| 1  | ORIGINAL ARTICLE                                                                                              |
|----|---------------------------------------------------------------------------------------------------------------|
| 2  | A new noninvasive method for measurement of dynamic lung compliance from fluctuations on                      |
| 3  | photoplethysmography in respiration                                                                           |
| 4  |                                                                                                               |
| 5  | <sup>1</sup> Haruna Yamazaki, * Keisaku Fujimoto <sup>2</sup>                                                 |
| 6  |                                                                                                               |
| 7  | Affiliations with full mailing addresses                                                                      |
| 8  | <sup>1</sup> Department of Biomedical Laboratory Sciences, Graduate School of Medicine, Shinshu University.   |
| 9  | 3-1-1, Asahi, Matsumoto, Nagano 390-8621, Japan.                                                              |
| 10 | <sup>2</sup> Department of Clinical Laboratory Sciences, Shinshu University School of Health Sciences. 3-1-1, |
| 11 | Asahi, Matsumoto, Nagano 390-8621, Japan.                                                                     |
| 12 |                                                                                                               |
| 13 | *Corresponding author: Keisaku Fujimoto.                                                                      |
| 14 | Departments of Clinical Laboratory Sciences, Shinshu University School of Health Sciences, 3-1-1              |
| 15 | Asahi, Matsumoto, Nagano, 390-8621, Japan                                                                     |
| 16 | Tel: +81-263-37-2393, Fax: +81-263-37-2393, E-mail address: <u>keisaku@shinshu-u.ac.jp</u>                    |
| 17 |                                                                                                               |
| 18 | Running Title: Dynamic lung compliance with application of PPG                                                |

| 1 | n |
|---|---|
| Т | 9 |

| 20 | New & Noteworthy: Our newly developed method for measuring dynamic lung compliance (Cdyn)             |
|----|-------------------------------------------------------------------------------------------------------|
| 21 | in combination with changes in estimated intrathoracic pressure from fluctuations on                  |
| 22 | photoplethysmography with respiration and lung volume measured simultaneously by spirometry           |
| 23 | showed good linear regression between the estimated Cdyn and the Cdyn measured with an                |
| 24 | esophageal balloon, and he estimated percentage of predicted Cdyn (%Cdyn) showed                      |
| 25 | significantly lower values in patients with interstitial lung disease (ILD) than in healthy subjects  |
| 26 | and d chronic obstructive pulmonary disease (COPD) patients, and significant correlations             |
| 27 | with vital capacity and lung diffusion capacity.                                                      |
| 28 |                                                                                                       |
| 29 | Keywords: pulse wave, intrathoracic pressure, esophageal pressure, interstitial lung disease, chronic |
| 30 | obstructive pulmonary disease                                                                         |
| 31 |                                                                                                       |
| 32 | Conflicts of Interest Disclosure: This study was supported by collaborative research expenses from    |
| 33 | Denso Corporation.                                                                                    |
| 34 |                                                                                                       |
| 35 |                                                                                                       |
| 36 |                                                                                                       |

### 37 Abstract

38Lung compliance is important in interstitial lung disease (ILD). However, the measurement requires 39placement of an esophageal pressure probe, and is therefore not done in routine clinic practice. This 40 study was performed to develop and verify a new noninvasive method for estimation of dynamic lung 41compliance (Cdyn) with a photoplethysmograph (PPG) of pulse wave representing as the changes of 42absorbance of green LED for hemoglobin, and to examine its usefulness. A system for measuring 43Cdyn in combination with changes in estimated pleural pressure (Ppl) from the fluctuations on PPG 44with respiration and lung volume measured simultaneously by spirometry was developed, and verified 45to show correspondence with the estimated Ppl and the esophageal pressure (Pes), estimated Cdyn, 46and Cdyn measured with an esophageal balloon. Furthermore, the estimated percentage of predicted 47Cdyn (% Cdyn) was compared among healthy subjects (HS) (n = 33) and patients with chronic 48obstructive pulmonary disease (COPD) (n = 31) and ILD (n = 30). Both the estimated Ppl 49and Cdyn were significantly correlated with the Pes (r = 0.89) and measured Cdyn (r = 0.63), respectively. The estimated %Cdyn in ILD showed significant lower values than those in HS and 5051COPD. The estimated %Cdyn was significantly related to percentage of predicted vital capacity 52(VC) (r = 0.57, P < 0.01) and percentage of predicted diffusion capacity of carbon monoxide 53(DLCO) (r = 0.50, P < 0.01) in patients with ILD. These findings suggested that the newly developed 54noninvasive and convenient method for Cdyn estimation using a combination of PPG and

spirometry may be useful for the assessment of lung fibrosis in ILD.

56

57

Introduction

```
58
       Static lung compliance (Cst) is the lung compliance under static conditions, whereas dynamic lung
59
       compliance (Cdyn) is the lung compliance during tidal breathing. Cst is affected by lung elastic recoil
60
      pressure. Cst shows higher values in emphysema and lower values in interstitial lung disease (ILD).
61
       In chronic obstructive pulmonary disease (COPD), Cdyn varies in accordance with the severity of
62
       emphysema and airway diseases (1, 2). Although there is volume loss in the progressive stage of ILD
63
       and no correlations were observed between standard physiological parameters, such as vital capacity
       (VC), total lung capacity (TLC), and diffusion capacity of carbon monoxide (DLCO), and pathological
64
65
       severity, Cst was strongly correlated with the degree of fibrosis assessed by scoring of lung biopsies
66
       (3). Reductions in Cdyn occur to the same extent as reductions in Cst in subjects with ILD (4).
67
       Therefore, Cdyn can be used as an index of lung elasticity in ILD, and may be useful for evaluation
68
       of disease progression or efficacy of therapeutic regimens. However, determination of Cdyn requires
69
       measurement of esophageal pressure (Pes) with an esophageal balloon. Pes has been used as an
70
       estimate of pleural pressure (Ppl) since 1949 when Buytendijk pioneered the technique (5). Lung
71
       compliance measurement therefore requires placement of a Pes probe, which is invasive and not
72
       routinely done in clinical settings. Therefore, a new noninvasive and convenient method for evaluation
```

# 73 of lung compliance is required.

| 74 | Systolic and diastolic blood pressures vary with respiration, reaching a minimum when Ppl is at its        |
|----|------------------------------------------------------------------------------------------------------------|
| 75 | lowest during inspiration and reaching a maximum during expiration when Ppl is greatest (6). The           |
| 76 | most likely additional mechanism is the decrease in left ventricular stroke volume during inspiration      |
| 77 | (7, 8). Shiomi et al. demonstrated interventricular shift to the diastolic left ventricle, inducing        |
| 78 | flattening of the left ventricle with pulsus paradoxus during non-REM sleep in obstructive sleep apnea     |
| 79 | (OSA) (9), and also reported that more negative Pes was significantly correlated with increased right      |
| 80 | ventricular internal end-diastolic dimension and decreased left ventricular internal end-diastolic         |
| 81 | dimension monitored by echocardiography during sleep in children with OSA (10). Therefore, the             |
| 82 | mechanism underlying the variation of stroke volume with respiration has been considered to be as          |
| 83 | follows: the more negative Ppl during inspiration induces an increase in venous return, which results      |
| 84 | in an increase in end-diastolic right ventricular volume and interventricular shift to the left ventricle, |
| 85 | and decreased end-diastolic left ventricular volume and stroke volume. However, Buda et al. (11)           |
| 86 | reported that during the Müller maneuver, left ventricular end-diastolic volume increased and the          |
| 87 | stroke volume and cardiac output were significantly decreased. It was suggested that the marked            |
| 88 | intrathoracic negative pressure affected left ventricular function by increasing left ventricular          |
| 89 | transmural pressure, which resulted in an increase in afterload.                                           |

90 The photoplethysmograph (PPG) waveform, well known as the pulse oximeter waveform, is an

| 91  | amplified and highly filtered measurement of light absorption by the local tissue over time, and            |
|-----|-------------------------------------------------------------------------------------------------------------|
| 92  | represents the changes of peripheral blood volume. It has been demonstrated that the variation of stroke    |
| 93  | volume with respiration reflects the fluctuation of pulse wave on photoplethysmography (PPG) (12).          |
| 94  | That is, the fluctuation in PPG may reflect the swing of Ppl with respiration. If the within-breath         |
| 95  | changes in PPG correspond to the changes in Ppl, it would be possible to estimate Cdyn in combination       |
| 96  | with changes in Ppl estimated from the fluctuation of PPG and the simultaneous measurement of lung          |
| 97  | volume by spirometry.                                                                                       |
| 98  | We have developed a new noninvasive system for measurement of Cdyn in combination with changes              |
| 99  | in Ppl estimated from fluctuations on PPG with respiration and lung volume measured simultaneously          |
| 100 | by spirometry, confirmed the correspondence of the Cdyn estimated from PPG and the Cdyn measured            |
| 101 | with an esophageal balloon, and compared the Cdyn estimated by PPG among healthy adult volunteers           |
| 102 | and patients with COPD and ILD.                                                                             |
| 103 |                                                                                                             |
| 104 | Materials and methods                                                                                       |
| 105 | 1. Subjects                                                                                                 |
| 106 | Three healthy subjects (HS; mean age: $43 \pm 14$ years old, range: $32 - 58$ years) in experiment 1; 28    |
| 107 | HS, 14 patients with stable COPD (GOLD classification: stage 1, $n = 7$ ; 2, $n = 6$ ; 3, $n = 1$ ), and 10 |

patients with ILD in experiment 2 (Table 1); and 33 HS, 31 patients with stable COPD (GOLD 108

| 109 | classification: stage 1, $n = 8$ ; 2, $n = 14$ ; 3, $n = 4$ ; 4, $n = 5$ ), and 30 patients with ILD in experiment 3 |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 110 | (Table 2) who were different from the subjects in experiment 2 were recruited between April 2013 and                 |
| 111 | May 2016. All subjects were Japanese. Subjects who showed arrhythmia and atrial fibrillation, had                    |
| 112 | peripheral circulatory failure, or were diagnosed with heart failure, renal failure, or impaired cognitive           |
| 113 | function were excluded from the study. Patients with ILD due to scleroderma were excluded in                         |
| 114 | experiment 2 because scleroderma may involve esophageal contractility and elastance, and therefore                   |
| 115 | may affect the relevance of Pes with regard to reflecting Ppl. Seven patients with COPD were treated                 |
| 116 | with long-acting bronchodilators (LABD), three with LABD and inhaled corticosteroid (ICS), and                       |
| 117 | four received no therapy. Three patients with ILD were treated with oral steroids, two were treated                  |
| 118 | with anti-fibrotic agent, and five received no therapy. Long-term oxygen therapy was prescribed in                   |
| 119 | two patients with COPD and one patient with ILD in experiment 2. Seventeen patients with COPD                        |
| 120 | were treated with LABD, nine were treated with LABD and ICS, and five received no therapy. Seven                     |
| 121 | patients with ILD were treated with oral steroids, five were treated with immunosuppressive agents,                  |
| 122 | one was treated with anti-fibrotic agent, and sixteen received no therapy. Long-term oxygen therapy                  |
| 123 | was prescribed in eight patients with COPD and four patients with ILD in experiment 3. All subjects                  |
| 124 | were given an adequate explanation of the study and provided written informed consent. This study                    |
| 125 | was conducted in accordance with the International Conference on Harmonization-Good Clinical                         |
| 126 | Practice and the Declaration of Helsinki (2008), and was approved by the Shinshu University of                       |

127 Medical Ethics Committee (approval number: 2291, May 8, 2014).

128

129 2. Methods

130 2.1. Protocol

131The fluctuations in PPG signals with respiration were monitored as changes in absorbance of reflected 132light from a green LED and were affected by various factors. Therefore, it was necessary to convert 133from changes in PPG signals to changes in pressure, and to calibrate with the changes in pressure at 134airway opening (Pao) with respiration under loading with inspiratory negative pressure in each 135measurement. Experiment 1 was performed to examine the correspondence between the changes in 136Pao and Pes, and between the estimated Ppl from PPG and Pes to verify the calibration method. Experiment 2 was performed to verify the correspondence between the estimated Cdyn from PPG and 137 138Cdyn measured by Pes in the population including HS and patients with COPD and ILD. Experiment 1393 was performed to compare the estimated Cdyn among HS and patients with COPD and ILD who 140 were different from the subjects in experiment 2, and to examine the relationships with pulmonary 141 function. 1421432.1.1. Experiment 1: Verification of calibration method and correspondence with Ppl estimated from

144 <u>PPG and Pes</u>

| 145 | The method for calibration by loading inspiratory negative resistance was verified with an esophageal  |
|-----|--------------------------------------------------------------------------------------------------------|
| 146 | balloon. Briefly, an esophageal balloon was inserted into each of three HS who were attached to a PPG  |
| 147 | and spirometer with inspiratory negative resistive load and breathed 12 times at 4 s/breath with the   |
| 148 | tidal volume gradually increasing from about 0.3 L to 0.8 L. The changes in pressure Pao and Pes were  |
| 149 | measured simultaneously to verify the correspondence between both measurements. After calibration,     |
| 150 | the resistive device was removed, and breathing was continued in the same manner with measurement      |
| 151 | of the changes in estimated Ppl and Pes simultaneously, and the coincidence of both measurements       |
| 152 | was verified. The data of Pao, Pes, and the intrathoracic pressure estimated from PPG fluctuation were |
| 153 | collected from three healthy subjects.                                                                 |
| 154 | 2.1.2. Experiment 2. Comparison of the estimated Cdyn from PPG and the Cdyn measured by the            |
| 155 | method using an esophageal balloon                                                                     |
| 156 | Twenty-eight HS, 14 patients with COPD, and 10 patients with ILD underwent pulmonary function          |
| 157 | tests, including spirometry, lung volume, diffusing capacity, and ventilator unevenness, followed by   |
| 158 | determination of estimated Cdyn in combination with PPG and spirometry. Finally, all subjects          |
| 159 | underwent measurement of Cst and Cdyn by the method using an esophageal balloon, and the results       |
| 160 | were compared with the estimated Cdyn determined by PPG.                                               |
| 161 | 2.1.3. Experiment 3. Comparison of the estimated Cdyn from PPG among HS, patients with stable          |
| 162 | COPD, and patients with ILD                                                                            |

| 163 | Thirty-three HS, 31 patients with COPD, and 30 patients with ILD underwent pulmonary function    |
|-----|--------------------------------------------------------------------------------------------------|
| 164 | tests followed by determination of estimated Cdyn in combination with PPG and spirometry. We did |
| 165 | not measure Cst and Cdyn using an esophageal balloon in this experiment. The estimated Cdyn,     |
| 166 | expressed as percentage of predicted Cdyn (%Cdyn), from PPG was compared among these subjects.   |
| 107 |                                                                                                  |

- 167
- 168 2.2. Methods for the estimation of Cdyn
- 169 <u>2.2.1. Development of a system for the estimation of Cdyn</u>

| 170 | A reflection-type PPG using a green LED with a wavelength of 525 nm developed by Denso                   |
|-----|----------------------------------------------------------------------------------------------------------|
| 171 | Corporation (Kariya, Japan) was used in this study. The device showed good absorption for                |
| 172 | hemoglobin and a small degree of surface reflection on the skin, and used an alternating current (AC)    |
| 173 | amplifier corresponding to the lower limit of 0.1 Hz to sensitively detect respiratory components        |
| 174 | superimposed on PPG. This device was attached to the right index finger. The position of finger was      |
| 175 | adjusted at the height of heart although the estimation of intrathoracic pressure did not largely affect |
| 176 | by the position of finger. Figures 1A and 1B show the changes in PPG corresponding to tidal breathing.   |
| 177 | Ppl was estimated from PPG according to the method reported by Kimura (12). The y-axis showed            |
| 178 | changes in absorbance, which reflected the intravascular blood volume and were decreased in              |
| 179 | inspiration and increased in expiration. First, we calculated the difference (PPa) between the envelope  |
| 180 | line of each peak percussion pulse wave (line (1) in Figure 1A) and the envelope line of the peak        |

181 percussion pulse wave at expiration (line (2) in Figure 1A). As the amplitude of the pulse wave is 182affected by systolic pressure, the amount of light from outside, and the attachment with the skin (13), 183it was necessary to correct the PPa by the amplitude of the pulse wave (PWa). The changes in PPa/PWa 184 with respiration are shown in Figure 1B. 185The changes in absorption of PPG corresponding to the changes in Ppl were converted to changes 186in pressure. For calibration, inspiratory resistance was loaded by the attachment of a resistive device 187(5 cmH<sub>2</sub>O/L/s) to the side opposite the site of attachment of the spirometer mouthpiece (Figure 2A). When the inspiratory resistance was loaded, the changes in Pao were equal to the changes in Ppl. The 188 189signals of Pao and PPG were inputted into the same computer system and automatically synchronized. 190The sampling frequency was 100 Hz and there was no time lag, and the changes in absorption 191 (PPa/PWa) corresponded to the changes in Pao. We determined the slope of the regression line between 192the changes in PPa/PWa and Pao (Figure 2B), and converted changes in absorption to changes in 193 pressure. 1942.2.2. Determination of estimated Cdyn 195Figure 3 shows the system for determination of estimated Cdyn. A reflection-type PPG was attached 196 to the right second finger that was placed on a cushion to avoid movement. Subjects were attached to 197 a PPG and a nose clip and mouthpiece attached to a flow sensor were applied. The subjects breathed

198 according to the instructions provided by a picture displayed on a personal computer (PC) and voice

| 199 | on the PC. Subjects breathed at a rate of 4 s/breath and the tidal volume was gradually increased from              |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 200 | about 0.3 L to 0.8 L over 12 breaths. First, calibration was performed under loading with negative                  |
| 201 | inspiratory pressure for 12 breaths, and the slope of the regression line was obtained. After removal of            |
| 202 | the resistance device, subjects breathed at 4 s/breath and the tidal volume was gradually increased in              |
| 203 | the same manner as in calibration (Figure 4). The PPa/PWa was converted to change in estimated Ppl                  |
| 204 | using the slope of the regression line in each measurement and the Cdyn was calculated by linear                    |
| 205 | regression analysis between the estimated Ppl and tidal volume.                                                     |
| 206 |                                                                                                                     |
| 207 | 2.3. Pulmonary function test including lung compliance measured with an esophageal balloon                          |
| 208 | Spirometry, lung volume of FRC and airway resistance (Raw) determined by body plethysmography,                      |
| 209 | lung diffusion capacity for carbon monoxide (DLCO) determined by the single-breath method, and                      |
| 210 | the $N_2$ phase III slope of single-breath $N_2$ washout ( $\Delta N_2$ ), a marker of ventilation unevenness, were |
| 211 | measured using a Chestac-8900 (Chest Co., Ltd.). The lung volumes and DLCO were represented as                      |
| 212 | the percentage of predicted value. For the predicted values of forced expiratory volume in 1 s (FEV1)               |
| 213 | and vital capacity (VC), Japanese local reference data (25) developed by the Japanese Respiratory                   |
| 214 | Society were adopted, and the predicted values for DLCO and lung volumes (FRC, RV, and TLC)                         |
| 215 | measured by body plethysmography were determined with the formulas of Nishida et al. (15) and                       |
| 216 | Boren et al. (16), respectively.                                                                                    |

| 217 | Both Cst and Cdyn were measured by the esophageal balloon method using a body box (Chestac                          |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 218 | 8900; Chest Co., Ltd.) as reported previously (2). We used an esophageal balloon as an accessory of a               |
| 219 | Chestac-8800 pulmonary function testing system (Chest Co., Ltd.). The balloon length was 120 mm                     |
| 220 | and total length including the tube was 1010mm, the outside diameter was 2.5 mm and inside diameter                 |
| 221 | was 1.5 mm. The optimal volume of air in the balloon was 0.2 mL. Before the test, the nasal cavity                  |
| 222 | was anesthetized with xylocaine spray, and the esophageal balloon catheter (Chest Co., Ltd.) was                    |
| 223 | passed through the nose. The balloon was drawn 10 cm from the position where the change in balloon                  |
| 224 | pressure synchronized with the respiration was reversed, and the distance was measured 10 cm from                   |
| 225 | the nostril. First, after maximum inspiration, the subjects were asked to exhale from maximum                       |
| 226 | inspiratory level to maximum expiratory level in increments of 300-500 mL. We drew a lung                           |
| 227 | pressure-volume curve using transpulmonary pressure (Ptp) (the difference between Pao and Pes) and                  |
| 228 | lung volume. Regression analysis was performed using a sigmoidal equation. Regression analysis was                  |
| 229 | performed using a sigmoidal equation of the form, $V = a + b [1 + e^{-(P-c)/d}]^{-1}$ (17). The Cst was             |
| 230 | calculated as the slope between resting expiratory level (FRC level) and 500-mL inspiratory level, and              |
| 231 | the Ptp at the point of maximum inspiration (Pes max) was also measured. Subsequently, we measured                  |
| 232 | Cdyn and lung resistance (R <sub>L</sub> ) at a resting respiratory rate of 0.25 Hz, and the last five breaths were |
| 233 | analyzed breath-by-breath. Cdyn and $R_L$ were obtained. For the predicted values of Cst and Cdyn, the              |
| 234 | formula reported by Galetke et al (18). were adopted.                                                               |

### 236 **5. Statistical analysis**

237Values are shown as the means  $\pm$  SD. The data distribution of the variables in the various groups was 238first assessed with Bartlett's test. As the data for the variables did not show a normal distribution, the variables were compared with the Kruskal-Wallis test followed by multiple comparisons among 239240groups with the nonparametric Steel-Dwass test. Cut-off values of estimated %Cdyn to differentiate 241ILD from HS and COPD were calculated by receiver operator characteristic (ROC) curve analysis, 242with sensitivity and specificity determined in each case. All statistical analyses were performed using 243StatFlex version 6 for Windows (Artech Co., Ltd., Osaka, Japan). Spearman's rank correlation 244coefficient was used for bivariate correlation analysis. Orthogonal distance regression analysis (Python 5.8; Python Software Foundation, Wilmington, DE) and Bland–Altman analysis (R ver. 4.0.2; 245246The R Project for Statistical Computing, Vienna, Austria) were also performed to verify the 247correspondence of Cdyn measured using PPG and the esophageal balloon. In all analyses, P < 0.05248was taken to indicate statistical significance.

249

250 **Results** 

251 Experiment 1: Verification of calibration method and correspondence with Ppl estimated from PPG

and Pes

| 253 | The data were collected from three healthy subjects (A, B, C). Thirty-eight data in subject A, 33 in                   |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 254 | subject B, and 111 in subject C were collected. The correlation coefficients between Pao and Pes,                      |
| 255 | estimated intrathoracic pressure and Pes were 0.996 and 0.996 in subject A, 0.997 and 0.988 in subject                 |
| 256 | B, and 0.997 and 0.982 in Subject C, respectively. Figure 5A shows scatter plots using total 182 breath-               |
| 257 | by breath data of three healthy volunteers and linear regression analysis of the changes in Pao and Pes.               |
| 258 | The correlation coefficient was 0.98, which was a high value and the slope was 1.05, which showed                      |
| 259 | almost the same value as Pes. Therefore, the changes in Pao corresponded closely with the changes in                   |
| 260 | Pes.                                                                                                                   |
| 261 | Figure 5B shows the relationship between the changes in Pes and Ppl estimated by PPG using all                         |
| 262 | breath-by-breath data in three healthy volunteers. There was a significant correlation $(r = 0.89)$                    |
| 263 | between the changes in Pes and the estimated Ppl from PPG. The slope was 0.92, indicating that the                     |
| 264 | estimated Ppl was almost same as Pes.                                                                                  |
| 265 |                                                                                                                        |
| 266 | Experiment 2. Comparison of the estimated Cdyn from PPG and the Cdyn measured with an                                  |
| 267 | esophageal balloon                                                                                                     |
| 268 | Table 1 shows the characteristics and results of pulmonary function tests. The patients with COPD                      |
| 269 | showed mild to moderate airflow obstruction (FEV <sub>1</sub> : $41.5\% - 94.1\%$ , stage $1/2/3$ : $7/6/1$ patients), |
| 270 | increased residual volume, hyperinflation, and ventilation unevenness. Twelve of 14 patients showed                    |

| 271 | decreased diffusion capacity. Cst, %Cst (% of predicted Cst), and $R_L$ were increased, but there was no |
|-----|----------------------------------------------------------------------------------------------------------|
| 272 | significant difference in %Cdyn between HS and COPD groups. Patients with ILD showed decreased           |
| 273 | lung volume and diffusion capacity and ventilation unevenness, and both %Cst and %Cdyn were              |
| 274 | significantly decreased and $R_L$ was increased. As shown in Figure 6A, there was a significant          |
| 275 | correlation between Cdyn measured from Pes and the Cdyn estimated from PPG ( $r = 0.63$ ). Orthogonal    |
| 276 | distance regression analysis was also performed to verify the correspondence of Cdyn measured by         |
| 277 | the two methods. The confidence interval of the y-intercept was from 0.003 to 0.062, almost including    |
| 278 | 0, and the confidence interval of the slope was from 0.579 to 1.009, including 1. Figure 6B shows a      |
| 279 | Bland–Altman plot of differences in %Cdyn measured by the two methods. The mean difference was           |
| 280 | -2.39 % between EP-%Cdyn and PPG-Cdyn, and the 95% limit of agreement (LOA) had an upper                 |
| 281 | limit of 30.9 % and lower limit of -35.7 %. No apparent systematic errors in the measurement of PPG-     |
| 282 | %Cdyn were found. However, measurement errors were found in a few patients. These findings               |
| 283 | suggested that the values of Cdyn measured by the two methods were almost consistent with each           |
| 284 | other.                                                                                                   |
|     |                                                                                                          |

• .

285

Experiment 3. Comparison of the estimated Cdyn from PPG among healthy subjects, patients with 286stable COPD, and patients with ILD 287

288Figure 7 shows the %Cdyn estimated from PPG among HS, patients with COPD, and patients with

| 289 | ILD. Although there was no significant difference in estimated %Cdyn between the HS and COPD                 |
|-----|--------------------------------------------------------------------------------------------------------------|
| 290 | groups, the estimated %Cdyn in the ILD group (35.4 $\pm$ 12.3 %) was significantly lower compared            |
| 291 | with the HS group (60.0 $\pm$ 15.8 %, P < 0.01) and the COPD group (66.7 $\pm$ 41.9 %, P < 0.01). The        |
| 292 | estimated %Cdyn was significantly related with %VC (r = 0.57, $P < 0.01$ ) and %DLCO (r = 0.50, $P < 0.01$ ) |
| 293 | 0.01) in patients with ILD (Fig. 8). ROC analysis was performed to quantify the diagnostic                   |
| 294 | performance of %Cdyn to detect ILD using the area under the curve (AUC) on ROC analysis (Fig. 9).            |
| 295 | The AUCs on ROC analysis to differentiate ILD from HS and COPD patients were 0.896 (confidence               |
| 296 | interval: 0.813-0.979) and 0.786 (confidence interval: 0.670-0.902), respectively. Sensitivity and           |
| 297 | specificity to differentiate from HS was 80.0 % and from COPD was 64.5 %, respectively, when the             |
| 298 | cut-off value for estimated %Cdyn was 45.2 % for HS and 42.9 % for COPD patients.                            |
| 299 |                                                                                                              |

### 300 Discussion

Although there have been a number of reports regarding the fluctuation of PPG in respiration, there have been no attempts to estimate lung compliance (19). In the present study, we have developed a new method for the estimation of Cdyn in combination with changes in estimated Ppl based on the fluctuation of PPG with respiration and lung volume measured simultaneously by spirometry. On linear regression analysis, a good correlation was observed between estimated Ppl from PPG and Pes measured by the esophageal balloon method. Furthermore, the estimated Cdyn from PPG and Cdyn

| 307 | measured by the esophageal balloon method were almost the same. The Cdyn and % Cdyn in the ILD           |
|-----|----------------------------------------------------------------------------------------------------------|
| 308 | group was significantly lower than those in the HS and COPD groups and showed significant                |
| 309 | correlations with %VC and %DLCO. ROC analysis demonstrated that the estimated %Cdyn showed               |
| 310 | good diagnostic performance for ILD. These findings suggested that the new noninvasive and               |
| 311 | convenient method for estimation of Cdyn may be useful for the assessment of lung fibrosis in ILD.       |
| 312 | Kimura et al. (12) demonstrated that marked intrathoracic negative pressure in inspiration induced       |
| 313 | by occluding the upper airway increased intrathoracic blood volume and decreased peripheral blood        |
| 314 | volume in anesthetized dogs. Shiomi et al. (9, 10) demonstrated that more negative Pes was               |
| 315 | significantly correlated with increased right ventricular internal end-diastolic dimension and decreased |
| 316 | left ventricular internal end-diastolic dimension monitored by echocardiography when pulsus              |
| 317 | paradoxus was found during sleep in OSA. However, Buda et al. (11) reported that left ventricular        |
| 318 | end-diastolic volume increased and the stroke volume and cardiac output were significantly decreased     |
| 319 | during large, sustained changes in intrathoracic pressure by the Müller maneuver. It is suggested that   |
| 320 | the marked intrathoracic negative pressure affects left ventricular function by increasing left          |
| 321 | ventricular transmural pressure, which results in an increase of afterload. These interactions between   |
| 322 | intrathoracic pressure and hemodynamics may induce PPG fluctuation in respiration. Furthermore, the      |
| 323 | compensatory offset of blood volume and air content into the thorax, that is interaction between lung    |
| 324 | compliance and hemodynamic effect of ventilation (inspiration, expiration), may be able to modify        |

325 the measurement of estimated Cdyn from PPG.

| 326 | Noninvasive surrogate markers of Pes using PPG have been reported, especially in OSA (31). For           |
|-----|----------------------------------------------------------------------------------------------------------|
| 327 | example, pulse transit time (PTT), which is the time interval for a pulse wave to travel between two     |
| 328 | locations in the arterial system, showed reasonable correlations between the amplitude oscillations      |
| 329 | $(\Delta PTT)$ and the magnitude of negative Ppl swings assessed by Pes monitoring (20). However, the    |
| 330 | specificity and interobserver variability were not assessed, and PTT is not a valid surrogate marker for |
| 331 | Pes monitoring. Forehead venous pressure (FVP) has been reported to be useful for measurement of         |
| 332 | respiratory effort derived from a combination of physiological signals obtained from a recorder affixed  |
| 333 | to the forehead (ARES™ Unicorder; Advanced Brain Monitoring, Carlsbad, CA), composed of red              |
| 334 | and infrared LEDs to detect the fluctuations in PPG amplitude, a piezoresistive silicone absolute        |
| 335 | pressure sensing chip to measure changes in forehead venous pressure, and 3-axis MEM accelerometer       |
| 336 | to measure subtle motions associated with respiration in patients with sleep disordered breathing (21).  |
| 337 | This device is believed to allow monitoring of respiration-related changes in volume or pressure in the  |
| 338 | veins of the skin on the forehead, and has been shown to be suitable as an alternative measure of        |
| 339 | respiratory effort. However, its reproducibility and validity with respect to Pes monitoring have not    |
| 340 | been determined. In the present study, a significant correlation was observed between the fluctuation    |
| 341 | of PPG and the changes in Pes during tidal breathing, and we were able to estimate the changes in Ppl    |
| 342 | from PPG. A significant correlation was also observed between the Cdyn estimated from PPG and the        |

343 Cdyn measured using the esophageal balloon method, and the two values of Cdyn were almost
344 identical. Therefore, the estimated Cdyn by the newly developed method can be used as a surrogate
345 marker of Cdyn.

| 346 | In the pulmonary function test, an absolute or relative decline in forced vital capacity (FVC), DLCO,  |
|-----|--------------------------------------------------------------------------------------------------------|
| 347 | and 6-minute walking distance (6MWD) are markers for predicting progression of fibrosis and            |
| 348 | therapeutic efficacy in progressing fibrosing ILD (22). In nonspecific interstitial pneumonia and      |
| 349 | idiopathic pulmonary fibrosis, severely decreased DLCO, exertional desaturation, and a decrease in     |
| 350 | FVC identify patients at particular risk of mortality (23). However, change over time in shortness of  |
| 351 | breath scores was associated with change in FVC, quality of life score, and 6MWD, but not DLCO         |
| 352 | (24). On the other hand, it has been demonstrated that reductions of lung compliance occur early in    |
| 353 | IPF (4, 25). Although no correlations between decreased lung volume or DLCO and pathological           |
| 354 | severity have been observed, Cst was shown to be strongly correlated with the degree of fibrosis       |
| 355 | assessed by scoring of lung biopsies (3). Reductions in Cdyn occur to the same extent as reductions in |
| 356 | Cst in subjects with ILD (4). Cdyn is decreased with the reduction of lung volume. The decrease of     |
| 357 | Cdyn resulted from reduced lung volume has been suggested to be due to increased airway resistance     |
| 358 | and airway closure at small airways (26, 27). It was suggested that the decreased Cdyn in ILD may be   |
| 359 | due to not only increased elasticity of lungs but also decreased lung volume. Therefore, it may become |
| 360 | possible to assess multidimensionally by the addition of Cdyn as a biomarker of lung fibrosis to       |

| 361 | conventional pulmonary function testing. However, measurement of lung compliance is not routinely         |
|-----|-----------------------------------------------------------------------------------------------------------|
| 362 | done in a clinical setting because it is invasive and the equipment required is expensive. In the present |
| 363 | study, the estimated Cdyn and %Cdyn in ILD showed not only significantly lower values than those          |
| 364 | in HS and COPD groups, but also significant correlations with loss of lung volume and decreased gas       |
| 365 | transfer, and was demonstrated to show good diagnostic performance for ILD. Therefore, the estimated      |
| 366 | Cdyn that can be obtained noninvasively and conveniently by our newly developed method may be             |
| 367 | useful for the assessment of lung fibrosis in ILD, and will contribute to the screening and management    |
| 368 | of ILD as a new physiological marker.                                                                     |
| 900 |                                                                                                           |

370 Limitations

371This study had several limitations. First, sample size was comparatively small for comparison of the 372estimated Cdyn among HS, patients with COPD, and patients with ILD. Second, Cdyn is decreased 373with increased age (27) and the age was not matched between HS and COPD or ILD. Although there 374was no report about the reference values of Cdyn in Japanese normal subjects. Cdyn was expressed as the percentage of predicted value with the formula reported by Galetke et al (18). However, the 375376predicted value of Cst and Cdyn may be suggested to be higher values for Japanese because the mean 377%Cst and %Cdyn in healthy subjects were 72.5% and 57.2%, respectively. Third, the pulse volume 378waveform contains a complex mixture of the influences of arterial, venous, autonomic, and respiratory

| 379 | systems on the central and peripheral circulation (28). The PPG signal is comprised of the AC                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 380 | component and DC component. The pulsatile waveform (AC component) is attributed to changes in                               |
| 381 | the interrogated blood volume with each heartbeat and varies slowly due to respiration and                                  |
| 382 | sympathetic nervous system activity (DC component) (29). The pulse waveform variation with                                  |
| 383 | respiration has also been shown to be significantly correlated with the changes in systolic pressure                        |
| 384 | variation, and to be a sensitive indicator of hypovolemia (13). In the present study, the PPa, was                          |
| 385 | corrected by the amplitude of the pulse wave because this value is affected by the systolic pressure,                       |
| 386 | the amount of light from outside, and the conditions of attachment to the skin. In addition, the                            |
| 387 | measurement of estimated Cdyn was calibrated by the changes in Pao when the inspiratory negative                            |
| 388 | pressure was loaded in each measurement. However, PPG may be affected by multiple factors, such                             |
| 389 | as vasoconstriction, vasodilation, tissue congestion, and circulating blood volume (16). Further studies                    |
| 390 | are required to examine these effects on the measurement. Fourth, we did not use the Baydur's                               |
| 391 | maneuver to check the correct positioning of the balloon because the Chestac-8800 did not have a                            |
| 392 | function to check the balloon position. Fifth, the value of the estimated Cdyn in HS was lower than                         |
| 393 | that reported previously ( $0.15 \pm 0.04$ in this study vs. $0.29 \pm 0.11$ L/cmH <sub>2</sub> O) (18). However, the value |
| 394 | of estimated Cdyn was almost the same as Cdyn measured by the conventional method. Sixth, the                               |
| 395 | estimated Cdyn may be affected by respiratory pattern. However, it was demonstrated that there were                         |
| 396 | no significant differences in changes in Ppl between "intercostal" and "abdominal" breathing (30).                          |

| 398 | Conclusion                                                                                              |
|-----|---------------------------------------------------------------------------------------------------------|
| 399 | The estimated Ppl and Cdyn from the fluctuation of PPG in respiration were significantly correlated     |
| 400 | with Pes and Cdyn, respectively. The estimated %Cdyn in ILD was significantly lower than in HS and      |
| 401 | COPD groups, and was significantly correlated with %VC and %DLCO. The newly developed method            |
| 402 | for estimation of Cdyn in combination with PPG and spirometry may be useful for the assessment of       |
| 403 | lung fibrosis in ILD.                                                                                   |
| 404 |                                                                                                         |
| 405 | ACKNOWLEDGMENTS                                                                                         |
| 406 | The authors wish to thank Denso Corporation (Kariya, Japan) for providing the measuring                 |
| 407 | equipment and facilities for this study. The authors also wish to thank students (Aoki Minami and       |
| 408 | Shinohara Takayuki) of Shinshu University School of Health Sciences for their help and support. The     |
| 409 | authors and our colleagues are grateful to the patients who participated in this study for their effort |
| 410 | and cooperation throughout the study.                                                                   |

### 412 FUNDING

413 This research received no specific grants from any funding agency in the public, commercial, or not-

414 for-profit sectors.

## **CONFLICTS OF INTEREST**

417 This study was supported by collaborative research expenses from Denso Corporation.

#### 418 **References**

- 419 1. Fulmer JD, Roberts WC, von Gal ER, Crystal RG. Morphologic-physiologic correlates of the
- 420 severity of fibrosis and degree of cellularity in idiopathic pulmonary fibrosis. J Clin Invest 63:
- 421 665–676, 1979.
- 422 2. Takeichi N, Fujimoto K. Comparison of impedance measured by the forced oscillation technique
- 423 and pulmonary functions, including static lung compliance, in obstructive and interstitial lung
- 424 disease. Int J Chron Obstruct Pulmon Dis 14: 1109 1118, 2019.
- 425 3. Faisal A, Alghamdi BJ, Ciavaglia CE, Elbehairy AF, Webb KA, Ora J, Neder JA, O'Donnell DE.
- 426 Common mechanisms of dyspnea in chronic interstitial and obstructive lung disorders. Am J
- 427 Respir Crit Care Med 193: 299–309, 2016.
- 428 4. Plantier L, et al. Physiology of the lung in idiopathic pulmonary fibrosis. Eur Respir Rev 2018;
- 429 27: 170062. doi: 10.1183/16000617.0062-2017.
- 430 5. Buytendijk HJ. Oesophagusdruck en Longelasticiteit (Dissertation). Groningen: Univ.
  431 Groningen, 1949.
- 432 6. Lauson HD, Bloomfield RA, Cournand A. The influence of the respiration on circulation in man.
- 433 Am J Med 1:315, 1946.
- 434 7. Domhorst AC, Howard P, Leathart GL. Pulsus paradams. Lancet 262:746, 1952.
- 435 8. Ruskin J, Bache RJ, Rembert JC, Greenfield JC Jr. Pressure-flow studies in man: effect of

| 436 |     | respiration on left ventricular stroke volume. Circulation 48 – 79, 1973.                        |
|-----|-----|--------------------------------------------------------------------------------------------------|
| 437 | 9.  | Shiomi T, Guilleminault C, Stoohs R, Schnittger I. Leftward shift of the interventricular septum |
| 438 |     | and pulsus paradoxus in obstructive sleep apnea (OSA). Chest 100: 894 – 902, 1991.               |
| 439 | 10. | Shiomi T, Guilleminault C, Stoohs R, Schnittger I. Obstructed breathing in children during sleep |
| 440 |     | monitored by echocardiography. Acta Paediatr 82: 863 – 871, 1993.                                |
| 441 | 11. | Buda AJ, Pinsky MR, Jr Ingels NB, Daughters GT, Stinson EB, Alderman EL. Effect of               |
| 442 |     | intrathoracic pressure on left ventricular performance. N Engl J Med 301: 453-459, 1979.         |
| 443 | 12. | Kimura T. Hemodynamics associated with sleep disorders in anesthetized dogs. Nihon Kyobu         |
| 444 |     | Shikkan Gakkai Zasshi 33: 3 – 9, 1995.                                                           |
| 445 | 13. | Partridge BL. Use of pulse oximetry as a noninvasive indicator of intravascular volume status. J |
| 446 |     | Clin Monit 3: 263 – 268, 1987.                                                                   |
| 447 | 14. | Sasaki E, Nakamura M, Kida K, Kanbe M, Takahashi K, Fujimura M, Sakakibara H, Horie T,           |
| 448 |     | Mishimura M, Takagi K, Inoue Y, Chihara J, Arita K, Miyamoto K, Aizawa H, Ohi M, Mishima         |
| 449 |     | M, Ikeda T, Kuwahira I. Reference values for spirogram and blood gas analysis in Japanese        |
| 450 |     | adults. J Jpn Respir Soc 39: S1 – S17, 2001.                                                     |
| 451 | 15. | Nishida O, Kambe M, Sewake N, Takano M, Kawane H. Pulmonary function in healthy subjects         |
| 452 |     | and its prediction: 5. Pulmonary diffusing capacity in adults. Jpn J Clin Pathol 24: 941-947,    |
| 453 |     | 1976.                                                                                            |

- 16. Boren HG, Kory RC, Syner JC. The veterans administration-army cooperative study of 454pulmonary function. Am J Med 41: 96 - 114, 1966. 45517. Venegas JG, Harris RS, Simon BA. A comprehensive equation for the pulmonary pressure-456457volume curve. J Appl Physiol. 1998; 84: 389-395. doi:10.1152/jappl.1998.84.1.389 45818. Galetke W, Feier C, Muth T, Ruehle KH, Borsch-Galetke E, Randerath W. Reference values for dynamic and static pulmonary compliance in men. Respir Med 101: 1783 - 1789, 2007. 45919. Alian AA, Shelley KH. Photoplethysmography. Best Pract Res Clin Anaesthesiol 28: 395 - 406, 460 461 2014. 46220. Argod J, Pepin JL, Smith RP, Levy P. Comparison of esophageal pressure with pulse transit time 463as a measure of respiratory effort for scoring obstructive non-apneic respiratory events. Am J 464 Respir Crit Care Med 162: 87 - 93, 2000. 46521. Popovic D, King C, Guerrero M, Levendowski DJ, Henninger D, Westbrook PR. Validation of 466 forehead venous pressure as a measure of respiratory effort for the diagnosis of sleep apnea. J 467 Clin Monit Comput 23: 1 – 10, 2009. 468 22. Wong AW, Ryerson CJ, Guler SA. Progression of fibrosing interstitial lung disease. Rerspir Res 469 2020 Jan 29;21:32. doi: 10.1186/s12931-020-1296-3.
- 470 23. Martinez FJ, Flaherty K. Pulmonary function testing in idiopathic interstitial pneumonias. Proc
- 471 Am Thorac Soc 3: 315–321, 2006.

| 472 | 24. | Swigris JJ, Han M, Vij R, et al. The UCSD shortness of breath questionnaire has longitudinal   |
|-----|-----|------------------------------------------------------------------------------------------------|
| 473 |     | construct validity in idiopathic pulmonary fibrosis. Respir Med 106: 1447–1455, 2012.          |
| 474 | 25. | Sansores RH, Ramirez-Venegas A, Pérez-Padilla R, et al. Correlation between pulmonary fibrosis |
| 475 |     | and the lung pressure-volume curve. Lung 174: 315-323, 1996.                                   |
| 476 | 26. | Begin R, Renzetti AD Jr, Bigler AH, Watanabe S. Flow and age dependence of airway closure      |
| 477 |     | and dynamic compliane. J Appl Physiol 1975; 38: 199-207.                                       |
| 478 | 27. | Galetke W, Feier C, Muth T, Borsch-Galetke E, Rühle KH, Randerath W. Comparison of             |
| 479 |     | pulmonary compliance and the work of breathing with pulmonary function parameters in men.      |
| 480 |     | Pneumologie 62: 67-73, 2008.                                                                   |
| 481 | 28. | Alian AA, Galante NJ, Stachenfeld NS. Silverman DG, Shelley KH. Impact of central              |
| 482 |     | hypovolemia on PPGic waveform parameters in healthy volunteers part 2: frequency domain        |
| 483 |     | analysis J Clin Monit Comput 25:387 – 396, 2011.                                               |
| 484 | 29. | Akl TJ, Wilson MA, Ericson MN, Coté GL. Quantifying tissue mechanical properties using         |
| 485 |     | photoplethysmography. Biomed Opt Express 5: 2362 – 2375, 2014.                                 |
| 486 | 30. | Martin J, Jardim J, Sampson M, Engel LE. Factors influencing pulsus paradoxus in asthma. Chest |
| 487 |     | 80: 543 – 549, 1981.                                                                           |
| 488 | 31. | Vandenbussche NL, Overeem S, van Dijk JP, Simons PJ, Pevernagie DA. Assessment of              |

489 respiratory effort during sleep: Esophageal pressure versus noninvasive monitoring techniques. 490 Sleep Med Rev 24: 28 – 36, 2015.

| 492 | Figure 1 | Legends |
|-----|----------|---------|
|     | <u> </u> | -       |

- 493 Figure 1. Method for extraction of respiratory component superimposed on PPG
- 494 A. Changes in the absorbance of PPG corresponding to tidal breathing. Line (1), envelope line of each
- 495 peak percussion pulse wave; line (2), envelope line of peak percussion pulse wave at expiration; PWa,
- 496 amplitude of the pulse wave; PPa, line (2)-(1). B. Changes in PPa/PWa corresponding to tidal

497 breathing.

498 Abbreviations: PPG, photoplethysmograph.

499

- 500 Figure 2. Method of calibration
- 501 A. A device for negative pressure loading in inspiration was attached to the side opposite the
- 502 mouthpiece during calibration. B. Regression line between the changes in pressure at the airway
- 503 opening (Pao) and absorbance of PPG corresponding to tidal breathing under negative inspiratory
- 504 pressure load. The slope of the regression line was obtained (coefficient value) for calibration. C.
- 505 Conversion from changes in PPG absorbance to changes in pressure by calibration.
- 506
- 507 Figure 3. System for measurement of lung dynamic compliance (Cdyn) in combination with
- 508 photoplethysmography (PPG) and spirometry.

510 Figure 4. Measurement and calculation of estimated lung dynamic compliance (Cdyn).

- 511 Tidal breathing at a cycle of 4 s/breath was gradually increased from about 0.3 L to 0.8 L according
- 512 to guidance (dashed line in upper panel), and simultaneously the changes in intrathoracic pressure
- 513 estimated from PPG (solid line in upper panel) were measured. B. Scatter plot of tidal volume and
- 514 changes in estimated intrathoracic pressure. The slope represents Cdyn..
- 515
- 516 Figure 5. A. Comparison of the changes in esophageal pressure (Pes) measured using an esophageal

517 balloon and pressure at the airway opening (Pao) when negative pressure was loaded in three healthy

adult volunteers. B. Relationship between Pes measured using an esophageal balloon and intrathoracic

519 pressure estimated from photoplethysmography (PPG).

Figure 6. A. Relationship between lung dynamic compliance (Cdyn) measured from esophageal pressure (EP-Cdyn) and Cdyn estimated from photoplethysmography (PPG) (PPG-Cdyn). Open circles: healthy subjects; open squares: patients with chronic obstructive pulmonary disease (COPD); open triangles: patients with interstitial lung disease (ILD). There was a significant correlation between the Cdyn measured by the two methods. B. Bland–Altman plot of differences in % of predicted Cdyn measured from esophageal pressure and %Cdyn estimated from PPG (n = 52). Solid lines represent mean differences, and dashed lines represent 1.96 SD of the difference from the mean. PPG,

528 photoplethysmography.

529

| 530 Figure 7. Comparison of the estimated lung dynamic compliance (Cdyn) from | n photoplethysmography |
|-------------------------------------------------------------------------------|------------------------|
|-------------------------------------------------------------------------------|------------------------|

- 531 (PPG) among healthy subjects (HS) (n = 33) and patients with chronic obstructive pulmonary disease 532 (COPD, n = 31) and interstitial lung disease (ILD, n = 30).
- 533

Figure 8. Relationship between the estimated lung dynamic compliance (Cdyn) from photoplethysmography (PPG) and vital capacity (VC) (left panel) and lung diffusion capacity for carbon monoxide (DLCO) (right panel). Cdyn, VC, and DLCO were represented as the % of predicted Cdyn, VC, and DLCO (%Cdyn, %VC, %DLCO), respectively (12, 18, 24). The estimated Cdyn was significantly and positively correlated with VC and DLCO.





















A. HS-ILD

**B. COPD-ILD** 



Table 1. Characteristics and results of pulmonary function test of healthy subjects (HS) and patients with chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD) in

6

| -                                |                  |                           |                                         |
|----------------------------------|------------------|---------------------------|-----------------------------------------|
|                                  | HS               | COPD                      | ILD                                     |
| Number                           | 28               | 14                        | 10                                      |
| Age, years old                   | $57.5\pm16.1$    | 75.4 ± 8.2 **             | $68.1 \pm 11.1$                         |
| Sex, male/female                 | 28/0             | 14/0                      | 9/1                                     |
| BMI, kg/m <sup>2</sup>           | $23.4\pm3.5$     | 21.0 ± 1.8 **             | $22.3\pm6.6^{\dagger}$                  |
| Smoking history, pack×year       | $5.4\pm8.2$      | $34.7 \pm 18.2$ **        | $27.4 \pm 23.1$ *                       |
| Number of having smoking history | 10               | 14                        | 8                                       |
| VC, % of predicted value         | $105.6 \pm 10.0$ | $113.3\pm14.3$            | $76.4\pm25.6~^{\ast\ast\dagger\dagger}$ |
| FEV1, % of predicted value       | $105.1\pm9.8$    | $74.9 \pm 15.9$ **        | 72.3 ± 23.9 **                          |
| FEV <sub>1</sub> /FVC, %         | $81.8\pm 6.0$    | 53.2 ± 12.3 **            | $77.7\pm9.5~^{\dagger\dagger}$          |
| FRC, % of predicted value        | $100.8 \pm 14.9$ | $109.9 \pm \textbf{24.7}$ | $77.4 \pm 17.3^{**\dagger\dagger}$      |
| RV, % of predicted value         | $119.6 \pm 19.0$ | 179.3 ± 61.2 **           | $103.7 \pm 16.9 *^{\dagger\dagger}$     |
| TLC, % of predicted value        | $121.1\pm20.8$   | $131.1\pm19.7$            | 84.7 ± 17.8 ** <sup>††</sup>            |
| RV/TLC, %                        | $33.8\pm 6.2$    | 43.5 ± 9.0 <b>**</b>      | 41.3 ± 8.6 *                            |
| DLCO, % of predicted value       | $100.7 \pm 15.5$ | 65.5 ± 25.5 **            | 53.3 ± 16.6 **                          |

experiment 2.

| DLCO/V <sub>A</sub> , % of predicted value | $121.7\pm21.0$  | 80.1 ± 36.5 **      | 93.4 ± 25.0 **                       |
|--------------------------------------------|-----------------|---------------------|--------------------------------------|
| ΔN <sub>2</sub> , %                        | $1.09 \pm 0.48$ | $9.79 \pm 23.95$ ** | 7.81 ± 10.90 **                      |
| CV, L                                      | $0.65\pm0.30$   | $1.03 \pm 0.54$ *   | $0.51\pm0.25$                        |
| CV/VC, %                                   | $16.2\pm6.9$    | $29.9\pm20.2\ *$    | $20.9\pm11.9~^{\dagger\dagger}$      |
| Cst, L/cmH <sub>2</sub> O                  | $0.22\pm0.08$   | 0.33 ± 0.11 **      | $0.17 \pm 0.25$ ** <sup>††</sup>     |
| Cst, % of predicted value                  | $72.5\pm25.5$   | $116.3 \pm 36.4$ ** | $59.5\pm86.5~^{**\dagger\dagger}$    |
| Pes max, cmH <sub>2</sub> O                | $-24.4\pm6.7$   | $-13.8 \pm 6.8$ **  | $-29.3\pm13.9~^\dagger$              |
| Cdyn, L/cmH <sub>2</sub> O                 | $0.15\pm0.04$   | $0.14\pm0.04$       | $0.07 \pm 0.03$ ** <sup>††</sup>     |
| Cdyn, % of predicted value                 | $57.2\pm17.1$   | $60.4 \pm 15.2$     | $29.9 \pm 14.9 ~^{**\dagger\dagger}$ |
| <u>R<sub>L</sub>, cmH<sub>2</sub>O/L/s</u> | $1.94\pm0.73$   | 3.19 ± 1.77 **      | $5.40 \pm 4.15 **$                   |

Values are means  $\pm$  SD. The lung volumes and DLCO were represented as the percentage of reference value, and Cst and Cdyn were also represented as the percentage of reference value. \*P < 0.05 and \*\*P < 0.01 vs. HS,  $^{\dagger}P < 0.05$  and  $^{\dagger\dagger}P < 0.01$  vs. COPD.

Abbreviations: BMI, body mass index; Cst, static lung compliance; Pes max, maximum difference between esophageal and oral pressure at the level of total lung capacity; Cdyn, dynamic lung compliance; R<sub>L</sub>, lung resistance.

|                                            | HS               | COPD               | ILD                                 |
|--------------------------------------------|------------------|--------------------|-------------------------------------|
| Number                                     | 33               | 31                 | 30                                  |
| Age, years                                 | $57.6 \pm 15.1$  | 74.6 ± 8.6 **      | 70.0 ± 13.2 **                      |
| Sex, male/female                           | 32/1             | 30/1               | 16/14 **††                          |
| BMI, kg/m <sup>2</sup>                     | $23.0\pm2.4$     | $22.4\pm3.7$       | $23.3 \pm 3.5$                      |
| Smoking history, pack×year                 | $7.3\pm12.2$     | $38.3 \pm 26.8$ ** | $19.0\pm29.0~^{*\dagger\dagger}$    |
| Number of having smoking history           | 13               | 31                 | 12                                  |
| VC, % of predicted value                   | $105.1\pm9.4$    | 93.9 ± 24.8 *      | 83.9 ± 24.2 **                      |
| FEV <sub>1</sub> , % of predicted value    | $103.5\pm11.2$   | 65.1 ± 27.9 **     | $97.5\pm25.6~^{\dagger\dagger}$     |
| FEV <sub>1</sub> /FVC, %                   | 81.5 ± 6.3       | 52.0 ± 15.6 **     | $82.3\pm13.4~^{\dagger\dagger}$     |
| FRC, % of predicted value                  | $102.9 \pm 14.4$ | 120.5 ± 31.9 **    | $96.2 \pm 33.9$ <sup>†</sup>        |
| RV, % of predicted value                   | $133.3\pm29.1$   | 181.7 ± 55.9 **    | $98.9 \pm 38.7 **^{\dagger\dagger}$ |
| TLC, % of predicted value                  | $117.5\pm13.0$   | 127.5 ± 21.5 *     | $93.2\pm24.8$ ** <sup>††</sup>      |
| RV/TLC, %                                  | $34.6\pm6.7$     | 48.9 ± 10.2 **     | $39.0\pm9.9~^{\dagger\dagger}$      |
| DLCO, % of predicted value                 | $101.9 \pm 14.4$ | 62.9 ± 25.8 **     | 52.5 ± 22.1 **                      |
| DLCO/V <sub>A</sub> , % of predicted value | $120.5\pm20.2$   | 79.3 ± 33.0 **     | 88.2 ± 36.8 **                      |

Table 2. Characteristics and results of pulmonary function test of healthy subjects (HS) and patients

with chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD)

| $\Delta N_2, \%$ | $1.14\pm0.61$  | 4.48 ± 2.99 **  | $2.66 \pm 1.74 ~^{\ast\ast\dagger}$ |
|------------------|----------------|-----------------|-------------------------------------|
| CV, L            | $0.64\pm0.27$  | $0.61\pm0.42$   | $0.45\pm0.28~{}^{*}$                |
| <u>CV/VC, %</u>  | $16.2 \pm 6.5$ | $19.0 \pm 11.3$ | 19.1 ± 13.6 **                      |

Values are means  $\pm$  SD. The lung volumes and DLCO were represented as the percentage of reference

value. \*P < 0.05 and \*\*P < 0.01 vs. HS,  $^{\dagger}P < 0.05$  and  $^{\dagger\dagger}P < 0.01$  vs. COPD.

Abbreviations: BMI, body mass index; CV, closing volume, CV/VC; CV/vital capacity (VC).