
should go down quickly. After the DOM effect becomes minimal, since AεSεH retains 99%
of the already found PO solutions, their increase will be ruled by NDNP solutions in this
algorithm. On the other hand, since MOEA/D retains only 91% of the already found PO
solutions, their number will increase in this algorithm only if the number of solutions coming
from NDNP can compensate those that are not retained from PO. Considering the previous
analysis, a possible conclusion is that the faster and larger change from DOM to NDNP in
AεSεH allows the algorithm to keep in the population more PO solutions than MOEA/D.
The equations of the model aggregated in this way can be used to study these dynamics
putting in perspective the effects on the other related features.

For the next example, the model 3C-2 is considered, which includes the features Pareto
Optimal Absolutely New (POA), Pareto Optimal Not New (PON) and Non Pareto Optimal
(NPO) solutions.
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Again, the analysis starts with the 3 objectives (M3) case and Population 50 (P50). The
equations are as follows:

M3P50 3C-2

POAA
t+1 = 0.7908POAA

t +0.004PONA
t +0.0157NPOA

t

POAM
t+1 = 0.8437POAM

t −0.033PONM
t +0.0141NPOM

t

PONA
t+1 = 0.9786PONA

t +1.2031POAA
t −0.0188NPOA

t

PONM
t+1 = 0.9745PONM

t +0.1039POAM
t +0.0074NPOM

t

NPOA
t+1 = 1.0031NPOA

t −0.9939POAA
t +0.0174PONA

t

NPOM
t+1 = 0.9785NPOM

t +0.0524POAM
t +0.0585PONM

t

Similar to the previous case, on 3 objectives is unlikely to find PO solutions as confirmed
by the data, so at first, there are only NPO solutions. In the following, the analysis will focus
on PON and POA coefficients and their correlation to dropped solutions. These solutions
are calculated as the Pareto Optimal solutions found in t− 1 that are not present in t. In
Figure 5.5 how this quantity changes throughout the generations can be seen for AεSεH and
MOEA/D.

From the plots, it follows that MOEA/D drops PO solutions in a larger number than
AεSεH. Although none of these equations model this feature, PON equations give an insight
into this situation. PON feature conveys the number of current PO solutions that the algorithm
already found, be it that they are retained in the current population or just found again. In
the PON equations, note that the coefficient of PONt solutions shows that less than 98%
PON solutions are retained for the next generation in both algorithms, which suggests that
PO solutions are being dropped. Furthermore, the coefficient affecting POAt indicates the
number of POA solutions that will become PON at the next generation. Note that in MOEA/D
this number is only 10% whereas in AεSεH is 120%. This clearly indicates that MOEA/D is
dropping more PO solutions than AεSεH.

Finally, the 6 objectives (M6) population 200 (P200) model is analyzed. The simplified
equations are as follows:
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Similar to the previous 3 objectives case, notice that AεSεH seems to retain more than
53% of POA solutions as PON solutions, as indicated by the coefficient value of the POAt

component in the PON equation, while for MOEA/D this value is very small, less than
0.01%. Thus MOEA/D is dropping substantially more solutions than AεSεH. However,
note also in POA equations that POAt coefficient is 0.59 for AεSεH and 0.96 for MOEA/D,
which indicates that MOEA/D finds many more Pareto absolutely new solutions than AεSεH.
Looking at Figure 5.5, the above analysis with the equations confirms that, indeed, MOEA/D
drops more solutions than AeSeH. Although these model compartments do not directly
reference dropped PO solutions, it is possible to identify this trend from the changes of newly
found PO and previously found PO.

Finally, it is also worth noting that in M3P50 3C-2 and M6P200 3C-2 that POA solutions
are found mostly from previous POA solutions rather than from PON or NPO solutions.

In general, note that this type of analysis can be done only by observing the features
changes. Nevertheless, the benefit of using the models is that the parameters capture in-
formation on the relationship between these features, which allows easier analysis of the
dynamics.

5.3.3 Features vs. Performance Metrics

It was mentioned previously that the accumulated number of PO solutions can be obtained
in the 3C-2 POA-PON-DOM model, and it could be used as a performance measure. This
section will show how useful is this value as a metric and correlate to a more well known
performance indicator, the hypervolume [58]. This metric gives the multi-dimensional
volume of the objective space that is dominated by a non dominated set and enclosed by a
reference point, which in this case was set to all zeros since the objectives range is [0,1].

For the analysis, the accumulated set of non dominated solutions until each generation t,
for each generation and run is computed, followed by the hypervolume for each of these sets.
Boxplots for the 3-objective and population 200 case from Dataset 1 are reported in Figure
5.6.

By comparing the accumulated number of PO solutions in Figure 5.4 with the hyper-
volume of the accumulated non dominated set in Figure 5.6, it can be noted that the trend
and growth rate in both are similar for each algorithm. From generation 1 to 30, there is an
exponential growth of the hypervolume and number of PO solutions found. After that, these
values stagnate. Although it cannot be directly said how much the value of the hypervolume
will go up with each newly-found PO solution since this model only focuses on their numbers,
a link between these two measures is clear, which seems to scale together at least for some
generations.
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Table 5.3: Algorithm comparison by Accumulated PO Solutions (model feature) and Hyper-
volume (performance metric)

Accumulated PO Solutions Rank
Algorithm Obj. Pop. Size Measured Predicted HV Measured Model HV
NSGA-II 3 50 105.933 108.805 0.373968 3 3 3
AεSεH 121.967 128.088 0.374248 1 1 1
IBEAHV 90.367 92.367 0.372361 4 4 4
MOEA/D 114.000 114.908 0.374201 2 2 1
NSGA-II 100 137.967 137.267 0.375304 2 2 3
AεSεH 141.700 140.943 0.375287 1 1 1
IBEAHV 123.700 119.458 0.373812 4 4 4
MOEA/D 135.500 136.994 0.375422 3 3 1
NSGA-II 200 148.033 142.500 0.375640 1 3 3
AεSεH 148.667 150.651 0.375904 1 1 1
IBEAHV 136.567 134.788 0.375140 4 4 4
MOEA/D 144.667 145.473 0.375757 3 2 1
NSGA-II 4 50 166.800 168.756 0.194207 4 3 3
AεSεH 346.767 353.793 0.196897 2 2 2
IBEAHV 195.500 159.648 0.191004 3 4 4
MOEA/D 436.100 436.990 0.197264 1 1 1
NSGA-II 100 343.233 347.299 0.197154 3 3 3
AεSεH 581.767 582.865 0.198445 2 2 1
IBEAHV 302.400 309.600 0.193841 4 4 4
MOEA/D 656.267 656.931 0.198507 1 1 1
NSGA-II 200 608.867 615.447 0.198481 3 3 3
AεSεH 863.767 877.741 0.199031 1 1 1
IBEAHV 468.100 477.692 0.197055 4 4 4
MOEA/D 857.500 859.080 0.199034 1 2 1
NSGA-II 5 50 157.800 142.474 0.146900 4 4 3
AεSεH 526.100 533.512 0.153434 2 2 2
IBEAHV 190.167 194.093 0.139987 3 3 4
MOEA/D 904.100 735.058 0.154429 1 1 1
NSGA-II 100 341.600 343.592 0.151905 3 3 3
AεSεH 986.433 959.355 0.156632 2 2 2
IBEAHV 329.700 336.261 0.145065 3 4 4
MOEA/D 1479.133 1488.790 0.157620 1 1 1
NSGA-II 200 718.500 720.574 0.155398 3 3 3
AεSεH 1631.467 1642.240 0.158275 2 2 2
IBEAHV 602.300 614.040 0.150032 4 4 4
MOEA/D 2219.167 2216.400 0.159051 1 1 1

When all rankings agree for a given algorithm this is marked in bold. The hypervolume
values for a given number of objectives and population size are checked for a statistically
significant difference using a Mann–Whitney test with a 95% confidence interval. If the
hypervolume values are not statistically different the corresponding algorithms will be given
the same ranking. The variance around the means of the predicted value of accumulated PO
solutions is very low and therefore a statistical test is not required to verify its ranking.

Note from this table that there is a very good agreement between the rankings given by
the measured and estimated number of PO solutions as well as between the estimated number
of solutions and the hypervolume of all non dominated solutions found by the algorithm.
Thus, the partial orderings given by this feature of the model are useful, giving a good idea
of the relative performance of the algorithms.
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5.4 Parameter Interpolation

This last section will cover how to exploit the models’ parameters through interpolation to
explore other configurations. As mentioned in the model description, each set of model
parameters is tied to a specif algorithm, its configuration, and the problem where it was run. If
multiple parameters set for the same algorithm and problem but with different configurations,
interpolation of the model’s parameters can be used to extract configurations in between the
available ones. The results presented in this section use the Dataset 2 described in Chapter 4.

5.4.1 Cubic Spline Interpolation

Let D = {(xi,yi)} be a set of n data points i = 1, . . . ,n, and yi = f (xi). Then the following
expression can be defined.

n

∑
i=1
{Yi− f̂ (xi)}2 +λ

∫
f̂ ′′(x)2dx (5.4)

A function f̂ that minimizes Eq.(5.4) is called a smoothing spline. Here λ is a parameter
that controls the smoothness, i.e trade-off between closeness to the data and roughness of
estimation.

The solution for this expression will be piece-wise cubic polynomials as defined by
Eq.(5.5)

Si(x) =
zi(x− xi−1)

3

6hi
+

zi−1(xi− x)3

6hi
+

[
f (xi)

hi
− zihi

6

]
(x− xi−1)+

[
f (xi−1)

hi
− zi−1hi

6

]
(xi− x) (5.5)

where xi−1 and xi ∈ D are the boundaries between polynomials called knots, zi = f ′′(xi)

are the second derivatives at knot ith, hi = xi− xi−1 and f (xi) are the values of the function
at knot ith.

For a more detailed explanation, please refer to[80]. Here the R implementation of
smoothing splines with the default parameters is used for all the interpolations.
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Figure 5.7: Splines for each model parameter for 5 objective MNK-Landscapes test problem.

5.4.2 Parameter Interpolation

The models are composed of six parameters (α,β ,γ, ᾱ, β̄ , γ̄), which values differ depending
on the population size, algorithm and problem. In order to interpolate a model, a separete
spline for each parameter is needed, taking as data points the pair of population size and
parameter value. Then a new model is obtained by using these splines to find each of the
parameters for the unknown population sizes, between the ones used to construct the spline.

The first step is to select the population sizes to be used as knots and run the algorithm
to generate the data necessary to fit the models. Due to the stochastic nature of the fitting
process used, at least 30 fittings are done for each size, preserving the ones with a good
R2. In previous fittings, the R2 was computed for each feature, and this was the criteria to
continue another round of optimization to improve the fitting, while here the main focus was
obtaining a good estimation of the accumulated number of PO solutions. Therefore the R2

computation was done on this value and not the individual features. The chosen population
sizes to be used as knots were {150, 350, 550, 750}, with an R2 coefficient of 0.858, 0.988,
0.985 and 0.974, respectively.

The next step is to find the function that generates the spline, which results in curves as
shown in Figure 5.7, where the selected population sizes appear in black. Finally, splines are
used to get the parameters to build new models. Using intervals of 50 between knots, three
new population sizes are explored between each pair of knots.
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5.4.3 Using interpolated models to explore population sizes

Using the methodology described above for obtaining the interpolated models, in this sec-
tion, the focus is answering the question “Do interpolated models allow the exploration of
population sizes in-between the ones for which data is available?”.

To do that, an analysis is performed between the estimated average number of Accumu-
lated PO solutions by a fitted model versus the models obtained through interpolation. A
comparison is also made with the measured values by running the algorithm. The goal is
to see if the obtained interpolated models help to discover promising configurations in the
intervals between the sampled configurations.

Figure 5.8 shows on the left for sample population sizes, the average number of Acc. PO
solutions at the end of 10000 FE for 30 runs of the algorithm. These sample population sizes
will act later as knots for the spline. On the center, a similar plot is included, with values
produced by the fitted models in red, while the ones from interpolated models are in black.
Finally on the right side is plotted again the values obtained running the algorithm with the
sampled population sizes, and in blue the values obtained running the algorithm with the
population sizes not previously sampled, to check against the trends found by the models. In
all plots, the error bars show the 95% confidence interval for each mean.

Looking at Figure 5.8 left and center plots, a visual comparison can be done between
the fitted model estimation and the measured values for the population sizes used as knots.
Notice that for all sizes except 150 the fitted model gets very close to the measured average,
in the particular case of 750 is even a little higher. The R2 for the model used in 150 is under
0.95, which explains the underestimation produced here. Nevertheless, as can be seen in the
following results, even with such models as knots, the trend is still correctly replicated.

Now shifting the focus to the center and right figures, looking at the estimations of the
models obtained through interpolation. It can be seen that the influence of the first knot, 150,
pulls down the estimations of the interpolated models between [150,350]. Nevertheless, in
this section, the growing trend is still correctly maintained when compared to the plot for
all sizes. Moving to the next interval of [350,550], the models’ estimations get closer to the
measured results and also follow the trend detecting that 400 and 500 obtain better values
than 450. Finally, in the last interval of [550,750], the trend is not correctly replicated, as
700 places a bit higher than 650, which according to the right side of the figure should be
below. Since the fitted model of 750 actually overestimates a little in this part, it seems to
pull the interval making 700 seem a better option. However, the relative position of the knots
points is correct, as two of them place higher than 750 as it should be, and neither of the
group is higher than the knot on left, 550.
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Figure 5.8: [Budget: 10000 FE] Average Acc. PO over population size. Left: Sampled
population sizes used as knots for the spline. Center: Model estimation for the knots and
interpolated population sizes. Right: Measured values for all population sizes.

Summarizing the above, if only the sampled population and interpolated population
model’s estimation are available and the user decides to trust this obtained values, then it will
be guided to choosing a particular population size in the interval, which as the measured data
suggest, gives better use of the available budget than the ones at the sampled configurations.
On the other hand, if the user decides to trust partially the model, then it would not choose a
population size, but an interval. With this information, it can later explore with experiments
the population sizes that the model points to as more interesting. In either case, it still guides
the user to the region worth exploring in more detail. From this, and to answer the question at
the beginning, it is possible to use the interpolated models, if they follow the trend. In order
to ensure this, the sampled configurations must be of good quality, so any error introduced
by the interpolation is also minimized.

5.4.4 Re-using models to explore bigger budgets

Another interesting question is, “if there is an extra allowance in the budget, is it possible to
reuse all the models obtained for a given budget, to make predictions about population size
with larger budgets?”. In other words, how far ahead the models can still correctly detect the
performance trends of the algorithm.

The methodology for this part is to take the models found for a budget of 10000 FE
and make estimations with the same population sizes for budgets of 12000 and 15000 that
represent an exploration of the 1.2 and 1.5% of the search space.

For 12000 FE in Figure 5.9, it is plotted on the left the estimation of the model and on the
right, the results of running again the algorithms, but now with the new FE limit. Here the
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Figure 5.9: [Budget: 12000 FE] Average Acc. PO over population size. Left: Model
estimation for the knots and interpolated population sizes. Right: Measured values for all
population sizes.

models are forced to estimate 20% more FE than the ones they saw during the fitting, which
represents for the lowest population size 14 more generations, and for the biggest population
size only 3 more.

The analysis begins with only the fitted models and their position with respect to each
other. For 150,350,550 and 750, their relative positions still hold and show an upward
trend. Going into the intervals from [150,350] the interpolated models still are able to follow
correctly this trend. For the interval of [350,550], they are able to replicate even the relative
position between themselves, being 400 and 500 a little bit better than 450 and all points
in the interval higher than the extremes. As for the last interval of [550,750], similarly, the
relative position inside still holds being 600 and 700 better than 650 and all of them better
than the left extreme 550 but not with respect to 750. In particular, on 500, it failed to pick
up the trend since looking at the corresponding measured values, it should be better than the
last interval [550,750].

In this situation, from the point of view of the user, all the available data is model
estimations. If the user only looks at the fitted models’ estimations, the chosen population
would be 750. Which, if the populations in the intervals are ignored, is the best option, and
the measured data agrees. If the information of the interpolated models is also considered,
then the user would ignore 500 as an option, since the model failed to pick up its trend, and
instead choose 700, which is the second best option according to the measured values.

Going up to 15000 FE, now the models are forced to estimate 50% more FE than what
they have been trained for, which represents 33 more generations for 150 and 6 more for 750.
The plots are shown in Figure 5.10.

Starting from the fitted models, it keeps the general trend seen with 12000 FE, where the
largest population tends to be better, which is captured by the models. As for the intervals,



5.4 Parameter Interpolation 57

Figure 5.10: [Budget: 15000 FE] Average Acc. PO over population size. Left: Model
estimation for the knots and interpolated population sizes. Right: Measured values for all
population sizes.

the first two are followed properly if only looked at the relative positions between them,
while failing to show when they are better than the extremes. The third interval shows a more
noticeable difference between the model and measured values. In the interval, [550,750] the
interpolated models place them in an ascendant order, while from the plot it can be seen that
650 can obtain a better value than 600 and 700, and also 600 is better than 700. This trend is
not picked up.

Similar to the previous case, the fitted models still hold and describe the general trend,
even though they are asked to estimate farther ahead than what they have seen. The interpo-
lated models, do not perform that well in this case, not being able to describe situations when
in the measured values their population obtains a better value than the ones used as knots.
Considering that all of them are based on a lower FE budget, the models are still a valuable
guide to detect which intervals could be investigated.

To summarize, the fitted models seem to be more reliable than the interpolated models
when forced to estimate beyond their training. However, an important consideration to be
made is using budgets that allow the population sizes under consideration enough time to
converge and properly display their dynamics. In the examples described here, the budget
10000 FE only allowed 13 generations for the biggest population, which made it harder for
the model to properly capture its dynamics. This is reflected also in the analysis, as the first
two population sizes intervals did behave better, even when their models were used on larger
budgets.

The use of the models for algorithm configuration is a very interesting and promising
line of research, since it is very cheap to produce estimates once the fitted models are found,
and the interpolation does not add much overhead to the whole operation. In general, the
biggest cost of this method is generating or obtaining the data. A careful choice of the



58 DCMs based on POS features and estimation of Acc. PO solutions

sampling points will surely allow taking the most advantage of the models to explore and
find interesting configurations.



Chapter 6

DCMs based on NDS features and
Hypervolume estimation model

This chapter covers the use of dynamic compartmental models with a new set of features
to handle larger landscapes, and the use of the performance estimation model to predict the
hypervolume growth. The fitting process is changed and simplified to produce better fittings
in an easier way.

6.1 Comparison between NDS and POS based DCMs

Since the aim of the DCMs based on the NDS feature set is to be an alternative to the
POS feature set based ones, in this initial section the goal is to assess the accuracy of their
estimation in terms of features as well as the performance metric they give, looking also at
their ability to rank algorithms.

Given that the POS feature set can be used only when Pareto optimal solutions can be
enumerated, Dataset 3 is used, which contains instances where N = 20, making the generation
of the POS obtainable by enumeration.

The first part of the analysis focuses on the estimation accuracy of the features. Figure 6.1
and Figure 6.2 show in red the features estimations by DCMs with the POS and the NDS
feature sets, respectively, for population size 200 and the problem sub-class with 4 objectives.
Similarly, Table 6.1 and Table 6.2 show the R2 values of the fitting. Results are presented
for population size 200 on the 3, 4, and 5 objective problem sub-classes. As can be seen in
Figure 6.1 and Figure 6.2, visually there is a good fit for all features. Note that the estimation
made by DCM either with POS or NDS features follows the mean of data. However, NDS
features seem to better capture the variance than POS features. From Table 6.1 and Table 6.2,
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note that DCM with both feature sets present good R2 values for the respective features.
However, note that POA (Pareto Absolutely New) R2 values are significantly smaller than
NDNew (Non dominated New), the corresponding feature in the new feature set. The reason
for this is that the number of Pareto optimal solutions found by the algorithm is significantly
lower compared to the number of non dominated solutions. This makes it more difficult
for the DCM model to capture the POA signal, particularly in the early stages of the search.
Note also that there is a lower R2 score in the instances with 3 objectives, which is explained
by the high variance observed in these instances. Overall, the DCM with the new feature
set provides a higher estimation accuracy of the NDNew feature related to performance
estimation.

Figure 6.1: Measured (black) and estimated (red) values of the POS feature set POA-PON-
NPO on small enumerable instances with N=20 variables, K=1 variable interactions and
M=4 objectives. Population size 200.

Figure 6.2: Measured (black) and estimated (red) values of the NDS feature set NDNew-
NDOld-DOM features on small enumerable instances with N=20 variables, K=1 variable
interactions and M=4 objectives. Population size 200.

Following the previous analysis, now the focus moves to their ability to do performance
estimation. Figure 6.3 and Figure 6.4 show the measured and estimated values of the
accumulated number of PO solutions obtained from the POS features and the hypervolume
obtained from the NDS features, respectively, for all problem sub-classes and population
sizes. The performance estimation obtained from the POA feature, i.e. the accumulated
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Table 6.1: R2 values for the POS feature set POA-PON-NPO by DCM and the estimated
number of accumulated Pareto optimal solutions. Small instances, population size 200.

Instance POA PON NPO Acc. PO

M3N20K1 0.480 0.755 0.736 0.457
M4N20K1 0.472 0.961 0.951 0.731
M5N20K1 0.376 0.950 0.943 0.801

Table 6.2: R2 values for the NDS feature set NDNew-NDOld-DOM by DCM and the
hypervolume by the HV model. Small instances, population size 200.

Instance NDNew NDOld DOM HV

M3N20K1 0.626 0.649 0.548 0.373
M4N20K1 0.657 0.930 0.894 0.695
M5N20K1 0.640 0.866 0.921 0.736

Figure 6.3: Accumulated number of Pareto optimal solutions (M)easured on the data and
(E)stimated by DCM using the POS feature set. Small enumerable landscapes with N=20,
K=1 and M=3, 4 and 5. Population size 50, 100 and 200.

number of PO solutions, overall approaches the mean of the measured values on population
sizes 100 and 200 but underestimates on a population size of 50. Note that in all cases it does
not capture the variance. Nonetheless, it ranks the different configurations in each problem
sub-class correctly. This particular trait allowed this feature set as seen Chapter 5 to be used
in configuration selection.

The performance estimation obtained from the NDNew feature, i.e. hypervolume, is able
to capture the variance as well as achieve a mean closer to the one found in the measured
data, which also allows this feature set to rank algorithm’s configurations with confidence.
Not only that, taking a closer look at the estimated vs measured performance for each feature
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The first consideration is whether to join the data of the features from different landscapes
(instances), in which case there will be several entries for the same t, or to take the average
of the feature values on all landscapes for each generation. After some initial trials, it was
found that the performance estimation model gives better results by using the joined dataset,
while the DCM benefits from using the dataset formed by the average of the feature values.

The second consideration is whether to use the measured or the estimated values of the
features for the independent variables or predictors. Note that, in the performance estimation
model, to compute HVt+1 the predictors are NDNewt+1 and HVt . Thus, the performance
estimation model can take as input either the NDNewt+1 measured on the population returned
by the algorithm, or the estimation given by the DCM model. Similarly, it can take as input
the HVt measured for t ≥ 0 or the value estimated by the model for t > 0 (HV0 for t = 0
is always measured in the initial population). In the case of DCM, to compute the value
of a feature at time t + 1, the predictors are the feature itself and the other features at the
previous generation, as shown in Eq. (3.2). It was verified that the fitting of the hypervolume
estimation model works better when using estimates rather than measured values for both
of its inputs. That is, the dataset for fitting is formed by the NDNewt+1 and HVt values
estimated at each generation from DMC and the performance estimation model, respectively.
In the case of DCMs, better results were observed when the datasets for fitting are formed by
the measured values of the features, particularly for prediction on unseen landscapes.

Once the data is prepared according to which results in a better fitting for the model,
instead of the previously introduced process, here the Levenberg-Marquardt Non-Linear
Least Squares [81] to fit the data to each equation from the original DCM system of eq. (3.2)
as it has been shown to produce better results for both models.

The method expects that a dataset formatted as (yt , x1
t , x2

t , . . . ) for t = 0 to t = tmax is
provided, where yt denotes the dependent variable and x1

t , x2
t are the independent ones. The

data has the following format (HVt , HVt−1, NDNewt) for the PEM fitting, and 3 datasets
for the three compartment DCM, fitting one per feature where only the first column changes
depending on the feature’s equation we are solving, e.g for NDNew the data will be (NDNewt ,
NDNewt−1, NDOldt−1, DOMt−1).

Note that the models take the previous estimation as the base for the next one, yt de-
pends on yt−1 and so on. In the case of DCM, this dependency on the previous value also
encompasses the values estimated by the other equations in the system. Taking into account
this fact resulted in a better fitting for the PEM. Its input data was changed so it has the HV
measured at the initial generation while the successive HV values are estimates produced by
the model. This way, the chosen parameters have a more powerful effect, forcing the fitting
process towards good parameters. A similar strategy was attempted to fit the DCMs, while
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good results could be seen on the data used for the fitting, a reduction in quality was found
when estimating unseen landscapes.

Cross-validation was also introduced, so the obtained parameters are not a product of
over-fitting to our generated data and would generalize better in the presence of new and
unseen data. k-fold cross-validation was chosen and applied during the DCMs and PEM
fitting process. In k-fold cross-validation, the dataset is split into k subsets of equal size, each
subset is used only once as a test set and k−1 times as part of the training set. For the data
from Dataset 4, 30 runs of the algorithm are available for this task, corresponding each one to
a different landscape. To ensure an 80/20 split between training and testing data, k is set to 5,
a common recommendation for this method as suggested in [82]. So each fold is composed
of one subset of 6 landscapes worth of test data, and the remaining 4 subsets, provide 24
landscapes worth of training data. The score obtained on each set is measured by previously
introduced goodness of fit or R2, a value between 0 and 1 that indicates how much of the
variance present in the data is explained by the model.

Under cross-validation, the fitting process per configuration is done only with the data
from the training set, and the resulting parameters estimation ability is measured on the test
set, repeated for each fold. Table 6.3 and Table 6.4 report the average R2 of the 5 scores
obtained for the training and test datasets for all population sizes and considering 800000 FE.
Since at the end of the process 5 sets of parameters are found, the average is taken and keep
as the parameters found for that configuration and number of FE.

6.3 Model Quality on Seen Landscapes

Table 6.3: R2 values obtaining during the model training. Obtained doing k-fold cross-
validation with k = 5.

Training R2

Population NDNew NDOld DOM HV

3000 0.827232 0.854135 0.834016 0.838772
5500 0.755633 0.852176 0.825499 0.855914
8000 0.669367 0.921005 0.908973 0.833325

10500 0.559348 0.915412 0.896397 0.829055

Table 6.3 shows the R2 values for training and Table 6.4 for the testing set used in the
cross-validation. While for the features NDOld and DOM the obtained R2 is relatively high,
the NDNew feature ends up always with lower scores. However, note that even in this
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Figure 6.6: [Seen Instances] Comparison between Measured (black) and Estimated (red)
features for different population sizes.
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Table 6.4: R2 values obtaining during the model testing. Obtained doing k-fold cross-
validation with k = 5.

Testing R2

Population NDNew NDOld DOM HV

3000 0.833518 0.842590 0.820838 0.827245
5500 0.751173 0.842662 0.813348 0.854298
8000 0.670151 0.918018 0.906135 0.829892

10500 0.572069 0.910156 0.888895 0.823724

situation the NDNew values obtained can properly guide the PEM and attain R2 values above
0.80. NDNew has a large variance (up or down) between each generation, as it conveys the
number of new solutions found, which can be better appreciated in Figure 6.6.

For a more visual verification, the DCMs and PEM estimations and the corresponding
four features NDNew, NDOld, DOM, and HV measured values are plotted. As can be
expected from the R2, the plot agrees on the ability of the model to follow the changes in each
feature. The DCM estimated features’ go through the mean of the data for all the population
sizes tried with the algorithm as well as the HV estimation, which follows very closely the
measured values in all the different instances of the problem.

An interesting observation can be made with respect to the R2 values of the feature
NDNew. When the population size grows, the R2 reduces. For the other two features, the
trend is different. One possible explanation could be the higher variance of the feature
NDNew that tends to grow also with the population size, so an impact in the R2 is not
unexpected.

Another comes from the shape of NDNew on the larger population sizes. In population
3000, at the end of the search NDNew has a downward trend but with a soft slope and seems
to be converging. Compared to population 10500, where only a downward trend is present,
and the slope looks more acute. It is possible that with a few more generations, the more
natural converging trend is also picked by the model, which then would be reflected in the
estimations. The model expects that the features will converge at some point to a value, so
better results can be expected when the data used to train them contains these trends.

6.4 Model Quality on Unseen Landscapes

During cross-validation, the testing R2 values gave a prospect of how the models will behave
when dealing with new instances. In this section, this will be verified using the remaining
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Table 6.5: R2 values for unseen landscapes.

Population NDNew NDOld DOM HV

3000 0.844574 0.892899 0.883995 0.833870
5500 0.793194 0.915092 0.907057 0.848590
8000 0.732833 0.938995 0.930181 0.810288

10500 0.712733 0.919996 0.913953 0.792546

20 landscapes data from Dataset 4. This can be seen also as simulating the following use
case, where a model trained for a problem class and a given algorithm is available, so it
can directly be used to check how these algorithms will perform on other instances of the
same problem. Going a little further, using landscape analysis techniques the problem can be
profiled and see if it is similar enough to be considered of the same class for which trained
models are available.

The steps to use the model in the face of new instances are, generate a random population
for each one and evaluate according to the instance. Then the number of individuals that
match each feature is counted for the DCM and the hypervolume is calculated. After these
steps, all the data needed to get the first estimation is ready, and from then on, the models’
results become the input for the next estimations.

Looking at Table 6.5 and the results of the testing cross-validation set in Table 6.4, a
comparison can be done. For the DCM features, even better scores are found for the NDNew
and similar ones for the NDOld and DOM features. The PEM also performed well, with
scores similar to the ones according to the cross-validation.

Going to the visual inspection with Figure 6.7 and comparing it to the previous plots,
here also the DCM feature estimation goes through the mean of the data. There is a small
drop towards the end in NDNew, so the estimation may go more under the mean by the end.
As for the PEM results, once again the estimation is very close to the measured values, but
for some landscapes, the estimation is higher than the measured values.

The results seen so far seem to point that the models are able to learn how a particular
algorithm will perform on a class of problems. Even though relationships between variables
are different between each landscape, AεSεH ability to solve it, in terms of a performance
metric as the hypervolume and generation of non dominated solutions follows a pattern that
is possible to capture with a model.
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Figure 6.7: [Unseen Instances] Comparison between Measured (black) and Estimated (red)
features for different population sizes.
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Table 6.6: R2 values for one unseen landscape multiple seeds.

Population NDNew NDOld DOM HV

3000 0.836272 0.892363 0.882532 0.812154
5500 0.780932 0.900579 0.888665 0.813902
8000 0.713051 0.930554 0.921455 0.780945

10500 0.680668 0.918793 0.906406 0.806310

6.5 Variability on a Single Landscape

Having seen how the model behaves with several instances, the question that naturally
follows is if the model can pick up the algorithm variability. In other words, if several initial
populations are generated for a single instance, what kind of estimation these models will
produce. To answer this a single landscape was selected from the unseen set in Dataset 4 and
30 initial populations with different seeds were generated, i.e each population composition in
terms of the features will be different and dependent on the selected seed.

Looking at Table 6.6 the R2 scores for all features are similar to the results when all
instances were considered. It seems that the model is not only capturing the inherent variance
between instances, but also the variation that can occur by starting from different seeds. This
happens because the output of the model can be seen as the expected value. Evolutionary
algorithms may be stochastic, but we can always expect that the final population composition
will be around an average value, which is exactly what the model can and is capturing.

Graphically it can be seen in the plots of Figure 6.8 the NDNew feature of the DCM
and the estimation of the hypervolume produced by the PEM for all configurations. The
NDNew values produced by the model, as with the previous case, still goes through the mean
of the data, which is sufficiently descriptive to guide the PEM and produce close values to
the measured hypervolume.

As such, it is possible to train models using several instances of a problem class and
capture the expected performance on them. Also, some of the variability shown by algorithms
when starting with different initial populations can be reproduced with the models. These
results are very useful and promising when combined with the fact that all those estimations
are simple mathematical operations that are quick to perform, and at most require spending a
few resources creating initial populations for each configuration and measure the features.

Capturing features of dynamics and estimating performance for an algorithm is interesting
on its own. However, it can become more useful when combined with problem features and
landscape analysis to build a framework for algorithm selection and configuration. Indeed,
using the unseen instance reported above, and assuming the problem sub-class has been
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Figure 6.8: Comparison of Features NDNew and HV measured (black) and estimated (red)
for a single landscape considering multiple seeds.

Figure 6.9: Final hypervolume values after 800000 FE for various configurations.
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identified using other tools (problem features, landscape analysis), the previously trained
models can be used to explore which configuration gives the best performance for a fixed
budget of FE.

The expected performance for the 30 different initial populations referred above and
800000 FE is shown in 6.9. Looking at the plot, it can be concluded that a population size of
3000 gives the better performance on this instance and specified budget, without having to
run the algorithm.

As more trained models become available, more pairs of algorithms and problems can be
considered, and if interpolation, as shown in the previous chapter is added, it becomes easier
to explore other configurations not initially considered during the training of the models.

6.6 Transferability

In this last section, one important question is going to be explored. If several of the trained
models available do not much completely with the problem instance to be investigated,
then is possible or not, to use models trained on similarly enough problem sub-classes that
only differ slightly on number of objectives, number of variables, and interaction between
variables. In this section, the Dataset 5 will be used.

6.6.1 Same N-K different M

The parameter M determines the number of objectives in MNK-Landscapes, which impacts
the dimensionality of objective space and number of non dominated solutions per front.
Using the subclass of problems M3N100K5, M4N100K5, and M5N100K5, the behavior
of a model trained on M4N100K5 when it tries to estimate for a lower and higher number
of objectives will be analyzed. Figure 6.10 shows in black the measured data, in red the
estimation done with the model trained on the measured data, and in blue is the estimation
for the model trained on instances from the subclass M4N100K5.

As can be noted from the figures, when the model for M4N100K5 is used to estimate
instances with lower number of objectives, this model overestimates the NDNew feature
which impacts the hypervolume estimation, in turn making this model underestimate the
hypervolume. When going to a larger number of objectives, the opposite situation occurs. A
closer look to the difference in the estimation can be appreciated in Figure 6.11.

This could be happening because there is a difference in the range of the hypervolume
for each subclass. Due to the range of each objective function ∈ (0 to 1) and how the metric
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Figure 6.10: Examples of a model trained with M4N100K5 instances estimation ability on
instances with lower (M=3) and higher (M=5) objectives.

Figure 6.11: Using model trained on M4N100K5 instances to estimate performance on
instances with lower and higher M values.
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is calculated, the maximum achievable hypervolume reduces with the number of objectives.
This may be avoided by introducing normalization.

Another possible reason is the difference in number of non dominated solutions for each
subclass. It is known, that with more objectives, in most cases the number of non dominated
solutions increases quickly. Thus, a DCM fitted for a given M will overestimate the values
of the features NDNew for a lower M, and underestimate for a larger M. Looking at the
coefficients that affect how NDNew is estimated, in equation (3.2), it is expected that the
coefficients (1-(α +β )), ᾱ and β̄ will take larger values for larger number of objectives, as
seen in Table 6.7. Since in these test problems the fitness values are in the range 0 ≤ fi ≤
1 the absolute value of the hypervolume appears smaller with M. Thus, coefficient µ in
the performance estimation model of equation (3.4) should be smaller for larger number of
objectives, as the model expects higher counts of NDNew each time, and the hypervolume,
in this case, is in a lower range. This suggests that normalization of the counters according to
the number of objectives should be introduced.

Table 6.7: Parameters for the NDNew equation of the DCM and the hypervolume model for
Subclass N100K5 instances solved with AεSεH with population size 100.

M Subclass α β ᾱ β̄ µ

3 N100K5 0.412523 0.002102 0.051730 0.081968 0.002152
4 N100K5 0.395017 -0.010663 0.080203 0.128189 0.000978
5 N100K5 0.378647 -0.012511 0.097756 0.196612 0.000480

Although an example, this illustrates that there are some considerations that should
be taken into account to attempt model transferability for different number of objectives,
and even then results may not be as good as in other domains like number of variables of
interaction between variables.

6.6.2 Same M-K different N

The parameter N determines the number of decision variables in an MNK-Landscape, which
modifies the size of the search space. Using the subclass of problems M4N100K5, M4N90K5,
and M4N110K5 here it is explored how a model trained on instances with N=100 is able
to estimate the features and performance on instances with lower and higher number of
variables.

Figure 6.12 shows in black the measured values of the features for each instance, in red
is the model estimation trained for each given instance (N=90 or N=110), while in blue is
the model trained on M4N100K5. Note that the model trained on the subclass M4N100K5
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Figure 6.12: Examples of a model trained with M4N100K5 instances estimation ability on
instances with lower (N=90) and higher (N=110) decision variables.

is able to follow closely the measured data for the subclasses M4N90K5 and M4N110K5.
Taking a closer look at the results of the performance estimation in Figure 6.13 there is a lot
of overlap between the models’ estimations for each subclass. Looking also at the parameters
for both models in Table 6.8, the performance model parameter µ varies slightly between
each subclass. This suggests that model transferability for different N could be possible for a
given range ∆N on some problems.

Table 6.8: Parameters for the NDNew equation of the DCM and the hypervolume model for
Subclass M4 K5 instances solved with AεSεH with population size 100.

Subclass N α β ᾱ β̄ µ

M4 K5 90 0.348765 -0.010655 0.066020 0.103543 0.001011
M4 K5 100 0.395017 -0.010663 0.080203 0.128189 0.000978
M4 K5 110 0.412638 -0.017057 0.085076 0.128159 0.000925

6.6.3 Same M-N different K

The parameter K determines the number of correlated variables of each variable of the
problem and affects the structure of the problem. For example, it is known that the number
of solutions reduces with K, especially in the top local fronts of the landscape [83]. However,
these changes are gradual. In addition, within a subclass of problems, there is variability in
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Figure 6.13: Using model trained on M4N100K5 instances to estimate performance on
instances with lower and higher N values.

instances, implying that in the problem feature space some instances of a given class may
look like ones of another class with a slightly smaller or larger K.

This suggests that to some degree transferability of models could be possible. To
illustrate this, here are some example results by a model trained with instances from the class
M4N100K5 and tested on the K3 and K10 subclasses. In Figure 6.14 the points in black and
red represent the measured data and its estimation by a model fitted with instances of the
sub-class K3/K10, respectively, while the points in blue represent the estimation of the model
fitted in subclass K5 transferred to subclass K3/K10. These plots correspond to AεSεH with
population size 200.

Note that the transferred model in blue is underestimating the value of the feature NDNew
when is transferred to instances with a smaller K, and overestimating when is transferred to
instances with larger K. Since this feature is also used by the performance estimation model,
the hypervolume is slightly over/underestimated in a similar way as shown in Figure 6.15. Is
also interesting to look at the parameters for both models in Table 6.9, and see how close they
are to each other, even when the subclasses are quite far apart in one case (K=5 and K=10).
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Figure 6.14: Examples of a model trained with M4N100K5 instances estimations ability on
instances with lower and higher K values.

Figure 6.15: Using model trained on M4N100K5 instances to estimate performance on
instances with lower and higher K values.
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Table 6.9: Parameters for the NDNew equation of the DCM and the hypervolume model for
Subclass M3N100 instances solved with AεSεH with population size 200.

Subclass K α β ᾱ β̄ µ

M3N100 3 0.293488 -0.039358 0.067216 0.087579 0.000512
M3N100 5 0.330292 -0.026355 0.065760 0.080147 0.000543
M3N100 10 0.375878 -0.025156 0.052120 0.054130 0.000577

From the previous sections on transferability, in summary, it seems that in the case of
MNK-Landscape is easier to transfer models that differ in number of variables (N) and
variable interactions (K). However, how large the difference can be and still provide a close
estimation will require further experiments to test the limits of this use case for these models.





Chapter 7

Conclusions and Future Work

In this work, the population dynamics of some multi- and many-objective optimizers were
studied using dynamic and performance models. Through examples, it was shown how to
interpret the model parameters to analyze and compare algorithms, extract models for other
configurations and use the estimation of the compartments to select between configurations
under a budget, in small and large problems.

In small landscapes, the considered two and three compartments models were fitted
without issues, achieving high values in the coefficient of determination R2 which could also
be verified in the plots. Although the combination of features and algorithms may produce
different dynamics, as seen in the plot shapes, it was verified that the model equations can
capture and explain a high percentage of the fitted data. There are cases where the nature of
the algorithm produces a high variance in the measured features, but the model is still able to
follow the trend of data, producing estimations around the expected value for each feature.

The analysis done with models shows the parameters can capture with high precision
the interaction between features. Using the equation forces the user to consider the changes,
not in one feature but all of them simultaneously. Thus, given the initial values for each
compartment, and the simplified system of equations is possible to see how a particular
feature changes and the effect it will produce on the remaining ones, which can later be
linked to the way the algorithm is designed or its behavior on the instance.

Focusing on the model that tracks the discovery of new Pareto Optimal Solutions, it
was shown that the accumulated number of Pareto Optimal solutions has a high correlation
to the hypervolume, a well-known indicator to assess the performance of multi-objective
evolutionary algorithms. Using this discovery, the model was used to rank algorithms on the
same instance, with similar results to the ordering obtained with the performance metric.

Furthermore, it also allowed the use of models to select between configurations by running
the algorithm only in some sample configurations, fitting models with that data, and using
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interpolation to extract from the parameters, the models corresponding to configurations
between the selected samples. The results indicated that this is a promising methodology
that given well-fitted models in the selected samples, can help the user to explore and find
which configuration makes better use of its computational budget.

In larger landscapes, the models around the Pareto Optimal Set are not available, which
demanded the creation of a new feature set that does not rely on it while allowing the previous
task to be done. Here also was introduced a new model to estimate directly performance
instead of relying on a correlation with one of the features.

Both the compartmental models with the features set around the most recent non domi-
nated set and the performance estimation model showed good estimations according to the
training and testing R2 values obtained via cross-validation on the training instances. Further
results on unseen instances, corroborated the scores obtained for testing. Even with a set of
features fixed around a reference that changes constantly as is the most recent non dominated
set, the model can follow the trend of the data.

As for the new model, it also showed a good overall result, after finding the proper steps
to prepare the data before the fitting. In addition to results on unseen instances, it was tested
also variability on a single unseen instance, by making estimations parting from different
compositions of the initial population and see how well they fare when compared to measured
values. Results have shown that training the model with several instances also prepared it to
handle the variability found in a single one. The previous results also were considered to
showcase how the model will perform on configuration tasks, achieving good results as was
the case with small landscapes.

Although it may seem that models add overhead to the process, they should be seen more
as a mathematical approach to certain tasks that evolutionary computation practitioners were
doing by experience. Having certain aspects of their dynamics in numbers can help explain
more clearly their behavior when analyzing them, while configuration and choosing certain
parameters can now be done relying on past data and not only past experiences.

This work presents a step towards developing frameworks and tools that can help charac-
terize how algorithms perform and behave on a problem, and use this information to make
decisions on which one should be more appropriate for a given problem, how it can be
reconfigured, while also giving clues as to what steps can be taken to make them better.

To keep moving forward on these goals, there is ongoing work to see the behavior of the
algorithms considered in this work on the DTLZ benchmark problems, with early results
bringing up the importance of choosing a reference point for the hypervolume calculation.
Another avenue being explored is changing the model equations to consider only a subset of
the relationships between compartments. Limiting their relationships can be used to isolate
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which ones are involved in mechanism as elitism, or rediscovery of solutions. Finally, in
terms of algorithm configuration is being explored the use of models to decide when a change
in population size is needed to avoid early stagnation.

In future works, more algorithms and problems are planned to be considered to build a
database of behavior and try to find interesting patterns in this data. To complement this work,
it would also be interesting to use exploratory landscape analysis features, or other tools to
characterize the problem themselves, find problem classes that are close, and see what the
models say about the behavior of an algorithm solving those problems. Finally, it could also
prove worthy to change interpolation for other methods, with the hopes of extracting more
robust models without depending too much on the quality of sampled ones.
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