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The space of short ropes and the classifying space of
the space of long knots

SYUNJI MORIYA

KEIICHI SAKAI

We prove affirmatively the conjecture raised by J Mostovoy (Topology 41 (2002)
435–450); the space of short ropes is weakly homotopy equivalent to the classifying
space of the topological monoid (or category) of long knots in R3. We make use of
techniques developed by S Galatius and O Randal-Williams (Geom. Topol. 14 (2010)
1243–1302) to construct a manifold space model of the classifying space of the space
of long knots, and we give an explicit map from the space of short ropes to the model
in a geometric way.

57R19; 55R35, 57M25

1 Introduction

A long j –embedding in Rn is a smooth embedding Rj ,!Rn that coincides with the
standard inclusion outside a compact set.

The space Emb.Rj ;Rn/ of all long j –embeddings in Rn equipped with the C1–
topology has been widely studied in recent years, in particular in the metastable range
of dimensions. Perhaps the space of long knots, long 1–embeddings in R3, is one of
the most fascinating cases, but the dimension .n; j /D .3; 1/ is not in the stable range
and some methods for studying Emb.Rj ;Rn/ in high (co)dimensional cases yield only
information on K WD �0.Emb.R1;R3// when applied to Emb.R1;R3/. K is just a
free commutative monoid (and not a group) with respect to the connected sum, and the
group completion �BEmb.R1;R3/ would be strictly better from homotopy-theoretic
view than Emb.R1;R3/ itself. In fact, the group completion is a 2–fold loop space,
since the little 2–disks operad acts on Emb.R1;R3/ (Budney [1]). Moreover, the
group completion would be useful for study of (isotopy classes of) long knots since the
natural map Emb.R1;R3/!�BEmb.R1;R3/ induces a monomorphism on �0 .

From this viewpoint the result of Mostovoy [3] is very curious, though it is also
concerned with K . A parametrized short rope is a smooth embedding �W Œ0; 1� ,!R3
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of length < 3 such that �.i/ D .i; 0; 0/ for i D 0; 1. Mostovoy has proved that the
fundamental group of the space B2 of parametrized short ropes is isomorphic to �1BK ,
the group completion of K . This leads us to the question [3, Conjecture 1]: is the
space B2 the classifying space BEmb.R1;R3/ of Emb.R1;R3/? Our main result
asserts that this is the case.

Theorem 1.1 (Corollary 3.7 and Theorem 3.8) Mostovoy’s space of parametrized
short ropes is weakly homotopy equivalent to the classifying space of the space of long
knots.

One of the main ingredients in the proof of Theorem 1.1 is the technique of Galatius and
Randal-Williams [2]. It enables us to construct a model of BEmb.R1;R3/. The model
is a space of certain 1–dimensional submanifolds in R3 whose connected components
are noncompact closed subspaces of R3 (see Definition 2.3). We prove Theorem 1.1
by introducing the notion of reducible ropes (see Definition 3.1) and by comparing the
manifold space model with the space of short ropes through reducible ropes:

Theorem 1.2 (Corollary 3.7 and Theorem 3.8) The manifold space model and
Mostovoy’s space of parametrized short ropes are both weakly homotopy equivalent to
the space of reducible ropes.

It is very interesting that we can realize the weak equivalence from the manifold space
model to the space of reducible ropes as a “cut-off map” which is explicit and geometric.
Therefore, Mostovoy’s space of short ropes and the space of reducible ropes would
serve as tools to study BEmb.R1;R3/ in a geometric way.

2 Manifold space model of the classifying space of the space
of long knots

2.1 Notation

Throughout this paper Dm and Dm stand respectively for the open and closed unit
m–disks,

Dm WD fp 2Rm j jpj< 1g; Dm WD fp 2Rm j jpj � 1g:

For a 1–dimensional manifold M �R1 �D2 and a subset A�R1, let

M jA WDM \ .A�D
2/:

For a one-point set AD fT g, we simply write M jT for M jfT g .
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Definition 2.1 A 1–dimensional manifold M �R1 �D2 is said to be

� reducible at T 2R1 if M intersects fT g �D2 transversely in a one-point set;

� strongly reducible at T 2R1 if M jT is a one-point set and there exists an � > 0
satisfying

M j.T��;TC�/ D .T � �; T C �/� fp23.M jT /g;

where p23W R1 �D2!D2 is the projection.

Remark 2.2 The word “reducible” indicates that the manifold looks like a “connected
sum” of two 1–manifolds. But the meaning is different from that in knot theory, in that
a reducible manifold does not need to split into a connected sum of nontrivial knots.

2.2 The category K of long knots

First we define the space  that we have referred to in Section 1 as the manifold space
model.

Definition 2.3 Let  be the set of 1–dimensional submanifolds M �R1 �D2 such
that

� @M D∅,

� each connected component of M is a closed, noncompact subspace in R3, and

� there exists at least one T 2R such that M is reducible at T .

(See Figure 2.1). The above conditions imply that M 2  contains exactly one
connected component M0 satisfying M0jt ¤∅ for any t 2R1. Such a component is
said to be long. It can also be seen that the other connected components (if they exist) are
long on exactly one side; we say a component M1 is long on the left (resp. right) if there
exists T 2 R1 such that M1js ¤ ∅ for any s � T (resp. s � T ) but M1j.T;1/ D ∅
(resp. M1j.�1;T / D ∅). The set  is topologized as a subspace of  .3; 1/ from
Galatius and Randal-Williams [2, Section 3.1] (without any “tangential data”).

Remark 2.4 Roughly speaking, two manifolds M;N 2  are “close to each other if
they are close in a compact subspace of R3 ”. A bit more precisely, for M 2 , the set
of manifolds whose intersections with some compact subspace of R3 is obtained by
shifting M along small normal sections to M is a basic open neighborhood of M in  .
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T

Figure 2.1: An element of  ; the long component is drawn with a thick curve.

It is worth mentioning the following example: Let ˛W Œ0; 1/!R�0 be a monotonically
increasing function with ˛.0/D 0 and limt!1 ˛.t/D1, and M.t/ 2 for 0� t < 1
a continuous family satisfying M.t/jŒ�˛.t/; ˛.t/�D Œ�˛.t/; ˛.t/��f.0; 0/g. Then M.t/
converges to the trivial long knot R1 � f.0; 0/g in this topology as t tends to 1 (see
also [2, Example 2.2]).

Remark 2.5 For any M 2  there exists T 2R1 such that all the components of M
that are long on the left (resp. right) are contained in .�1; T /�D2 (resp. .T;1/�D2 ).

Definition 2.6 We define the category K of long knots as follows. The space of
objects of K is D2 with the usual topology. A nonidentity morphism from p to q is a
pair .T;M/, where T > 0 and M 2 is a long knot from p to q , namely a connected
1–manifold (and hence long) that is strongly reducible at any t 2 .�1; �/[.T ��;1/
for some � > 0:

M j.�1;�/ D .�1; �/� fpg; M j.T��;1/ D .T � �;1/� fqg:

The identity morphism idW p! p is given by .0;R1 � fpg/. The total space[
p;q

MapK.p; q/

of all morphisms is topologized as a subspace of .f0g tR1>0/� , where f0g tR1>0
is a disjoint union. The composition ıW MapK.q; r/�MapK.p; q/!MapK.p; r/ is
defined by

.T1;M1/ ı .T0;M0/ WD .T0CT1;M0j.�1;T0�[ .M1jŒ0;1/CT0e1//;

where e1 D .1; 0; 0/ 2R3 and CT e1 stands for the translation by T in the direction
of R1.

In this section we show that BK (see Section 2.3 for the definition) is weakly equivalent
to  . The following posets play roles as interfaces between them:
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Definition 2.7 Define a poset D by

D WD f.T;M/ 2R1 � jM is reducible at T g

and topologize D as a subspace of R1 � . Define the partial order � on D so that
.T;M/ < .T 0;M 0/ if and only if M D M 0 and T < T 0. We regard D as a small
category in the usual way, namely MapD.x; y/ is a one-point set f.x; y/g if x � y ,
and ∅ otherwise. The total space of all morphisms is topologized as a subspace of
.�t .R1 �R1 n�//� , where � WD f.x; x/ 2R1 �R1g is the diagonal set.

Define D? as a subposet of D consisting of .T;M/ with M strongly reducible at T .

2.3 Classifying spaces of categories

Here we recall the general definition of classifying spaces of topological categories.

For a topological category C, its nerve is the simplicial space whose level l space NlC
consists of sequences of l composable morphisms .x0

f1
�!x1

f2
�!� � �

fl
�!xl/ in C and

is topologized as a subspace of the l th power of the total space of all morphisms in
C. By definition, N0C is the space of objects in C. The face maps are given by the
compositions, and the degeneracy maps are given by inserting the identity morphisms.
The classifying space BC of C is defined as the geometric realization of N�C,

BC WD jN�Cj WD
�G
l�0

.NlC ��l/
�
=�;

where �l WD
˚
.�0; : : : ; �l/ 2 Œ0; 1�

lC1 j
P
i �i D 1

	
is the standard l –simplex. The re-

lation � is defined so that, for any order-preserving map � W f0; : : : ; l˙1g!f0; : : : ; lg,

(2-1) Nl˙1C ��l˙1 3 .��f; �/� .f; ���/ 2NlC ��l ;

where �� and �� are the induced maps on (co)simplicial spaces.

Recall from Segal [4] a sufficient condition for a simplicial map to induce a homotopy
equivalence on geometric realizations:

Definition 2.8 [4, Definition A.4] We say a simplicial space A� is good if siAl ,!
AlC1 is a closed cofibration for each l and 0 � i � l , where si stands for the i th

degeneracy map.

Lemma 2.9 [4, Proposition A.1] Let A� and B� be good simplicial spaces. Suppose
there exists a simplicial map f�W A�!B� which is a levelwise homotopy equivalence,
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that is, fl W Al!Bl is a homotopy equivalence for each l . Then f induces a homotopy
equivalence jf�jW jA�j

'
�!jB�j on the geometric realizations.

2.4 The classifying space of K

Notice that any element of NlD (resp. NlD? ), with l � 0, can be expressed as a pair
.T0 � � � � � Tl IM/, where M 2  is reducible (resp. strongly reducible) at each Ti .
Similarly, any element of NlK for l � 1 is of the form .0� T1 � � � � � Tl IM/, where
M is a long knot that is strongly reducible at each Ti .

Lemma 2.10 The simplicial spaces N�K , N�D and N�D? are good.

Proof For 0 � i � l , siNlK D f.0 � T1 � � � � � TlC1IM/ j Ti D TiC1g � NlC1K
(here T0 WD 0) is a union of connected components of sequences involving identity
morphisms, and hence the pair .NlC1K; siNlK/ has the homotopy extension property.
The proofs for N�D and N�D? are the same.

Proposition 2.11 There exists a zigzag of levelwise homotopy equivalences N�K 
N�D?!N�D. Consequently, BK BD?! BD are all homotopy equivalences.

Proof The proof is the same as in Galatius and Randal-Williams [2, Theorem 3.9].
That BD?! BD, induced by the inclusion, is a homotopy equivalence follows from
[2, Lemma 3.4], which states that, for any .T0 � � � � � Tl IM/ 2 NlD, M can be
modified to be strongly reducible at Ti in a canonical way.

Define the functor F W D?! K on objects by .T;M/ 7!M jT , and on morphisms by

F.T0 � � � � � Tl IM/ WD .0� T1�T0 � � � � � Tl �T0IM jŒT0;Tl ��T0e1/;

where M jŒT0;Tl � is the long-extension of M jŒT0;Tl � (see Figure 2.2), namely

(2-2) M jŒT0;Tl � WD
�
.�1; T0��fp23.M jT0

/g
�
[M jŒT0;Tl �[

�
ŒTl ;1/�fp23.M jTl

/g
�
;

where p23W R � D2 ! D2 is the second projection (the set (2-2) is the same as
.'1.T0; Tl/ � id/�1.M/ in [2, Section 3.2]). Notice that M jŒT0;Tl � is a connected
subspace of the long component of M (see Remark 2.5), and its long-extension is also
connected. This induces a map F W N�D?!N�K of simplicial spaces.

We have a map GW N�K!N�D? , defined in level 0 by G.p/ WD .0;R1 � fpg/, and
by the natural inclusion in positive levels (letting T0 WD 0). This is just a simplicial
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T0 Tl

M

M jŒT0;Tl � � T0e1

0 Tl � T0

 

Figure 2.2: The functor F from the proof of Proposition 2.11 (cut-off and
long-extension)

map up to homotopy (in levels 0 and 1), but is a levelwise homotopy inverse to F ;
the composite F ıG is the identity, and the other composite G ıF is given by

G ıF.T0 � � � � � Tl IM/D .0� T1�T0 � � � � � Tl �T0IM0jŒT0;Tl �/;

which is isotopic to the identity via the same homotopy as the one exhibited in the
last line in the proof of [2, Theorem 3.9] (see Figure 2.3). This homotopy firstly
extends M j.T0��;T0� and M jŒTl ;TlC�/ to left and right, respectively, so that M j.�1;T0/

and M j.Tl ;1/ (in which all the one-sided long components are contained) escape to
“f�1g�D2 ”, respectively. Then they “vanish” at sD 1 by definition of the topology
of  (see Remark 2.4). Simultaneously this homotopy translates the manifold by �T0
in the direction of R1. This homotopy keeps manifolds strongly reducible at each Ti .

Therefore, F W N�D?!N�K is a levelwise homotopy equivalence of good simplicial
spaces (Lemma 2.10), and BD?! BK is a homotopy equivalence by Lemma 2.9.

Following Galatius and Randal-Williams [2], we write the element of BD represented
by ..T0 � � � � � Tl IM/; .�0; : : : ; �l//2NlD��l as a formal sum

P
0�i�l �iTi (this

notation is compatible with the relation (2-1)).

Theorem 2.12 The forgetful map uW BD!  given by
P
i �iTi 7!M is a weak

homotopy equivalence. Thus, BK is weakly equivalent to  .

M jŒT0;Tl �

T0 Tl

M jŒTl ;1/M jŒ�1;T0/

M jŒT0;Tl �jŒT0�˛.s/; Tl C˛.s/�

s!1
���!

s!1
 ���

T0 � ˛.s/ Tl C ˛.s/

Figure 2.3: The homotopy in the proof of Proposition 2.11 from G ıF to
the identity, where ˛.s/!1 as s% 1 .
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Proof The proof is the same as that of [2, Theorem 3.10]: Given the commutative
diagram of strict arrows

@Dm
yf
//

� _

��

BD

u

��

Dm
f
//

g
==

 

we find a dotted gW Dm! BD that makes the diagram commutative. This means that
the relative homotopy group �m. 0; BD/ ( 0 is the mapping cylinder of u) vanishes
for all m, and u induces an isomorphism of homotopy groups in any dimension.

For a 2R let Ua WD fx 2Dm j f .x/ 2 is reducible at ag. This is an open subspace
of Dm and fUaga2R is an open covering of Dm because, by definition, such an a
exists for any M 2  . So, by compactness, we can pick finitely many a0 < � � �< ak
such that fUai

g0�i�k covers Dm. Pick a partition of unity f�i jDm! Œ0; 1�g0�i�k

subordinate to the cover. Using �i as a formal coefficient of ai gives a map

ygW Dm! BD; yg.x/ WD
X
0�i�k

�i .x/ai

(represented by elements in NkD ��k ) which lifts f , namely u ı yg D f . Now
we produce a homotopy hW Œ0; 1� � @Dm ! BD such that h.0;�/ D ygj@Dm.�/,
h.1;�/D yf .�/ and h.s;�/ lifts f j@Dm for all s ; if such an h exists, then we can
define the desired map g by

g.x/ WD

�
yg.2x/ if jxj � 1

2
;

h.2jxj � 1; x=jxj/ if jxj � 1
2
:

Since yf is also a lift of f j@Dm , we may suppose that yf is of the form

yf .x/D
X
0�i�l

�i .x/bi

for some �0; : : : ; �l � 0 with
P
i �i .x/ D 1 and b0 < � � � < bl (the underlying

manifolds f .x/ and u. yf .x// are the same). Let c0 < � � � < cn be the reordering of
the set faigi [fbj gj in ascending order. Using the relation (2-1) we can write ygj@Dm

and yf as

ygj@Dm.x/D
X
0�i�n

˛i .x/ci for some ˛0; : : : ; ˛n � 0;
X
i

˛i D 1;

yf .x/D
X
0�i�n

ˇi .x/ci for some ˇ0; : : : ; ˇn � 0;
X
i

ˇi D 1
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� � �

t

�

t

� �

reducible nonreduciblereducible

Figure 3.1: Reducible and nonreducible ropes

(represented by elements in NnD��n ). We define h using the affine structure on the
fibers of u:

h.s; x/ WD sygj@Dm.x/C .1� s/ yf .x/ WD
X
0�i�n

.s˛i .x/C .1� s/ˇi .x//ci :

Remark 2.13 We have topologized the spaces of morphisms of various categories so
that the identity morphisms form disjoint components, as was also done in [2]. We
may instead topologize the total space of morphisms in K (resp. D) as a subspace
of Œ0;1/� (resp. R�R� ) and with the latter topology we can prove similar
results to the above. An advantage of the former topology is that it makes the proof of
goodness of the nerves easier.

3 The space of reduced ropes

In this section we show that the conjecture of Mostovoy is true. We first characterize
the weak homotopy type of  as that of the space of reducible ropes, and then prove
that the space of reducible ropes is weakly equivalent to the space of Mostovoy’s short
ropes.

3.1 BK and the space of reducible ropes

Definition 3.1 (Mostovoy [3]) A rope is a compact, connected 1–dimensional sub-
manifold r �R1�D2 with nonempty boundary @r D f@0r; @1rg, with @ir 2 fig�D2.
Let R be the set of all ropes that are reducible at some t 2 .0; 1/ (see Figure 3.1),
topologized as a subspace of Emb.Œ0; 1�;R�D2/=DiffC.Œ0; 1�/.

The function f .t/ WD tan�
�
t � 1

2

�
gives an orientation-preserving diffeomorphism

f W .0; 1/ Š�!R. Define the “cut-off” map cW R!  by

c.r/ WD .f � idD2/.r j.0;1//:

Algebraic & Geometric Topology, Volume 18 (2018)
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This map is defined since, for any reducible rope r , c.r/ has exactly one long compo-
nent.

Our aim is to show that c is a weak equivalence, and for this we introduce the following
posets as interfaces between R and  :

Definition 3.2 Define a poset E by

E WD f.t; r/ 2 .0; 1/�R j r is reducible at tg:

Define the partial order � on E so that .t; r/ < .t 0; r 0/ if and only if r D r 0 and t < t 0.
We regard E as a small category in the same way as D. The total space of all morphisms
is topologized as a subspace of

�
�t ..0; 1/� .0; 1/n�/

�
�R , where � is the diagonal

set.

Define E? as a subposet of E consisting of .t; r/ with r strongly reducible at t .

Lemma 3.3 The simplicial spaces N�E and N�E? are good.

Proof The same as the proof of Lemma 2.10.

Any element in NlE can be expressed as a pair .t0 � � � � � tl I r/, where 0 < ti < 1 and
r 2R is reducible at each ti .

Proposition 3.4 There exists a zigzag of levelwise homotopy equivalences N�E  
N�E?!N�D? . Consequently, BE is weakly homotopy equivalent to BD.

Proof That the inclusion E? ! E induces a homotopy equivalence BE? '�!BE
follows in the same way as [2, Theorem 3.9], using [2, Lemma 3.4].

Define a functor ˆW E?! D? that induces a simplicial map ˆW N�E?!N�D? by

ˆ.t I r/ WD .f .t/I c.r//

(see Figure 3.2). Define the map in the reverse direction �W NlD?!NlE? by

�.T0 � � � � � Tl IM/ WD .t0 � � � � � tl I .f
�1
� idD2/.M jŒT0;Tl �//;

where MjŒT0;Tl � is the long-extension of MjŒT0;Tl � (see (2-2)) and ti WDf �1.Ti /2.0;1/
(see Figure 3.2). Notice that .f �1 � idD2/.M/ is not necessarily a tame (or regular)
submanifold of .0; 1/ �D2 for some M 2  (for example, a manifold M that is
“knotted” outside arbitrary compact set of R3 ), but .f �1� idR2/.M jŒT0;Tl �/ is indeed
a tame submanifold in .0; 1/�D2 since M jŒT0;Tl � is a union of two straight half-lines
outside ŒT0; Tl ��D2.

Algebraic & Geometric Topology, Volume 18 (2018)
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0 1

�

�

ˆ

t0 tl

T0 Tl

�

� �

r

r j.t0;tl /

Figure 3.2: The maps ˆ and �

We show that ˆ is a levelwise homotopy equivalence, with a homotopy inverse � . The
composite ˆ ı� is given by

ˆ ı�.T0 � � � � � Tl IM/D .T0 � � � � � Tl IM jŒT0;Tl �/

and a similar isotopy from the proof of Proposition 2.11 proves that ˆ ı� ' id.

The other composite � ıˆ is given by

� ıˆ.t0 � � � � � tl I r/ WD .t0 � � � � � tl I r j.t0;tl //;

where

r j.t0;tl / WD
�
Œ0; t0�� fp23.r jt0/g

�
[ r j.t0;tl /[

�
Œtl ; 1�� fp23.r jtl /g

�
2R

is the “long-extension” of r j.t0;tl / . The rope r j.t0;tl / can be obtained from r by
“unknotting” the edge parts r j.�1;t0/ t r j.tl ;1/ (see Figure 3.2). This unknotting
can be realized by applying Lemma 3.5 and its analogue to rŒtl ;1/ and r.�1;t0� ,
respectively, keeping r jŒt0;tl � unchanged (and hence keeping r strongly reducible at
each ti ). Thus, � ıˆ' id.

Lemma 3.5 (Mostovoy [3, Lemma 10]) Let W be the subspace of R consisting of r
that is “strongly reducible” at 0, which means r j.��;�/ D r jŒ0;�/ D Œ0; �/� fp23.@0r/g
for some � > 0. Then W is contractible. In other words, there exists a canonical
homotopy for any r 2W that transforms r to the trivial rope Œ0; 1��f.0; 0/g keeping r
strongly reducible at 0.

Algebraic & Geometric Topology, Volume 18 (2018)
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Proof Let W 0�W be the subspace consisting of r 2W with @irD.i;0;0/ for iD0;1.
We show that the inclusion W 0 ,! W is a homotopy equivalence. This completes
the proof since W 0 is homeomorphic to the space W 0

L from [3, Lemma 10] via the
diffeomorphism R1�D2 ��!R3DR1�R2 defined by .x; u/ 7!

�
x; tan

�
1
2
�juj

�
�u
�
, and

W 0
L has been shown to be contractible. In the proof of [3, Lemma 10] the contracting

homotopy (denoted by D00T ) keeps ropes strongly reducible at 0.

A homotopy inverse W !W 0 can be realized as follows. For p 2R2 let �pW R2!R2

be the scaling by 1
2

centered at p , namely �p.x/ WD 1
2
.xCp/. Notice that if p2D2 then

�p.D
2/�D2. Let bW R1!R1 be a monotonically increasing C1 function satisfying

b.x/D0 for x< 1
3

and b.x/D1 for x> 2
3

. For r 2W , define „r W R1�D2!R1�D2

by

(3-1) „r.x; .y; z// WD .x; ��.1�b.x//p23.@0r/�b.x/p23.@1r/.y; z//:

Then „r.r/�R1�D2 and „r.@ir/D
�
i; ��p23.@ir/.p23.@ir//

�
D .i; 0; 0/. Moreover,

„r.r/ is strongly reducible at 0 because for a small 0 < � < 1
3

such that r j.��;�/ D
Œ0; �/� fp23.@0r/g we have

„r.r/j.��;�/ D„r
�
Œ0; �/� fp23.@0r/g

�
D Œ0; �/� f��p23.@0r/.p23.@0r//g

D Œ0; �/� f.0; 0/g:

Thus, we have a continuous map „�W W !W 0. The composite W 0 ,!W
„�
�!W 0 is

the scaling by 1
2

in the .y; z/–direction and is homotopic to idW 0 . The other composite
W

„�
�!W 0 ,!W is also homotopic to idW because �p is homotopic to idD2 for any

p 2D2.

Theorem 3.6 The forgetful map induces a weak equivalence vW BE!R .

Proof Replace D with E and take a from .0; 1/ in the proof of Theorem 2.12.

Corollary 3.7 There exists a commutative diagram consisting of (weak) equivalences

R
c

�
//  

BE?

v0 �

OO

ˆ

'
// BD?
u0 �

OO

F

�
// BK

where u0 and v0 are the composites of u and v with the inclusions.
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3.2 Reducible ropes and Mostovoy’s parametrized short ropes

In Corollary 3.7 we have seen that BK is weakly equivalent to R . The following
theorem solves affirmatively the conjecture of Mostovoy. For a rope r let l.r/ denote
the length of r .

Theorem 3.8 Let B2 be the space of embeddings �W Œ0; 1� ,!R3 satisfying �.i/D
.i; 0; 0/ for i D 0; 1 and l.�.Œ0; 1�// < 3 (Mostovoy’s (parametrized) short ropes [3]).
Then B2 is weakly equivalent to R .

The rest of this paper is devoted to the proof of Theorem 3.8.

It is not difficult to see that the image of any �2B2 is in R1�D2.2
p
2/, where D2.�/

is the open 2–disk centered at the origin and of radius � . Thus, we may write B2 as

B2 D f�W Œ0; 1� ,!R1 �D2.2
p
2/ j �.i/D .i; 0; 0/ for i D 0; 1 and l.�.Œ0; 1�// < 3g:

Let Bu
2 WDB2=DiffC.Œ0; 1�/ (“u” indicates “unparametrized”), namely Bu

2 is the space
of ropes in R1 �D2.2

p
2/ with @r D f@0r; @1rg, @ir D .i; 0; 0/ and l.r/ < 3. The

following holds since DiffC.Œ0; 1�/ is contractible:

Lemma 3.9 B2! Bu
2 is a homotopy equivalence.

We notice that l.r/ < 3 implies that r is a reducible rope, and hence we may regard Bu
2

as a subspace of R.2
p
2/, where R.�/ is the space of reducible ropes in R1 �D2.�/.

Let Rs.�/�R.�/ be the subspace consisting of r 2R.�/ with l.r/ < 3 (“s” indicates
“short”). By definition, Bu

2 �R
s.2
p
2/.

Lemma 3.10 The inclusion Bu
2 ,!Rs.2

p
2/ is a homotopy equivalence.

Proof For r 2Rs.2
p
2/, let „r W R1�D2.2

p
2/!R1�D2.2

p
2/ be the map defined

in (3-1) (notice that if p 2 D2.�/ then �p.D2.�// � D2.�/). Then l.„r.r// < 3

because „r is a shrinking map in the .y; z/–direction and hence does not increase
the length, and „r.@ir/D .i; ��@ir.@ir//D .i; 0; 0/. Thus, we have a continuous map
„�W R

s.2
p
2/! Bu

2 . The composite Bu
2 ,! Rs.2

p
2/

„�
�!Bu

2 is the scaling by 1
2

in
the .y; z/–direction and is homotopic to idBu

2
. The other composite

Rs.2
p
2/

„�
�!Bu

2 ,!Ru.2
p
2/

is also homotopic to idRs.2
p
2/ because �p is homotopic to idD2.�/ for any p 2D2.�/.
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Next let E.�/ be the poset consisting of those .t; r/ with t 2 .0; 1/ and r 2R.�/ such
that r is reducible at t . The partial order is defined in the same way as in Definition 3.2.
Define Es.�/ be a subposet of E.�/ consisting of those .t; r/ with l.r/ < 3. Then we
have a commutative diagram

(3-2)

BEs.2
p
2/

v

�
//

��

Rs.2
p
2/� _

��

B2
'

Lemmas 3.9 and 3.10
oo

BE.2
p
2/

'

Theorem 3.6
// R.2
p
2/

�
// R

where BEs.2
p
2/!BE.2

p
2/ and v are induced by the inclusion and the forgetful map

(see Theorem 2.12), respectively. That v is a weak equivalence follows from the same
argument as in the proof of Theorem 3.6. The homeomorphism RDR.1/ ��!R.�/

is given by r 7! .idR1 � x�/.r/, where x� W D2 ��!D2.�/ is the scalar multiplication
by � . The diagram (3-2) together with the following lemma completes the proof of
Theorem 3.8.

Lemma 3.11 BEs.�/! BE.�/ is a homotopy equivalence.

Proof Let E?.�/ be the subposet of E.�/ consisting of those .t; r/ with r strongly
reducible at t , and E?s.�/ WD E?.�/\ Es.�/. Then the inclusion E?s.�/ ,! Es.�/

induces a homotopy equivalence BE?s.�/ '�!BEs.�/. This follows in the same way
as Galatius and Randal-Williams [2, Theorem 3.9], using [2, Lemma 3.4]; modifying r
to be strongly reducible at each t can be done keeping the length less than 3.

We show that E?s.�/ ,!E?.�/ induces a levelwise homotopy equivalence N�E?s.�/!

N�E?.�/. A homotopy inverse NlE?.�/ ! NlE?s.�/ is given as follows: firstly
unknot r j.�1;t0�t r jŒtl ;1/ similarly to the proof of Lemma 3.5 to obtain r j.t0;tl / , then
shrink r j.t0;tl / to

‚.t; r/ WD �t;r.r j.t0;tl //[
�
Œl.r j.t0;tl //

�1; 1�� fp23.r jtl /=l.r j.t0;tl //g
�
;

where �t;r W R3 ! R3 is given by �t;r.x/ WD x=l.r j.t0;tl //. It can be seen that
l.‚.t; r// < 3 since l.�t;r.r j.t0;tl ///D 1. The map NlE?.�/!NlE?s.�/,

.t0 � � � � � tl I r/ 7! .t0=l.r j.t0;tl //; : : : ; tl=l.r j.t0;tl //I‚.t; r//;

gives a levelwise homotopy inverse.
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