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Age-related macular degeneration (AMD) is a leading cause of visual impairment. Antievascular
endothelial growth factor drugs are used to treat AMD, but they may induce subretinal fibrosis. We have
focused on adrenomedullin (AM), a vasoactive peptide, and its receptor activity-modifying protein 2,
RAMP2, which regulate vascular homeostasis and suppress fibrosis. Herein, the therapeutic potential of
the AM-RAMP2 system was evaluated after laser-induced choroidal neovascularization (LI-CNV), a
mouse model of AMD. Neovascular formation, subretinal fibrosis, and macrophage invasion were all
enhanced in both AM and RAMP2 knockout mice compared with wild-type mice. These pathologic
changes were suppressed by intravitreal injection of AM. Comprehensive gene expression analysis of the
choroid after LI-CNV with or without AM administration revealed that fibrosis-related molecules,
including Tgfb, Cxcr4, Ccn2, and Thbs1, were all down-regulated by AM. In retinal pigment epithelial
cells, co-administration of transforming growth factor-b and tumor necrosis factor-a induced epithelial-
mesenchymal transition, which was also prevented by AM. Finally, the effects of transforming growth
factor-b and CXCR4 Q5inhibitors were assessed, and they eliminated the difference in subretinal fibrosis
between RAMP2 knockout and wild-type mice. These findings suggest the AM-RAMP2 system suppresses
subretinal fibrosis in LI-CNV by suppressing epithelial-mesenchymal transition. (Am J Pathol 2021, -:
1e17; https://doi.org/10.1016/j.ajpath.2020.12.012)

Age-relatedQ6 macular degeneration (AMD) is a leading cause
of blindness, with a global prevalence of about 8.7%.1 It is
associated with choroidal neovascularization (CNV), which
develops from the choroid to the subretina, where it causes
bleeding or oozing, leading to loss of vision in the affected
eye.2 Because AMD is mitigated by inhibiting vascular
endothelial growth factor (VEGF), VEGF is thought to play
a key role in CNV formation. Indeed, some patients are able
to retain good vision through anti-VEGF therapy,3e5

although others develop irreversible visual impairment due
to subretinal fibrosis associated with AMD.6e8 Moreover, in
one cohort study, subretinal fibrosis was not suppressed
with anti-VEGF therapy, and subretinal fibrosis developed

in 45.3% of patients within 2 years after starting anti-VEGF
therapy.8 In addition, tachyphylaxis necessitates increasing
numbers of treatments, which increases the economic and
physical burden on patients.9

Supported Q4by Japan Science and Technology Agency grant-in-aid for
scientific research (KAKENHI), Core Research for Evolutionary Science
and Technology, the Japan Agency for Medical Research and Develop-
ment, SENSHIN Medical Research Foundation grant, Naito Foundation
grant, Novartis Foundation for the Promotion of Science grant, Akaeda
Medical Research Foundation, Hoyu Science Foundation, Takahashi In-
dustrial and Economic Research Foundation, and Bristol-Myers Squibb
research grant (T.S Q21.).

Disclosures: None declared.

Copyright ª 2021 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ajpath.2020.12.012

ajp.amjpathol.org

The American Journal of Pathology, Vol. -, No. -, - 2021

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

FLA 5.6.0 DTD � AJPA3497_proof � 6 February 2021 � 2:20 am � EO: AJPA-D-20-



Table 1 Primers Used for Real-Time PCR

Gene Primer

Mouse Calcrl (CLR)
forward

50-AGGCGTTTACCTGCACACACT-30

Mouse Calcrl (CLR)
reverse

50-CAGGAAGCAGAGGAAACCCC-30

Mouse AM forward 50-GGACACTGCAGGGCCAGAT-30

Mouse AM reverse 50-GTAGTTCCCTCTTCCCACGACTTA-30

Mouse Ramp2
forward

50-ACTGAGGACAGCCTTGTGTCAAA-30

Mouse Ramp2
reverse

50-CCTTGACAGAGTCCATGCAACTC-30

Mouse Ramp3
forward

50-AAAGCCTTCGCTGACATGATG-30

Mouse Ramp3
reverse

50-ATCTCGGTGCAGTTAGTGAAGCT-30

Mouse Tgfb1
forward

50-CCCGAAGCGGACTACTATGC-30

Mouse Tgfb1
reverse

50-TAGATGGCGTTGTTGCGGT-30

Mouse Tgfb2
forward

50-TAAAATCGACATGCCGTCCC-30

Mouse Tgfb2
reverse

50-GAGACATCAAAGCGGACGAT-30

Mouse Tgfb3
forward

50-GATCACCACAACCCACACCT-30

Mouse Tgfb3
reverse

50-ATAAAGGGGGCGTACACAGC-30

Mouse Cxcr4
forward

50-TCAGTGGCTGACCTCCTCTT-30

Mouse Cxcr4
reverse

50-TTTCAGCCAGCAGTTTCCTT-30

Mouse Cxcl12
(SDF-1) forward

50-AGAGCCAACGTCAAGCATCT-30

Mouse Cxcl12
(SDF-1) reverse

50-TAATTTCGGGTCAATGCACA-30

Mouse Thbs1
forward

50-CGCCTTCCGCATTGAGAATG-30

Mouse Thbs1
reverse

50-CATCTGCCTCAAGGAAGCCA-30

Mouse Ccn2
(CTGF) forward

50-CAGAGGTGGTGGGGTAGAGA-30

Mouse Ccn2
(CTGF) reverse

50-CATTGCCACTCACAATGTCC-30

Mouse Tjp1 (ZO-1)
forward

50-GCCACTACAGTATGACCATCC-30

Mouse Tjp1 (ZO-1)
reverse

50-AATGAATAATATCAGCACCATGCC -30

Mouse Tagln
(SM22a)
forward

50-ACCAAAAACGATGGAAACTACCG-30

Mouse Tagln
(SM22a)
reverse

50-CATTTGAAGGCCAATGACGTG -30

Mouse Rhoa
forward

50-GCTACCAGTATTTAGAAGCCAACCAC-30

Mouse Rhoa
reverse

50-GCTGTTAGAGCAGTGTCAGAAGGAC-30

(table continues)

Table 1 (continued )

Gene Primer

Mouse Rock1
forward

50-CAAAGCACGCCTAACTGACA -30

Mouse Rock1
reverse

50-TCTGCCTTCTCTCGAGCTTC-30

Mouse Icam1
forward

50-CCTAAAATGACCTGCAGACGG-30

Mouse Icma1
reverse

50-TTTGACAGACTTCACCACCCC-30

Mouse Ccl2
(MCP1) forward

50-GCAGTTAACGCCCCACTCA-30

Mouse Ccl2
(MCP1) reverse

50-CCTACTCATTGGGATCATCTTGCT-30

Mouse Tnfa
forward

50-ACGGCATGGATCTCAAAGAC-30

Mouse Tnfa
reverse

50-AGATAGCAAATCGGCTGACG-30

Mouse Il1b
forward

50-CTACAGGCTCCGAGATGAACAAC-30

Mouse Il1b
reverse

50-TCCATTGAGGTGGAGAGCTTTC-30

Mouse Smad2
forward

50-ATGTCGTCCATCTTGCCATTC-30

Mouse Smad2
reverse

50-AACCGTCCTGTTTTCTTTAGCTT-30

Mouse Smad3
forward

50-CATTACCATCCCCAGGTCAC-30

Mouse Smad3
reverse

50-CGTAATTCATGGTGGCTGTG-30

Human Tgfb1
forward

50-GTGGAAACCCACAACGAAAT-30

Human Tgfb1
reverse

50-CGGAGCTCTGATGTGTTGAA-30

Human Cxcr4
forward

50-CTCCAAGCTGTCACACTCCA-30

Human Cxcr4
reverse

50-TCGATGCTGATCCCAATGTA-30

Human Tjp1 (ZO-
1) forward

50-TCACCTACCACCTCGTCGTCTG-30

Human Tjp1 (ZO-
1) reverse

50-ATGAGCACTGCCCACCCATCT-30

Human Tagln
(SM22a)
forward

50-GATTTTGGACTGCACTTCGC-30

Human Tagln
(SM22a)
reverse

50-GTCCGAACCCAGACACAAGT-30

Human Rhoa
forward

50-CTGGTGATTGTTGGTGATGG-30

Human Rhoa
reverse

50-GCGATCATAATCTTCCTGCC-30

Human Rock1
forward

50-AACATGGCATCTTCGACACTC-30

Human Rock1
reverse

50-CAAAATCACAAAGGCCATGA-30

CLR, calcitonin receptor-like receptor; CTGF, connective tissue growth
factor; MCP1, monocyte chemoattractant protein 1; SDF-1, stromal
cellederived factor-1; ZO-1, zonula occludens protein 1.
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Fibrosis is a pathophysiological response to chronic dis-
orders, a reparative action in damaged organs that is asso-
ciated with inflammatory responses.10 In CNV, hemorrhage
and exudative lesions are accompanied by accumulation of
extracellular matrix components, such as collagen and
fibrinogen. InfiltrationQ7 of inflammatory cells, differentiation
of retinal pigment epithelial (RPE) cells into fibroblast-like
cells via epithelial-mesenchymal transition (EMT), and
excessive and poorly ordered extracellular matrix displace-
ment of normal retinal structures, including intramacular
and/or surrounding photoreceptor cells. This often results in
formation of subretinal fibrovascular tissue. Thus, suppres-
sion of fibrosis is an important issue when thinking about
the long-term prognosis of AMD patients.

Adrenomedullin (AM) was first identified as a vaso-
dilating peptide isolated from pheochromocytoma. Howev-
er, subsequent studies revealed that AM exerts a variety of
physiological effects and has antioxidative, anti-
inflammatory, antifibrotic, and antiapoptotic proper-
ties.11e13 Our group previously reported that homozygous
AM knockout (KO) is embryonically lethal because of
systemic edema and bleeding, caused mainly by abnormal
vascular development.14,15 In adults, AM is secreted in the
cardiovascular system, where it exerts various vascular ef-
fects,14,15 and it is now known that AM is also widely
expressed in numerous other tissues and organs, including
the eyes.16 In that regard, using retinal VEGF-
overproducing (Kimba) mice, nonobese diabetic model
(Akita) mice, and central retinal vein occlusion model mice,

our group has shown that AM suppresses pathologic dete-
rioration caused by eye diseases.17,18 We reported that AM
suppresses retinal inflammation, vascular permeability, and
disruption of the blood-retina barrier in Kimba and Akita
mice.17 Using the central retinal vein occlusion model, we
also found that AM improves blood flow by suppressing
coagulation, and that by suppressing inflammation and
oxidative stress it reduces vascular permeability and retinal
edema.18 In addition, Yuda et al19 reported that, in laser-
induced choroidal neovascularization (LI-CNV), a model
of AMD, CNV size was significantly greater in heterozy-
gous AM KO than wild-type (WT) mice.

Given these observations, the clinical application of AM
has been much anticipated14,20e23; however, AM is a pep-
tide with a short half-life in the bloodstream, which limits its
usefulness for the treatment of chronic diseases. To over-
come that limitation, our group has been focusing on AM’s
receptor system. AM is a member of the calcitonin super-
family and acts via a G-proteinecoupled seven-
transmembrane domain receptor, calcitonin receptor-like
receptor (CLR).24 The specificity of CLR for its ligands is
regulated by a group of three receptor activity-modifying
proteins, RAMP1, RAMP2, and RAMP3. The complex of
CLR with RAMP2 or RAMP3 is known to have high af-
finity for AM.25 Interestingly, among homozygous RAMP
KO mice, only RAMP2 KO mice die in utero of vascular
abnormalities, similar to those observed in homozygous AM
KO mice.26 This suggests that RAMP2 is the key determi-
nant of the vascular function of AM, and that it may be
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Figure 1 Pathology of the laser-induced choroidal neovascularization (LI-CNV) lesion and expression of adrenomedullin (AM) and its related genes. A:
Hematoxylin-eosin staining, Masson trichrome staining, and immunostaining for a-smooth muscle actin (a-SMA; diaminobenzidine) in sections of retina from
C57BL/6J wild-type (WT) mice 7 days after laser irradiation. Dotted circles show the LI-CNV. Masson trichrome staining and a-SMA immunostaining show the
subretinal fibrosis in LI-CNV. B: Quantitative real-time PCR analysis of the expression of AM and its related genes in the choroid of untreated C57BL/6J WT mice
on days 1, 3, and 7 after the laser irradiation. The mean of the control group without laser irradiation (Ctrl) was assigned a value of 1. Data are expressed as
means � SEM (B). n Z 5 to 6 in each group (B). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P<0.0001 (one-way analysis of variance with the Tukey
test). Scale bars Z 100 mm (A Q16). CLR, calcitonin receptor-like receptor.
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possible to modulate the vascular function of AM by
modulating RAMP2. In the present study, subretinal fibrosis
was analyzed in LI-CNV model mice, and the possibility
that the AM-RAMP2 system could serve as a therapeutic
target for subretinal fibrosis associated with AMD was
evaluated.

Materials and Methods

Animals

AM, RAMP2, and RAMP3 KO mice were generated by our
group previously.15,26,27 In this study, because of the em-
bryonic lethality of homozygous KO, we used heterozygous
KO of AM and RAMP2, which reduced expression of these
genes to about half that in WT mice. We used homozygous
RAMP3 KO mice, as loss of RAMP3 is not lethal, and adult
mice are available. Male mice, aged 9 to 12 weeks, were

used. WT littermates from each KO line were used as
control mice.
Before the procedure, mice were anesthetized by i.p. in-

jection of a mixture of 0.3 mg/kg medetomidine (Nippon
Zenyaku Kogyo Co Ltd, Koriyama, Japan), 4.0 mg/kg
midazolam (Astellas Pharma Inc., Tokyo, Japan), and 5.0
mg/kg butorphanol (Meiji Seika Pharma Co Ltd, Tokyo,
Japan).
All animal handling complied with protocols approved by

the Ethics Committee of Shinshu University School of
Medicine. All experiments were performed according to the
statements of the Society of Vision and Ophthalmology on
the use of animals in ophthalmic and visual research and our
institutional guidelines.

Indocyanine Green Angiography

Before the experiments described below, indocyanine green
angiography, using a confocal scanning-laser
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Figure 2 Choroidal flat mount analysis of laser-induced choroidal neovascularization (LI-CNV), fibrosis, and macrophage invasion in adrenomedullin (AM)
knockout (KO) and RAMP2 KO mice. A: Comparison of LI-CNV between AM KO and wild-type (WT) mice. On day 7 after laser-induced injury to the Bruch
membrane, choroidal flat mounts were prepared, the areas of the fluorescein isothiocyanate (FITC)epositive CNV and a-smooth muscle actin (a-SMA)e
immunopositive fibrotic areas were measured, and the number of F4/80-positive macrophages were counted. B: Bar graphs comparing CNV and fibrotic areas
and macrophage invasion between AM KO and WT mice. C: Comparison of LI-CNV between RAMP2 KO and WT mice. D: Bar graphs comparing the CNV and fibrotic
areas and macrophage invasion between RAMP2 KO and WT mice. Data are given as means � SEM (B and D). n Z 10 in WT mice (B and D); n Z 11 in AM KO
mice (B); n Z 14 in RAMP2 KO mice (D). *P < 0.05 (t-test). Scale bars Z 100 mm (A and C).
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ophthalmoscope, was performed, according to a previous
study,28 to confirm that there was no apparent choroidal and
retinal vascular change in AM KO, RAMP2 KO, and
RAMP3 KO under baseline conditions (Supplemental
Figure S1). While keeping the cornea moist with saline,
mice were manually held in front of a Heidelberg Retina
Angiograph 2 confocal scanning-laser ophthalmoscope
(Heidelberg Engineering GmbH, Heidelberg, Germany).
Indocyanine green angiography was performed after tail
vein injection of 2 mg/kg indocyanine green (Santen Phar-
maceutical, Osaka, Japan). Images were taken at 10 minutes
after injection.

Continuous Administration of AM to Mice

Male C57BL/6J mice, aged 9 to 12 weeks (Charles River
Laboratories Japan, Kanagawa, Japan), were used. Human
AM (Peptide Institute, Inc., Osaka, Japan) dissolved in
phosphate-buffered saline (PBS) was infused subcutane-
ously using an osmotic pump (Alzet; DURECT Co,
Cupertino, CA). The infusion rate was 29 mg/kg per day,
and the infusion duration was 7 or 14 days. PBS was used as
a control. The effectiveness of human AM in mice is well

established,29,30 and the dosage used was selected on the
basis of earlier studies.17,18

Intravitreal Administration of AM to Mice

Human AM (10�7 mol/L; 1.0 mL) in PBS was injected
intravitreally into anesthetized mice under a surgical mi-
croscope at the corneal scleral junction using a Hamilton
syringe equipped with a 32-gauge needle. PBS (1.0 mL) was
used as a control. After operative procedures, mice were
administered moxifloxacin hydrochloride (Vegamox
Ophthalmic Solution; Alcon, Fudenberg, Switzerland).

LI-CNV Model

After anesthesia, both eyes were dilated with 0.5% tropi-
camide and 0.5% phenylephrine (Mydrine P; Santen, Osaka,
Japan). Laser injury to the retina was performed using a
green laser slit lamp (GYC-1000; NIDEK, Gamagori,
Japan). At that time, a cover glass and a viscoelastic sub-
stance were used as contact lenses. The wavelength was 532
mm, the power output was 200 mW, lasing duration was
0.05 seconds, the spot size was 50 mm, and the laser injuries
were generated in an area where there were no obvious
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Figure 3 Choroidal flat mount analysis of laser-induced choroidal neovascularization (LI-CNV), fibrosis, and macrophage invasion in adrenomedullin
(AM)eadministered mice. A: Comparison of LI-CNV in the laser injury model between AM-administered and control mice. After the laser irradiation, mice were
injected once into the posterior vitreous with phosphate-buffered saline (PBS; 1 mmol/L; 1 mL; control) or AM (10�7 mol/L; 1 mL). On day 7 after the laser-
induced injury, choroidal flat mounts were prepared, the fluorescein isothiocyanate (FITC)epositive CNV and a-smooth muscle actin (a-SMA)eimmunopositive
fibrotic areas were measured, and the number of F4/80-immunopositive macrophages were counted. B: Bar graphs comparing the CNV and fibrotic areas and
macrophage invasion between control and AM-administered mice. Data are given as means � SEM (B). nZ 10 in each group (B). **P < 0.01, ****P < 0.0001
(t-test). Scale bars Z 100 mm (A).
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retinal vessels around the optic nerve. Injury to the Bruch
membrane was confirmed by the appearance of air bubbles.
Three shots per eye were used to evaluate the sizes of the
CNV and fibrotic area, and five shots were used before
extracting mRNA from the choroid. After treatment, 3.0 mg/
kg of atipamezole (ZEOAQ, Fukushima, Japan) was intra-
peritoneally injected to reverse the anesthesia.

In the LI-CNV experiment using mice, the procedure for
intravitreal injection, itself, affects the degree of CNV for-
mation. Therefore, in the studies of intravitreal injection, we
evaluated the effects only in comparison with control of
each experiment. As LI-CNV lesions appeared to be
decreased toward 3 weeks, we analyzed samples from 1 to 2
weeks.

FITC Dextran Perfusion and Retinal Flat Mount

Seven days after LI-CNV induction, mice were anesthetized,
a thoracotomywas performed, and 1mLof PBS containing 50
mg/mL fluorescein isothiocyanate (FITC)elabeled dextran
(molecular weight, 2 � 106; Sigma-Aldrich, St. Louis, MO)
was systemically administered from the left ventricle. The
eyes were then enucleated and fixed with 4%

paraformaldehyde for 1 hour, after which the cornea, lens, and
retina were removed, and flat mounts of the scleral choroid
complex were prepared. Eight pieces were cut radially from
the rim toward the optic disc and mounted onto slide glass.
FITC-positive areas represent CNV (patent vessels but not
collapsed vessels). For immunostaining, after blocking with
1% bovine serum albumin, a rabbit anti-mouse a-smooth
muscle actin (a-SMA) antibody (Abcam, Cambridge, UK),
rat anti-mouse F4/80 antibody (Bio-Rad, Hercules, CA), and
rabbit anti-mouse ROCK1 Q8antibody (Cell Signaling Tech-
nology, Danvers, MA) were applied, followed by appropriate
secondary antibodies. The flat mounts were then embedded in
fluorescencemountingmedium (Agilent Technologies, Santa
Clara, CA) and inspected using a fluorescence microscope
(BZ-9000; Keyence, Osaka, Japan). The sizes of the CNV, a-
SMAepositive, and ROCK-1epositive areas were quantified
using an analytic application, BZ analyzer (Keyence). As we
simply evaluated the areas and omitted the evaluation of the
fluoresce intensity and thickness, the limitation is that wemay
underestimate the actual volume of the lesions. Numbers of
F4/80-positive cells per CNV lesion were counted. Quantifi-
cation was done using a double-blind method Q9. In the flat
mount analysis, n represents the number of CNV lesions.
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Figure 4 Comprehensive gene expression analysis in the choroids after laser irradiation with or without adrenomedullin (AM) administration. A: Following
laser irradiation, AM or phosphate-buffered saline (PBS) was administered using subcutaneously implanted osmotic pumps. On day 14, choroids were collected
for comprehensive gene expression analysis of mouse fibrosis-related factors. The dot plot shows the results of the real-time PCR array analysis. The horizontal
axis shows the fold change [log2 (fold change)], and the vertical axis shows the P value [elog10 (P value)]. Dashed lines indicate the distribution of un-
changed genes. B: Quantitative real-time PCR analysis of the expression of fibrosis-related genes in the choroids after 14 days of laser irradiation with
administration of PBS or AM. The mean of the untreated group (without laser irradiation) was assigned a value of 1. Data are expressed as means � SEM (B).
n Z 4 in each group (B). *P < 0.05, **P < 0.01 (one-way analysis of variance with the Tukey test). CNV, choroidal neovascularization.
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Pathologic Sections

Seven days after laser irradiation, the eyes were enucleated,
fixed in 4% paraformaldehyde overnight, and embedded in
paraffin, after which sections (5 mm thick) were prepared for
histologic analysis. Sections were stained with hematoxylin/
eosin and Masson trichrome stain and immunostained using
antiea-SMA (Agilent Technologies, Santa Clara, CA), anti-
AM (Thermo Fisher Scientific,Waltham,MA), and anti-CLR
(Abcam) antibodies with diaminobenzidine and fluorescent
anti-RhoAQ10 antibody (Abcam).

Quantitative Real-Time RT-PCR

Mice were sacrificed, and their eyes were enucleated. The
cornea, iris, lens, vitreous, and surrounding soft tissues were
removed. Finally, the retina was peeled off by pushing the
RPE-choroid-sclera complex (choroidal complex) from
behind. Total RNA was extracted from choroidal complexes

or ARPE19 cells using TRIzol Reagent (Thermo Fisher
Scientific). The extracted RNA was then treated with DNA-
free (Thermo Fisher Scientific) to remove any contami-
nating DNA, and a 2-mg sample was reverse transcribed
using a PrimeScript RT Reagent Kit (Takara Bio, Shiga,
Japan) to produce cDNA. Quantitative real-time RT-PCR
was performed using a StepOnePlus real-time PCR system
(Thermo Fisher Scientific), SYBR Green (Toyobo, Osaka,
Japan), and real-time PCR master mix (Toyobo). Glyceral-
dehyde-3-phosphate dehydrogenase (Thermo Fisher Scien-
tific) expression was in the endogenous control. Table 1 ½T1�½T1�
shows the primers used. In the gene expression analysis of
the choroidal complexes, n represents the number of mice.

Real-Time RT-PCR Array Assay Analysis

Genes in the mouse choroid were comprehensively evalu-
ated using a PCR array assay (RT2 Profiler PCR Array;
Qiagen, Hilden, Germany). After converting 1 mg of total

A
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R R R R
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Figure 5 Up-regulation of fibrosis-related genes in the choroids of adrenomedullin (AM) knockout (KO) and RAMP2 KO mice after laser irradiation. A:
Quantitative real-time PCR analysis of the expression of fibrosis-related genes. Gene expression was compared between choroids from wild-type (WT) and AM
KO mice untreated (Ctrl) and on days 7 and 14 after laser irradiation. The mean of the untreated WT mice was assigned a value of 1. B: Quantitative real-time
PCR analysis of the expression of fibrosis-related genes. Gene expression was compared between choroids from WT and RAMP2 KO untreated (Ctrl) and on days
7 and 14 after laser irradiation. Data are expressed as means � SEM (A and B). n Z 4 in each group (A and B). *P < 0.05, **P < 0.01, ***P < 0.01, and
****P < 0.001 versus AM WT Q17(two-way analysis of variance with the Tukey test). CTGF, connective tissue growth factor; SDF-1, stromal cellederived factor-1;
ZO-1, zonula occludens protein 1.
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choroidal complex RNA into cDNA using a RT2 First
Strand Kit (Qiagen), a PCR array of fibrosis-related factors
was performed according to the manufacturer’s protocol. All
PCRs were performed using the StepOnePlus real-time PCR
system. RT2 profiler PCR array data were analyzed using
RT2 profiler array data analysis software version 3.5
(Thermo Fisher Scientific).

Western Blot Analysis

Western blot analysis was performed using protein extract
from choroidal complex. The lysates were subjected to
electrophoresis in TGX gel (Bio-Rad Laboratories), trans-
ferred to polyvinylidene difluoride membranes (Bio-Rad
Laboratories), and probed using anti-Smad2, anti-Smad3,
antiephosphorylated Smad2, antiephosphorylated Smad3
(Cell Signaling Technology), and anti-AM (Thermo Fisher
Scientific) antibodies. Antieb-actin antibody (Abcam)
served as a loading control. The blots were developed using
an ImageQuant LAS 4000 (GE Healthcare, Chicago, IL). In
the Western blot analysis of the choroidal complexes, n
represents the number of mice.

Inhibitor Administration

After laser irradiation, SB431542 (Cayman Chemical, Ann
Arbor, MI), a transforming growth factor-b (TGF-b) in-
hibitor, was intraperitoneally injected daily at 10 mg/kg in
5% dimethyl sulfoxide, as described previously.31 Dimethyl
sulfoxide at 5% served as the control. Plerixafor (Sigma-
Aldrich), a CXCR4 inhibitor, was injected once into the
posterior vitreous cavity (200 mmol/L; 1 mL), as described
previously.32 PBS served as the control. Y27632 (Enzo Life
Science, Inc., Farmingdale, NY), a ROCK inhibitor, was
injected into the vitreous body (30 mmol/L; 1 mL) every 3
days, as described previously.33 PBS served as the control.

Human RPE Cells

ARPE19 immortalized human RPE cells were purchased
from ATCC (Manassas, VA). The cells were cultured in
medium supplemented with 10% fetal bovine serum and
penicillin/streptomycin at 37�C and under 5% CO2.
TGF-b2 (5 ng/mL) and tumor necrosis factor-a (TNF-a;

10 ng/mL) were added before the cells became confluent.
When AM (10�7 or 10�9 mol/L) was used, it was added 24
hours before the addition of TGF-b2 plus TNF-a. The
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Figure 6 Suppression of epithelial-mesenchymal transition (EMT) in cultured retinal pigment epithelial cells by adrenomedullin (AM). A: Immunostaining
for zonula occludens protein 1 (ZO-1; top row) and SM22a (bottom row) in ARPE19 human retinal pigment epithelial cells. Cells were stimulated with
transforming growth factor-b (TGF-b; 5 ng/mL) plus tumor necrosis factor-a (TNF-a; 10 ng/mL) for 48 hours to induce EMT. AM (10�9 or 10�7 mol/L) was
added 24 hours before EMT induction. ZO-1 and SM22a were used as epithelial and mesenchymal markers, respectively. B: Bar graphs showing the ZO-1e and
SM22a-positive areas/field. For ZO-1, only the cell boundary region was measured. Data are expressed as means � SEM (B). nZ 6 in the AM group (B); nZ 10
in the other groups (B). **P < 0.01, ****P < 0.0001 (one-way analysis of variance with the Tukey test). Scale bars Z 100 mm (A). Original magnification,
�200 (A, top row); �100 (A, bottom row). Ctrl, control.
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dosage and treatment period were chosen on the basis of
previous studies.34e36

Thereafter, the plate was dipped in 4% paraformaldehyde
for 10 minutes, blocked, and immunostained with
antiezonula occludens protein 1 (ZO-1; 1:200 dilution; BD
Biosciences, Franklin Lakes, NJ), anti-SM22aQ11 (1:200 dilu-
tion; Abcam), and antiecollagen a1 (1:200 dilution; Novus
Biologicals, Littleton, CO) antibodies. Cells were also stained
with phalloidin (Thermo Fisher Scientific) to visualize actin
fibers. Cells were then examined under a microscope (BZ-
9000). Positive areas were determined using Hybrid Cell
Count (BZ analyzer) under the same conditions. Phalloidin-
positive intracellular fiber concentrations were determined,
as described previously.37 Phalloidin-stained cells were
randomly selected, and their images were enlarged for
binarization using ImageJ software version 1.53f (NIH,
Bethesda, MD; http://imagej.nih.gov/ij). Fluorescence
density was measured along a line perpendicular to the
stress fibers at the longest intracellular distance. The
obtained average values served as the fiber density.

Statistical Analysis

Statistical analysiswas performed usingGraphPadPrism7.00
(GraphPad Software Inc., La Jolla, CA). Values are expressed

as the means� SEM, and the significance of differences was
assessed using t-test, one-way analysis of variance with the
Tukey test, or two-way analysis of variance with the Tukey
test. P < 0.05 was considered significant.

Results

Pathology of LI-CNV and Expression of AM and Its
Related Genes

First analyzed were the pathologic changes in the retina after
laser injury in C57BL/6J WT mice. LI-CNV was confirmed
under the retina Q12(Figure 1 ½F1�½F1�A) in the sections prepared 7 days
after laser irradiation. Consistent with LI-CNV formation,
immunostaining for a-SMA, a marker of activated myofi-
broblasts, was positive, as was Masson trichrome staining.
Although Masson trichrome also stained extracellular ma-
trix in retinal areas outside the LI-CNV lesion, the immu-
nostaining for a-SMA was largely limited to the lesion and
is thought to more selectively reflect the progression of
fibrosis. Thereafter, subretinal fibrosis was evaluated on the
basis of a-SMA immunostaining.

To clarify the involvement of the AM-RAMP2 system,
we analyzed the expression of AM and its receptor com-
ponents (Figure 1B). Following the laser irradiation,
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Figure 7 Changes of actin filaments and collagen in cultured retinal pigment epithelial cells after epithelial-mesenchymal transition (EMT) induction. A:
ARPE19 cells were stained with phalloidin (top row) or immunostained for collagen-1 (bottom row) to evaluate the changes in the actin cytoskeleton and
extracellular matrix induced by EMT, which was elicited by incubation with transforming growth factor-b (TGF-b; 5 ng/mL) plus tumor necrosis factor-a (TNF-a;
10 ng/mL) for 48 hours. Adrenomedullin (AM; 10�9 or 10�7 mol/L) or phosphate-buffered saline was added 24 hours before EMT induction. B: Bar graphs
showing the percentage of phalloidin-positive actin filament area/cell and collagen-1 immunostaining-positive area/field. Data are expressed as means � SEM
(B). nZ 10 in each group (B). **P < 0.01, ***P < 0.001, and ****P < 0.0001 (one-way analysis of variance with the Tukey test). Scale barsZ 100 mm (A).
Original magnification, �200 (A). Ctrl, control.
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expression levels of AM, RAMP2, and RAMP3 reached
their peaks on day 1, and then gradually returned to basal
levels by day 7. On the other hand, CLR expression grad-
ually increased from day 1 to day 7. The significant up-
regulation of AM and its receptor components strongly
suggests involvement of AM in the pathogenesis of LI-
CNV. AM and CLR protein expression within LI-CNV le-
sions was also analyzed by immunohistostaining and
Western blot analysis (Supplemental Figure S2).

Evaluation of Flat Mount LI-CNV Specimens from AM,
RAMP2, or RAMP3 KO

Next, using AM KO and RAMP2 KO mice and their WT
littermates, the pathophysiological functions of the endog-
enous AM-RAMP2 system were evaluated. Seven days after
laser irradiation, FITC-dextran was systemically adminis-
tered via the left ventricle. Thereafter, eyes were collected,
and choroidal flat mounts prepared. We evaluated FITC-
positive vascular area as the size of the CNV. We then
immunostained for a-SMA, to evaluate the degree of sub-
retinal fibrosis, and for F4/80, a macrophage marker, to
evaluate the degree of inflammatory cell infiltration.
FITC imaging revealed the average size of the CNV to be
significantly larger in AM KO than WT mice (15,508
mm2 versus 8309 mm2) (Figure 2, A and B½F2�½F2� ). The

a-SMAepositive fibrotic area was also significantly larger
in AM KO mice (23,023 mm2 versus 10,638 mm2). More-
over, the difference after subtraction of the CNV area from
the a-SMAepositive area, which reveals the fibrosis
spreading beyond the CNV, was significantly larger in AM
KO than WT mice (7515 mm2 versus 2328 mm2).
The number of infiltrating F4/80-positive macrophages

was also significantly higher in AM KO mice (52 versus 29).
Similarly, comparison of WT and RAMP2 KO mice showed
that the average CNV was significantly larger in RAMP2 KO
thanWTmice (18,070 mm2 versus 6655 mm2), as was fibrotic
area (26,462 mm2 versus 9678 mm2) and the number of infil-
trating F4/80-positive macrophages (55 versus 34) (Figure 2,
C and D). These observations indicate that the endogenous
AM-RAMP2 system works to suppress CNV formation,
fibrosis, and inflammation after laser injury. On the other
hand, ratio of a-SMAepositive area/CNV area was not
different in bothAMKOandRAMP2KOcomparedwithWT
mice, which may indicate that larger CNV accompanies with
lager fibrosis (Supplemental Figure S3).
The involvement of RAMP3 after laser injury was also

evaluated. Unlike AM and RAMP2 KO, RAMP3 KO did not
significantly affect CNV size, degree of fibrosis, or inflam-
mation (Supplemental Figure S4). Thus, the AM-RAMP2
system, but not the AM-RAMP3 system, works to suppress
the pathologic changes associated with laser injury.

R R R
RRR

Figure 8 Changes in gene expression in cultured retinal pigment epithelial cells after induction of epithelial-mesenchymal transition (EMT). Quantitative
real-time PCR analysis of gene expression in ARPE19 cells. Cells were stimulated with transforming growth factor-b (TGF-b; 5 ng/mL) plus tumor necrosis
factor-a (TNF-a; 10 ng/mL) for 48 hours to induce EMT. Adrenomedullin (AM; 10�7 mol/L) or phosphate-buffered saline was added 24 hours before EMT
induction. The mean of the control (Ctrl) group was assigned a value of 1. Data are expressed as means � SEM. n Z 12 in Cxcr4 and Tjp1; n Z 8 in others.
*P < 0.05, **P < 0.01, and ****P < 0.0001 (one-way analysis of variance with the Tukey test). ZO-1, zonula occludens protein 1.
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Effect of the Intravitreal Injection of AM in Flat Mount
Specimens of LI-CNV

Given that the endogenous AM-RAMP2 system appears to
act to suppress the pathologic changes associated with LI-
CNV, we next assessed the effect of exogenous adminis-
tration of AM (Figure 3½F3�½F3� ). After laser irradiation of C57BL/
6J WT mice, control PBS or AM was administered intra-
ocularly. Because intraocular injection itself causes damage
and results in the enlargement of the LI-CNV in mice,19 we
compared the effects of AM injection with control PBS
injection. The size of the CNV in mice administered PBS
was significantly larger than in those administered AM
(18,779 mm2 versus 9770 mm2). Likewise, the size of the a-
SMAepositive fibrotic area was significantly larger in the
control than AM group (27,265 mm2 versus 22,185 mm2).
And although there was an average of 65 F4/80-positive
macrophages inside or around each laser photocoagulation
site in the control group, that was significantly reduced to 44
in the AM group.

These results indicate that, like the endogenous AM-
RAMP2 system, exogenous AM administration effec-
tively suppresses the pathologic changes associated with
LI-CNV.

Comprehensive Analysis of the Changes in Gene
Expression in LI-CNV Induced by AM

To clarify the mechanism underlying the beneficial effect of
AM, we next performed a comprehensive gene expression
analysis using an RT2 Profiler PCR Array of mouse fibrosis-
related factors. To overview the changes of fibrosis-related
genes, PBS or AM was continuously administered to
C57BL/6J WT mice using subcutaneously implanted os-
motic pumps. Samples were then collected from the choroid
14 days after laser irradiation, and the gene expression
profiles were analyzed. We found that the expression of
fibrosis-related genes (Tgif1, Ccn2, Cxcr4, Mmp3, and
Timp1) was down-regulated by AM administration
(Figure 4 ½F4�½F4�A). Focusing on the fibrosis-related molecules,
quantitative real-time PCR analysis confirmed that expres-
sion levels of genes encoding the TGF-b family and its
receptors, connective tissue growth factor, CXCR4, TIMP1 Q13,
and thrombospondin 1 (Thbs1), were all significantly down-
regulated by AM administration (Figure 4B). Although
Smads have been identified as the canonical downstream
targets of TGF-b, no significant effect of AM administration
on the expression of Smads was detected (Supplemental
Figure S5).
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Figure 9 Transforming growth factor-b (TGF-b) inhibition eliminates the enhanced subretinal fibrosis in RAMP2 knockout (KO) mice. Experiments with
SB431542 (TGF-b inhibitor). Mice were peritoneally injected SB431542 or 5% dimethyl sulfoxide (DMSO; control) every day after the laser irradiation. Flat
mounts were prepared 7 days after laser injury. A: Fluorescein isothiocyanateepositive choroidal neovascularization (CNV). B: Comparison of CNV area between
RAMP2 KO and wild type (WT) with or without the inhibitor. C: a-Smooth muscle actin (a-SMA)eimmunopositive fibrotic area. D: Comparison of a-SMAe-
positive fibrotic area between RAMP2 KO and WT with or without the inhibitor. Data are expressed as means � SEM (B and D). nZ 7 to 9 in each group (B and
D). **P < 0.01, ***P < 0.001 versus RAMP2 WT Q18(two-way analysis of variance with the Tukey test). Scale bars Z 100 mm (A and C).
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Evaluation of the Gene Expression Changes in LI-CNV
from AM KO or RAMP2 KO

Because suppression of fibrosis-related factors could explain
the beneficial effects of AM in LI-CNV, the gene expression
of fibrosis-related factors in AM KO and RAMP2 KO mice
on days 7 and 14 after the laser irradiation was evaluated.
Some of the examined molecules showed significant up-
regulation in AM KO and RAMP2 KO mice compared with
WT mice (Figure 5½F5�½F5� ). In particular, expression of Tgfb3
(TGF-b3), Ccn2 (connective tissue growth factor), Thbs1
(Thbs1), Cxcr4 (CXCR4), and Tagln (SM22a) was signif-
icantly up-regulated in RAMP2 KO compared with WT
mice, whereas expression of Tgfb1 (TGF-b1), Cxcr4
(CXCR4), and Tagln (SM22a) was significantly up-
regulated in AM KO compared with WT mice.

As CXCR4 is known to be the receptor for stromal
cellederived factor-1, we also analyzed the expression of
stromal cellederived factor-1 and found it to be unchanged
in AM KO or RAMP2 KO mice. In RAMP2 KO mice,
expression of Tgfb3 (TGF-b3), Ccn2 (connective tissue
growth factor), and Thbs1 (Thbs1) continued to be elevated
on day 14, whereas the up-regulation of Cxcr4 (CXCR4)

was transient, reaching a peak at 7 days and returning to
basal levels by day 14.
Because the AM-RAMP2 system has been shown to

suppress inflammation,36 gene expression of various
inflammation-related molecules in LI-CNV samples was
also analyzed. Expression of some of the genes, especially
the gene encoding IL-1b, was actually up-regulated in AM
KO and RAMP2 KO mice, but was suppressed by AM
administration (Supplemental Figure S6). This suggests that
inflammation is also involved in the antifibrotic function of
the AM-RAMP2 system. In addition, there was no signifi-
cant difference between the activation levels of Smad2 and
Smad3, two receptor-activated Smads, in WT and RAMP2
KO mice (Supplemental Figure S7).

AM Suppresses EMT in RPE Cells

The in vivo study clearly showed the protective effect of the
AM-RAMP2 system against subretinal fibrosis. Recently,
there has been growing interest in EMT as the mechanism
involved in various fibrosis-related diseases, including
subretinal fibrosis.38,39 Among the retinal cell components,
RPE cells are thought to be the most susceptible to EMT.
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Figure 10 CXCR4 inhibition eliminates the enhanced subretinal fibrosis in RAMP2 knockout (KO) mice. Experiments with plerixafor (CXCR4 inhibitor). Mice
were injected with plerixafor or phosphate-buffered saline (PBS; control) into the posterior vitreous immediately after laser irradiation. Flat mounts were
prepared 7 days after laser injury. A: Fluorescein isothiocyanateepositive choroidal neovascularization (CNV). B: Comparison of CNV area between RAMP2 KO
and wild type (WT) with or without the inhibitor. C: a-Smooth muscle actin (a-SMA)eimmunopositive fibrotic area. D: Comparison of a-SMAepositive fibrotic
area between RAMP2 KO and WT with or without the inhibitor. Data are expressed as means � SEM (B and D). n Z 12 in WT with PBS (B and D); n Z 7 in
RAMP2 KO with PBS and in RAMP2 KO with inhibitor (B and D); n Z 6 in WT with inhibitor (B and D). *P < 0.05, **P < 0.01 versus RAMP2 WT Q19(two-way
analysis of variance with the Tukey test). Scale bars Z 100 mm (A and C).
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For that reason, EMT was evaluated in ARPE19 cells, an
immortalized human RPE cell line. To induce EMT,
ARPE19 cells were stimulated for 48 hours with TGF-b (5
ng/mL) plus TNF-a (10 ng/mL). Immunostaining was per-
formed to assess expression of ZO-1 (an epithelial cell
marker detected in the cell membrane) and SM22a (a
cytosolic marker of mesenchymal cells) (Figure 6½F6�½F6� A). We
found that stimulation with TGF-b plus TNF-a resulted in
down-regulation of ZO-1 and up-regulation of SM22a,
which suggests induction of EMT (Figure 6B). Using this
protocol, the cells were pretreated for 24 hours with or
without AM (10�9 or 10�7 mol/L) before stimulation. AM
(10�7 mol/L) significantly up-regulated ZO-1 and down-
regulated SM22a, apparently preventing the effect of
TGF-b plus TNF-a. In addition, phalloidin-positive actin
filament formation (indicating myofibroblast-like changes in
ARPE19 cells) and collagen-positive area (indicating
accumulation of extracellular matrix) were both enhanced
by TGF-b plus TNF-a stimulation, which suggests EMT
was actually induced. Those changes too were prevented by
AM (10�7 mol/L) (Figure 7½F7�½F7� ). This suppression of EMT may
explain at least some of the protective effects of AM against
subretinal fibrosis.

Gene expression analysis in this EMT model in ARPE19
cells also showed that stimulation with TGF-b plus TNF-a

resulted in down-regulation of genes encoding ZO-1 and up-
regulation of SM22a, and those effects were prevented by
AM (Figure 8 ½F8�½F8�). The EMT stimulation also up-regulated
expression of genes encoding TGF-b, CXCR4, RhoA, and
ROCK, and those effects were prevented by AM.

Effects of TGF-b, CXCR4, and ROCK Inhibitors on
Subretinal Fibrosis

We speculated that the protective effects of the AM-RAMP2
system against subretinal fibrosis in LI-CMV could be
explained by suppression of fibrosis-related factors, such as
TGF-b and CXCR4, which is reportedly a downstream target
of TGF-b.40,41 To confirm the involvement of the TGF-
beCXCR4 pathway in subretinal fibrosis, we analyzed the
effects of TGF-b and CXCR4 inhibitors on LI-CNV and
compared their effects in RAMP2 KO and WT mice.

We first evaluated the effect of i.p. injection of the TGF-b
inhibitor, SB431542. In the control 5% dimethyl sulfoxide
groups, CNV size was significantly larger in RAMP2 KO
than WT mice (23,797 mm2 versus 14,389 mm2) (Figure 9,
A and B ½F9�½F9�). By contrast, when SB431542 was administrated,
there was no difference in CNV size between RAMP2 KO
and WT mice (8461 mm2 versus 8475 mm2) (Figure 9, A and
B). In the control groups, a-SMAepositive fibrotic area was
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Figure 11 Immunostaining and gene expression of RhoA and ROCK1 within laser-induced choroidal neovascularization (LI-CNV) lesions. A and B:
Immunostaining of a-smooth muscle actin (a-SMA; A) and RhoA (B) in pathologic sections of retina in wild-type (WT) and RAMP2 knockout (KO) mice 7
days after laser irradiation. Dotted circles show the LI- CNV. C: Immunostaining of ROCK1 in flat mounts from WT and RAMP2 KO mice 7 days after laser
irradiation. D: Comparison of the ROCK1-positive area between RAMP2 KO and WT. E: Comparison of RhoA and Rock1 gene expression between RAMP2 KO
and WT mice. Data are expressed as means � SEM (D and E). n Z 8 in WT (D); n Z 6 in RAMP2 KO (D); n Z 4 in each mouse (E). **P < 0.01,
***P < 0.001 versus RAMP2 WT Q20(t-test). Scale bars Z 100 mm (AeC).
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also significantly larger in RAMP2 KO than WT mice
(26,711 mm2 versus 13,262 mm2) (Figure 9, C and D). On
the other hand, when SB431542 was administered, the
fibrotic area was no larger in RAMP2 KO than in WT mice
(7750 mm2 versus 8225 mm2). Similar results were obtained
with intravitreal injection of the CXCR4 inhibitor, plerixafor
(Figure 10½F10�½F10� ).

We also speculated that TGF-b and CXCR4 may interact
with the RhoA-ROCK1 pathway, which is reportedly a
downstream target of TGF-b42 and involved in subretinal
fibrosis.43 As described above, immunostaining retinal
sections from WT and RAMP2 KO mice for a-SMA after
LI-CNV revealed subretinal fibrosis to be present in both
groups, although it was larger in RAMP2 KO mice
(Figure 11½F11�½F11� A). Correspondingly, intense immunostaining for
RhoA was detected in RAMP2 KO mice (Figure 11B). In
flat mounts, ROCK1-positive areas were significantly larger
in RAMP2 KO than WT mice (Figure 11, C and D). Gene
expression analysis showed significant up-regulation of
RhoA and ROCK1 in RAMP2 KO compared with WT mice
(Figure 11E).

To further confirm the relationship between TGF-b,
ROCK1, and CXCR4, the effect of the TGF-b inhibitor,
SB431542, and ROCK inhibitor, Y27632, on gene expres-
sion in LI-CNV samples was analyzed. It was observed that
TGF-b inhibition suppressed expression of the genes
encoding ROCK1 and CXCR4, suggesting TGF-b is up-
stream of both ROCK1 and CXCR4 (Figure 12½F12�½F12� A).

Similarly, ROCK inhibition suppressed expression of the
gene encoding CXCR4, suggesting ROCK1 is upstream of
CXCR4 (Figure 12B).
These data suggest that enhanced subretinal fibrosis in

RAMP2 KO mice is associated with up-regulation of ac-
tivity in the TGF-beROCK1eCXCR4 pathway, and that
inhibition of this pathway eliminates the difference in
fibrosis between RAMP2 KO and WT.

Discussion

Currently, AMD patients are treated with photodynamic
therapy, retinal photocoagulation, or anti-VEGF therapy.44

Among those, anti-VEGF therapy has good short-term re-
sults and is becoming a standard treatment for AMD.3e5

However, the beneficial effects of anti-VEGF drugs on the
eye are time limited and require regular intravitreal in-
jections.45 Furthermore, chronic usage of anti-VEGF ther-
apy is becoming a subject of concern, as it may promote
subretinal fibrosis.6e8 Clarifying more precisely the mech-
anism and molecular participants in subretinal fibrosis could
potentially reveal novel candidates that could serve as the
basis for new therapeutic approaches.
In that context, we focused on a bioactive peptide, AM,

which was originally identified as a vasodilating and anti-
hypertensive mediator that contributed to circulatory ho-
meostasis. However, subsequent studies revealed that AM
also possesses anti-oxidative, anti-inflammatory, anti-
apoptotic, and antifibrotic properties, and that it is present
in the eyes.16 It has been speculated that AM could serve as
a possible therapeutic agent for treatment of AMD. How-
ever, an important limitation of AM is its short half-life in
the bloodstream, which limits its usefulness for treatment of
chronic diseases. As an alternative, we propose that the AM
receptor system could be a more useful target for the
treatment of retinal vascular diseases. The complex of AM’s
receptor, CLR, with RAMP2 or RAMP3 has high affinity
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Figure 13 Proposed mechanism by which the adrenomedullin (AM)e
RAMP2 system suppresses subretinal fibrosis within laser-induced choroidal
neovascularization (LI-CNV) lesions. Epithelial-mesenchymal transition
(EMT) of retinal pigmental epithelial cells plays a crucial role in the pro-
gression of subretinal fibrosis within LI-CNV lesions. Downstream trans-
forming growth factor-b (TGF-b) signaling molecules, including RhoA-ROCK
and CXCR4, promote EMT. The AM-RAMP2 system suppresses EMT and
subretinal fibrosis by inhibiting EMT as well as CNV formation.
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Figure 12 Down-regulation of Cxcr4 and Rock1 expression within laser-
induced choroidal neovascularization (CNV) lesions by transforming growth
factor-b (TGF-b) or ROCK inhibitor. Following laser irradiation, wild-type
(WT) mice were peritoneally injected with SB431542 (TGF-b inhibitor) or
5% dimethyl sulfoxide (DMSO; control) daily (A), or they were intravitreally
injected with Y27632 (ROCK inhibitor) or phosphate-buffered saline (PBS;
control) every 3 days (B). Choroids were prepared 7 days after the laser
irradiation, and quantitative real-time PCR analysis was performed. The
mean of the untreated WT mice (no CNV) was assigned a value of 1. Data are
expressed as means � SEM (A and B). n Z 4 in each group (A and B).
*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 (one-way
analysis of variance with the Tukey test).
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for AM.25 Moreover, the earlier finding that only homozy-
gous RAMP2 KO die in utero of vascular abnormalities,
similar to those observed in homozygous AM KO26 mice,
suggests RAMP2 is the key determinant of the vascular
function of AM. In the present study, therefore, we focused
on the AM-RAMP2 system and its actions in subretinal
fibrosis associated with AMD.

In this study, LI-CNV size, fibrosis, and inflammation
were exacerbated in AM KO and RAMP2 KO compared
with their WT littermates. By contrast, no difference was
found between RAMP3 KO and WT mice. This suggests
that the beneficial effects of AM in LI-CNV were mediated
via RAMP2 rather than RAMP3. In contrast to the findings
with AM and RAMP2 KO, exogenous AM administration
suppressed LI-CNV size, fibrosis, and inflammation. In the
gene expression analysis, fibrosis-related molecules were
up-regulated in AM KO and RAMP2 KO mice and down-
regulated in AM-administered mice. In fact, AM suppressed
expression of some fibrosis-related molecules to levels
below their baseline levels, which is consistent with the
strong antifibrotic properties of AM. Ratio of a-SMAe-
positive area/CNV area was not different in both AM KO
and RAMP2 KO compared with WT mice, which may
indicate that larger CNV accompanies with lager fibrosis,
and suppression of CNV formation could potentially reduce
the apparent levels of fibrosis.

Sakimoto et al46 used AM22-52 (a partial AM peptide
that acts as a competitive antagonist of AM) and AM anti-
body in a similar LI-CNV model. They showed that intra-
vitreal injection of AM22-52 or AM antibody reduced the
size of the CNV. Their results appear to be opposite the
present result obtained with AM KO mice, and we cannot be
certain what accounts for the difference. However, one
possibility is the difference in the methods used to suppress
AM. Whereas Sakimoto et al46 used AM inhibitors, we used
AM KO and RAMP2 KO mice. Moreover, Sakimoto et al46

intravitreally injected the inhibitors. In our experience,
intravitreal injection, itself, affects the degree of CNV for-
mation in mice. We therefore suggest the results of the
present study more accurately reflect the role of endogenous
AM. Indeed, using a similar LI-CNV model, Yuda et al19

showed that CNV is larger in AM KO than WT mice,
which is consistent with the present findings. The limitation
of using the LI-CNV model for studying retinal fibrosis is
that it was evaluated up to 2 weeks, although pathology of
fibrosis is in fact chronic in nature.

EMT is the process by which epithelial cells lose their
adhesive function and transform into mesenchymal-like
cells. It is known to be important in embryonic develop-
ment, organogenesis, wound healing, and cancer invasion
and metastasis. In addition, EMT has also been implicated
in fibrosis,47 and is therefore a potential therapeutic target in
fibrosis-related diseases. It was recently suggested that RPE
cells are the cells mainly affected by EMT in subretinal
fibrosis associated with AMD.48,49 In vitro, cellular stimu-
lation with TGF-b plus TNF-a has been used to induce

EMT.50,51 As a result of EMT, the epithelial cell markers E-
cadherin, claudin-1, ZO-1, and cytokeratin-18 are all down-
regulated, whereas the mesenchymal markers a-SMA,
fibronectin, fibroblast-specific protein-1, vimentin, collagen
1, and SM22a are all up-regulated.50 In the present study,
we induced EMT in ARPE19 cells, an RPE cell line, by
exposing the cells to TGF-b plus TNF-a. Subsequent
evaluation of ZO-1 and SM22a levels confirmed that AM
suppresses EMT in ARPE19 cells.

Using real-time PCR analysis, we found that expression
level genes encoding TGF-b and CXCR4 were elevated in
AM KO and RAMP2 KO mice and decreased by AM
administration. TGF-b has been identified as the main
factor driving the inflammation and fibrosis associated
with AMD in humans.52 On the other hand, AM has been
shown to suppress expression of inflammatory cytokines,
including TGF-b, by inhibiting phosphorylation of JNK Q14,
extracellular signaleregulated kinase, and p38 mitogen-
activated protein kinase.53e55 CXCR4 is thought to be a
downstream target of TGF-b.40,41 CXCR4 is well known
as the receptor required for HIV to enter cells,56 and it is
also reportedly involved in the formation of LI-CNV.32,57

In recent years, CXCR4 has become an attractive target for
the treatment of fibrosis in many organs, including the
lung,58 heart,59 liver,60 and kidney,61 and CXCR4 inhibi-
tion using plerixafor suppresses fibrosis. Thus, the bene-
ficial effects of the AM-RAMP2 system may be explained
by suppression of the TGF-beCXCR4 pathway, although
it is also possible that plerixafor can directly suppress
CNV and fibrosis independent of AM-RAMP2 system.
Although Smads have been identified as the canonical
downstream targets of TGF-b, we detected no significant
effect of AM on Smads.

To confirm that suppression of the TGF-beCXCR4
pathway explains the beneficial effects of the AM-RAMP2
system against subretinal fibrosis, we compared the effects
of antieTGF-b or anti-CXCR4 agents in LI-CNV between
RAMP2 KO and WT mice. Although both CNV and sub-
retinal fibrosis were greater in RAMP2 KO than WT mice,
inhibition of TGF-b using SB431542 or inhibition of
CXCR4 using plerixafor eliminated the difference between
the responses in the two groups. This suggests up-regulation
of activity in the TGF-beCXCR4 pathway is the main
cause of the enhanced pathologic features seen in RAMP2
KO mice.

We also found that levels of RhoA and ROCK1 expres-
sion were up-regulated in RAMP2 KO mice after induction
of LI-CMV. The RhoA-ROCK1 pathway is known to be a
downstream target of TGF-b42 and is also reported to
enhance EMT.43 ROCK inhibition using Y27632 blocked
enlargement of the subretinal fibrotic area in RAMP2 KO
mice, whereas gene expression analysis of LI-CNV samples
suggested TGF-b is upstream of both ROCK1 and CXCR4,
and ROCK1 is upstream of CXCR4.

Figure 13 ½F13�½F13�summarizes the actions of the AM-RAMP2
system in subretinal fibrosis. EMT of RPE cells plays a
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crucial role in the progression of subretinal fibrosis in AMD.
Downstream TGF-b signaling molecules, including RhoA-
ROCK and CXCR4, promote EMT. In addition to its sup-
pression of CNV formation, the AM-RAMP2 system also
suppresses EMT and subretinal fibrosis through inhibition
of TGF-b, RhoA-ROCK, and CXCR4. We therefore pro-
pose that the AM-RAMP2 system has the potential to serve
as a novel therapeutic target for suppression of subretinal
fibrosis in the treatment of AMD.

Supplemental Data

Supplemental material for this article can be found at
http://doi.org/10.1016/j.ajpath.2020.12.012.
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